
A dynamic-balanced scheduler for Genetic Algorithms for Grid
Computing

A.J. SÁNCHEZ SANTIAGO(2), A.J. YUSTE(1), J.E. MUÑOZ EXPÓSITO(1), S. GARCÍA GALÁN(1),

J.M. MAQUEIRA MARÍN(2), S. BRUQUE(2)

 (1) Telecommunication Engineering Department
(2) Business Administration and Accounting Department

University of Jaén
Alfonso X El Sabio, 28. Linares, Jaén. SPAIN

{ajsantia, ajyuste, jemunoz, sgalan, maqueira, sbruque}@ujaen.es

Abstract. The new paradigm of distributed computation, grid computing, has given rise to a large amount of research on
resource scheduling. Unlike the distributed computation, grid computing uses heterogeneous resources, for what grid
computing entails new challenges as the adaptation of parallel algorithms before developed for homogeneous resources
cluster to the dynamic and heterogeneous resources. In this paper we present a dynamic-balanced scheduler for grid
computing that solves two typical kinds of problems of grid computing, using for them the cycles of some resources of the
grid. The first problem is based on iterative tasks that usually appear in optimization problems. The second problem is a
directed acyclic graph (DAG) problem. Experimental results using dynamic-balanced scheduler show that it is possible to
obtain an improved use of the resources in the grid. This strategy enables to adapt the length of a task to the computing
capacity of each resource at any given moment. Furthermore, this scheduling strategy enables to execute all the tasks in a
shorter time.

Key-Words: - Grid computing, dynamic-balanced scheduler, genetic algorithm, optimization problem.

1 Introduction

Over the past few years, the development of high
speed networks, increasing overall computing
capacity and low cost of storage devices have given
rise to a new paradigm of distributed computation:
grid computing [1].
A Grid System, fig. 1, is made up by a set of Virtual
Organizations (VO). A VO comprises a set of
independent organizations that share heterogeneous
resources to achieve a common mission, but that are
not limited to an alliance among firms. Interaction
among members of the virtual organization is mainly
done through computer networks.

C e n t r e A

S u p e r c o m p u t e r A

G a t e w a y 1

S u p e r c o m p u t e r A

C e n t r e B

G a t e w a y 2

V O 1

V O 2

V O 3

G r i d M a n a g e r

G r i d M a n a g e r

Figure 1. A Grid System

Unlike traditional distributed computation, which
usually uses a geographical limited area, a grid
system can be run throughout several organizations
that utilize heterogeneous resources in a large
geographical area.
Despite of its advantages, Grid computing also
entails many new challenges, like the adaptation of
parallel programs previously developed for
homogeneous resources clusters to the dynamic and
heterogeneous Grid resources with minimal
intrusion into the code or resource scheduling. In a
grid environment, the scheduler is the manager of
the workflow, acting as intermediary between the
user and the distributed resources, thus concealing
the complexity of the grid system [2]. The scheduler
identifies available resources, negotiates and
organizes their use, decides when to execute the
tasks and eventually organizes the results.
Overall, a scheduler makes a decision on when to
execute a task in a given resource. This assignment
is aimed to maximize (or minimize) an objective
function, such as the time of execution, number of
tasks not executed, execution costs, etc. Most of the
recent literature treats the length of a task as a
constant [3], which can not change during execution.
This assumption for a grid, which is a highly
dynamic environment, can make the scheduling
algorithms simple and efficient; but can undermine
the scheduling algorithms applicability in some

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 11 Issue 1, Volume 8, January 2009

situations.
At the time of scheduling, the workload of the
resources in the grid may be unknown. Furthermore,
this workload may change over time, as the tasks
start and finish periodically. Ignoring such uncertain
factors may result in an increasing number of
scheduling errors.
Nowadays many applications have been developed
for traditional homogeneous parallel systems.
Adapting these applications, developed for
homogeneous environments, to dynamic
heterogeneous resources entails a new challenge
which has to do with keeping a high level of
application efficiency. An adequate workload
optimization method should take into account two
main characteristics:

(1) Application characteristics, such as
memory requirements, data being transferred
between processes, application communication
structures, hard disk or other I/O activity, etc.

(2) Resource characteristics, such as

memory of the resources and computational
capacity, network bandwidth, disk I/O speed, and
the heterogeneity level of the resources randomly
assigned to the application by the Grid resource
broker.

The workload optimization method should be:

 (a) Self-adapting and flexible with respect
to the type of application.

(b) Computationally inexpensive; i.e. not to

induce a large overhead on the application
performance.

(c) Should not require significant

modifications in the code.

In sum, the load balancing should be dynamic and
fully automated since the complexity of the Grid
environment should be hidden from end-users.
Traditionally there are two approaches that have
proved useful for workload balancing in parallel
applications: (1) to carefully calculate the
distribution of the workload, taking into account all
the properties of the environment and application (a
time and resource consuming task requiring expert
knowledge of the application structure and
algorithms being used); and (2) distributing the
workload in a straight forward way, optimizing the
processing capacity of the resources.
Our aim, focused on computational grid, consists of

building a scheduler for a SME (Small-Medium
Enterprise) that allows to use the resources’ idle
cycles to execute tasks, which in a local machine
would take several days, whereas in a grid system
can only take a few hours.
We will develop a scheduler that can be used by the
company’s network managers, in such a way that is
not necessary for them to obtain additional training
or hire new employees.
With the scheduler we propose, we will minimize
the overall response time for the entire workflow,
while operation costs remain unchanged since the
firm can use its own idle resources to run the grid.
Our scheduler splits the total workflow according to
the idle cycles of each resource, so that all the
resources can finish each task at the same time. The
new scheduler is easy to use, is flexible and only
needs an estimation of the process capacity of each
resource as the main input. The simulations carried
out in this research show that our algorithm
improves others schedulers presented in prior
literature.
This document is organized as follows: in section 2
we analyze recent work in grid resource scheduling.
In section 3 we describe the dynamic-balanced
scheduler for typical problems of grid computing. In
Section 4 we show the results of the simulation using
[4]. Finally, in section 5 we present the conclusions
and future directions.

2 Background

Resource scheduling for tasks in a grid environment
has been extensively studied in recent years. Some
works focus on the scheduling of a set of independent
tasks using scheduling techniques such as genetic
algorithms [5], data mining [6] or swarm intelligence
[7-8]. Other works have studied scheduling
technologies using economic/market-based modelss
[9].
More recent works consider data dependencies
between tasks, which are threaded as a workflow with
transitions indicating direct data dependencies. To
minimize the complexity of scheduling a workflow, a
workflow is partitioned into a set of subworkflows,
each being assigned to a resource. In [10], Duan et al.
proposed a workflow partitioning algorithm based on
a set of rules that intend to minimize the data flow
between subworkflows. Spooner et al. [11] proposed
a two level algorithm that consisted of one global
scheduler and a number of local schedulers, one for
each grid resource.
Another research line leaves out the assumption that
each grid resource must be a cluster. Instead, a grid
resource is simply considered as the one that is

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 12 Issue 1, Volume 8, January 2009

capable of providing services, computation, and/or
storage. Some researches propose to determine the
grid resources for all tasks in a workflow before the
workflow is started, which is referred to as static
resource scheduling in subsequent discussion. In [12],
a pair of a task (t) and a grid resource (r) receives a
rank which is a linear combination of computing and
data transfer time for executing t on r. Three
algorithms, namely min-min, max-min, and
sufferage, were proposed to minimize the makespan
of the entire workflow based on the ranks.
Considering the fact that grid may be highly dynamic,
some researches propose to perform resource
scheduling only for tasks that are ready to execute,
referred to as dynamic resource scheduling. Blythe et
al. [13] adopted min-min strategy for both static and
dynamic resource scheduling and concluded that the
static resource scheduling is more suitable for data-
intensive workflows, while dynamic resource
scheduling performs better for computation-intensive
workflows.
Weiss and Pinedo [14] have shown that the SEPT
(Short Expected Processing Time) strategy, which
gives priority to jobs with shortest expected
processing times, and the LEPT (Long Expected
Processing Time) strategy, which gives priority to
jobs with longest expected processing times, can be
used to minimize expected flow time and expected
makespan respectively, when the processing time of
each job follows an exponential distribution.
However, in a real grid environment, the processing
time of each task by a resource may not follow an
exponential distribution.
In these works the length of a task from a workflow is
known in advance and the optimizations are based on
an in advance predetermined workflow. Conversely,
we experiment in this work with several workflows in
which the size of each task is different.

3 The proposed algorithm

The design space for Grid Schedulers in general is
very rich. First, it depends on what objective function
the user wants to minimize or maximize – examples
being minimizing overall job completion time,
minimizing communication time and maximizing
resource utilization or throughput. Second, it depends
on how the job requirements, job performance
models, and Grid resource models are specified and
used. The scheduler must also carefully choose
between different implementations of user
authentication, allocation, and reservation. Other
choices include scheduling application components
for single or multiple users and whether rescheduling
or re-planning is required.

There are usually two types of problems in task
scheduling: an optimization problem and a directed
acyclic graph (DAG) problem, fig. 2. In this figure
we show an example of a simple DAG with 10 tasks.
Tasks 5, 6 and 7, cannot start until the previous tasks
2, 3, 4 has finished. For the last task, 10, it cannot
begin until tasks 8 and 9 are finished, even if task 7
was finished before.

1

2 3 4

5 6 7

8 9

1 0

 Figure 2. A DAG

With the adaptive dynamic-balanced scheduler we try
to validate two problems: on the one hand a genetic
algorithm for solving optimization problems which
has a set of independent workflows, and on the other
hand a DAG problem. In both cases we have used
CPU idle cycles of some resources, which a company
has in several networks, minimizing the time of
execution of each workflow.
Each task requires some data as input and output and
may be executed in one of a several resources, which
satisfy the overall objective.

3.1 The model

We develop a general model to verify the validity of
our scheduler. Our model is made up by a set of
tasks, grouped in a workflow. A workflow will not
begin next iteration unless the prior one had been
finished. A typical example of this is produced in
processes of optimization, like genetic algorithms, in
which until a generation has not been fully evaluated,
it is not possible to evaluate the following generation.
In order to formulate an integrated model, the
following parameters are introduced:

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 13 Issue 1, Volume 8, January 2009

Parameters:

n: numbers of resources
iter: numbers of iterations
N: load for each iteration
Ni: task for each resource
µi: instructions per second (MIPS)
Ti: time of iteration
OT: overall time of a workflow

In our scheduling, we have chosen our objective
function: minimize overall job completion time. It is
only necessary to count the maximum time of
execution from the worst relation task–resource. This
time can be worked out with the following
mathematical equation (1).

 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

iter

i
ii

i

i
i TrTsNMAXOT

1 µ
 (1)

The time of an iteration (2) is given by the longest
time needed to execute a task in the worst available
resource.

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

tasks

k
ii

i

i
ii TrTsNMAXT

1 µ
 (2)

Where Tsi is the time that takes sending a task to the
resource that is going to execute it and Tri the time
that takes receiving the result from a task. We
consider the time of sending and receiving a task
negligible, because if this time is higher than the time
of execution of the task we do not send it to the grid.
Thus, the time of one particular iteration can be
simplified by (3):

i

i
ii

NMAXT
µ

≅ (3)

To minimize this Ti we assign a proportional load to
each following resource, this way we do not depend
on the resource that offers a worse performance:

∑
=

×= n

i
i

i
i NN

1
µ

µ
 (4)

Thus, the innovation in this study lies in that we carry
out a previous study of the idle cycles of all the
resources we have, adapting the length of a task is
according to the total idle cycles.

With this proposal we obtain two results: on the one
hand we carry out a better load balancing for the
resources, assigning higher loads to the resources
presenting a higher availability and, on the other
hand, we reduce the time of execution of the
workflows.

3.2 An execution

In the following figures we show the process of
execution of iteration in our model by a simple
example.
In the first step, fig. 3, we can identify three resources
of our Grid System. The scheduler asks the resources,
by the function Init_Job(I_J), for the µi idle that they
have. Every resource sends to the scheduler the
number of idle cycles that it has available for this
iteration.

3 1 2 8 M I P S

2 9 8 0
M I P S

3 2 4 5
M I P S

S c h e d

R 1 R 2 R 3

I _ J

I _ J

 Figure 3. Step 1.Get MIPS idle from each resource

In the second step, a workflow enters the Grid
System, and the scheduler realizes his work, splits
this workflow according to the idle cycles of each
resource, fig 4.

W o r k f l o w
5 0 0 0 0 0 0

T 1 T 2 T 3

1 6 7 2 1 9 0 1 5 9 3 0 7 1 1 7 3 4 7 3 9

Figure 4. Step2 .Split workflow according idle MIPS of

each resource

In the next step, fig. 5, each resource executes his
task, finishing the execution in a similar time for all
the resources, so we do not depend on the execution
of the worst resource.

T 1 T 2 T 3

R 1 R 2 R 3

Figure 5. Step3. Execute the tasks in the

corresponding resources

In the last step, the scheduler obtains the results for
this iteration and the idle MIPS that they have for the
execution of the next iteration.

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 14 Issue 1, Volume 8, January 2009

2 8 7 0 M I P S
3 1 5 7 M I P S

S c h e d

R 1 R 2 R 3

R E S U L T S (R 1)

R E S U L T S (R 2)

R E S U L T S (R 3)

3 3 4 8 M I P S

Figure 6. Step 4. Get results and the idle MIPS for the
next iteration

As seen during the example, our scheduler is highly
dynamic, because after every execution, the scheduler
is able to re-obtain the actual number of idle cycles.

4 Experimental results

Due to the difficulties associated to real tests, the
benefits of this scheduler have been verified through
the use of simulations. Simulations offer big benefits
opposite to other methods that are currently used to
measure a system’s behavior:
a. Simulations allow experimentation in the system
without interrupting the activity of the system and
therefore avoiding potential damages.
b. Simulations are independent on the process or real
system. Therefore, it is possible to use simulations in
different stages before their actual implementation in
real settings.
c. Simulations improve the comprehension of the
behaviour of the system since they provide numerical
results.
d. Simulations allow to carry out comparative
analyses of different scenarios.
Therefore, it was necessary to develop our scheduler
using the GridSim toolkit [4]. GridSim is a simulation
toolkit for resource modelling and application
scheduling in parallel and distributed computing
systems.
Table 1 shows the type of the resources we have used
in our analysis. The MIPS for each PE (Processing
Element) is the maximum MIPS for each resource.
This value can change according to the use of CPU's
cycles that the user of the resource needs at any given
moment, modelled by a uniform distribution. We
assume that delay of transmission is negligible
compared with the time of execution of a task.

Resourc. R1 R2 R3 R4 R5

S.O. Win Unix Win Win Win
Arq. IBM Solaris IBM IBM IBM
P.E. 1 1 1 1 1
MAX
MIPS

2000 2500 3000 3500 4000

 Table 1. Type of resources

We compare our proposal with other, more traditional
schedulers, space-shared and time-shared policies.

FCFS (First-Come First-Served) [15] is a time-shared
algorithm. This is one of the simplest, executes the
workflows to completion in the order they are
submitted. It has a big drawback; if a resource has
few idle cycles to offer, the execution of the
remaining workflows will turn out slow, since it is
necessary to fulfil all tasks of a workflow to execute
the following workflow.
RR (Round Robin) [16] is a time-shared algorithm; it
is one of the oldest, simplest, fairest and most widely
used scheduling algorithms, designed especially for
time-sharing systems. A small unit of time, called
time slices or quantum is defined. All runable
processes are kept in a circular queue. The scheduler
goes around this queue, allocating the CPU to each
process for a time interval of one quantum. New
processes are added to the tail of the queue. The
scheduler picks the first process from the queue, sets
a timer to interrupt after one quantum, and dispatches
the process. If the process is still running at the end of
the quantum, the CPU is pre-empted and the process
is added to the tail of the queue. If the process
finishes before the end of the quantum, the process
itself releases the CPU voluntarily. In either case, the
CPU scheduler assigns the CPU to the next process in
the ready queue. Every time a process is granted the
CPU, a context switch occurs, which adds overhead
to the process execution time.
The experiments can be divided in two groups.
Firstly, we have executed a workflow based on
independent tasks that usually appear in optimization
problems. Secondly, we executed a DAG problem.

4.1 An optimization problem

The Genetic Algorithm (GA) is a method for solving
optimization problems that is based on natural
selection, the process that drives biological evolution.
The GA repeatedly modifies a population of
individual solutions. At each step, the GA randomly
selects individuals from the current population to be
parents and uses them to produce the children for the
next generation. Over successive generations, the
population evolves toward an optimal solution. The
GA can be applied to solve optimization problems
that are not well suited for standard optimization
algorithms, including problems in which the objective
function is discontinuous, non-differentiable,
stochastic, or highly nonlinear as our problem. GA is
frequently used in research like in network
communications [17-18], for speech/music
discrimination [19] or for partitioning problems in
code sign [20].
We have carried out several simulations by changing
the number of iterations; each iteration being made

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 15 Issue 1, Volume 8, January 2009

up by a workflow and the available resources. We
defined the length of a workflow large enough, to
take advantage of a system grid, and moderately
small in order to not overload the less efficient
resources.
We have developed four experiments with 25, 50, 75
and 100 resources that we explain in detail below.

4.1.1 First experiment

The first experiment was made up by 25 resources
and 100, 500 and 1000 iterations. The times are
shown in table 2, 3 and 4. We can see in fig. 7 that
the execution time was getting shorter for the RR and
balanced algorithms.

Nº iterations=100
Workflow length= 500000000

Nº resources= 25

Algorithm Time (sec.)

FCFS 815681,27
RR 1028379,16

Balanced 751859,56
Table 2. 100 iterations and 25 resources

Nº iterations =500
Workflow length= 500000000

Nº resources= 25

Algorithm Time (sec.)

FCFS 4070361
RR 5108821,63

Balanced 3761625,95
Table 3. 500 iterations and 25 resources

Nº iterations=1000
Workflow length= 500000000

Nº resources= 25

Algorithm Time (sec.)

FCFS 8153256,08
RR 10218636,6

Balanced 7532137,76
Table 4. 1000 iterations and 25 resources

25 Resources

Nº iterations=100 Nº iterations =500 Nº iterations=1000
0

2000000

4000000

6000000

8000000

10000000

12000000

Ti
m

e(
s) FCFS

RR
Balanced

Figure 7. Experiment with 25 resources and Workflow

length= 500000000

4.1.2 Second experiment

Table 5, 6 and 7, and fig. 8 show a comparison
between the time for the three schedulers for 50
resources and 100, 500 and 1000 iterations. Fig. 8
depicts that the higher the number of iterations, the
larger the difference of execution time, which
implies that FCFS and RR degenerate very quickly
as the number of iterations grows.

Nº iterations =100
Workflow length= 500000000

Nº resources= 50

Algorithm Time (sec.)

FCFS 526393,32
RR 548574,52

Balanced 402459,76
Table 5. 100 iterations and 50 resources

Nº iterations =500

Workflow length= 500000000
Nº resources= 50

Algorithm Time (sec.)

FCFS 2637932,84
RR 2740363,3

Balanced 2016518,16
Table 6. 500 iterations and 50 resources

Nº iterations =1000
Workflow length= 500000000

Nº resources= 50

Algorithm Time (sec.)

FCFS 5269542,88
RR 5487507,1

Balanced 4031486,28
Table 7. 1000 iterations and 50 resources

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 16 Issue 1, Volume 8, January 2009

50 Resources

Nº iterations=100 Nº iterations =500 Nº iterations=1000

0

1000000

2000000

3000000

4000000

5000000

6000000

Ti
m

e(
s) FCFS

RR
Balanced

Figure 8. Experiment with 50 resources and Workflow

length= 500000000

4.1.3 Third experiment

Tables 8, 9 and 10, and fig. 9 exhibits time of
execution for 75 resources and 100, 500 and 1000
iterations. Like in the aforementioned experiments,
our balanced scheduler offers better results.

Nº iterations =100
Workflow length= 500000000

Nº resources= 75

Algorithm Time (sec.)

FCFS 352608,2
RR 436609,265

Balanced 313611,72
Table 8. 100 iterations and 75 resources

Nº iterations =500
Workflow length= 500000000

Nº resources= 75

Algorithm Time (sec.)

FCFS 1760069,48
RR 2173044,77

Balanced 1567549,15
Table 9. 500 iterations and 75 resources

Nº iterations =1000
Workflow length= 500000000

Nº resources= 75

Algorithm Time (sec.)

FCFS 3522367,51
RR 4357151,66

Balanced 3136368,64
Table 10. 1000 iterations and 75 resources

75 Resources

Nº iterations=100 Nº iterations =500 Nº iterations=1000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

Ti
m

e(
s) FCFS

RR
Balanced

Figure 9. Experiment with 75 Resources and

Workflow length= 500000000

4.1.4 Fourth experiment

The last experiment that we carried out, tables 11, 12,
13 and fig. 10, with 100 resources, offer the
minimum execution time of all our tests.

Nº iterations=100
Workflow length= 500000000

Nº resources= 100

Algortihm Time (sec.)

FCFS 350501,83
RR 343266,82

Balanced 270239,52
Table 11. 100 iterations and 100 resources

Nº iterations =500
Workflow length= 500000000

Nº resources= 100

Algortihm Time (sec.)

FCFS 1748339,75
RR 1722092,89

Balanced 1350322,72
Table 12. 500 iterations and 100 resources

Nº iterations=1000
Workflow lengh= 500000000

Nº resources= 100

Algortihm Time (sec.)

FCFS 3502678,19
RR 3438388,70

Balanced 2698851,20
Table 13. 1000 iterations and 100 resources

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 17 Issue 1, Volume 8, January 2009

100 Resources

Nº iterations=100 Nº iterations =500 Nº iterations=1000
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Ti
m

e(
s) FCFS

RR
Balanced

Figure 10. Experiment with 100 Resources and

Workflow length= 500000000

4.1.5 Summary of results

The previous examples that we have carried out in
this study show a comparison of times from the point
of view of the iterations, meanwhile this last
experiment compares execution times according to
the resources being used.
In fig. 11 we show a comparison for 100 iterations
and 25, 50, 75 and 100 resources. The dynamic-
balanced scheduler we proposed offers again better
results than any other two schedulers for every mix of
resources.

100 Iterations

0

200000

400000

600000

800000

1000000

1200000

Nº resources=
25

Nº resources=
50

Nº resources=
75

Nº resources=
100

Ti
m

e(
s) FCFS

RR
Balanced

Figure 11. Experiment with 100 iterations and

Workflow length= 500000000

Fig. 12 exhibits the execution time for 500 iterations
and 25, 50, 75 and 100 resources. At any given
combination of resources our balanced scheduler
obtains the shorter execution time.

500 Iterations

0

1000000

2000000

3000000

4000000

5000000

6000000

Nº resources= 25 Nº resources= 50 Nº resources= 75 Nº resources=
100

Ti
m

e(
s) FCFS

RR
Balanced

Figure 12. Experiment with 500 iterations and

Workflow length= 500000000

1000 Iterations

0

2000000

4000000

6000000

8000000

10000000

12000000

Nº resources=
25

Nº resources=
50

Nº resources=
75

Nº resources=
100

Ti
m

e(
s) FCFS

RR
Balanced

Figure 13. Experiment with 1000 iterations and

Workflow length= 500000000

Fig. 13 exhibits the execution time for 1000 iterations
and 25, 50, 75 and 100 resources.

4.2 A DAG problem

In this experiment we executed a standard DAG,
which consisted of a protein annotation workflow
(Fig. 14), [9].

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 18 Issue 1, Volume 8, January 2009

1 2 43

5

6

7

8 9 1 0

1 1

1 2

1 4

1 3

1 5

3 0 0 0 0 0
6 0 0 0 0 0 6 0 0 0 0 0 9 0 0 0 0 0

3 0 0 0 0 0
1 5 0 0 0 0

1 5 0 0 0 0

3 0 0 0 0 0
3 0 0 0 0 0 3 0 0 0 0 0

6 0 0 0 0 0

3 0 0 0 0 0

6 0 0 0 0 0

3 0 0 0 0 0

1 5 0 0 0 0

Figure 14. Protein annotation workflow

This experiment, protein annotation workflow, was
executed with the parameters shown in Table 14.

Resources 100
S.O. Win
Arq. IBM

MAX MIPS 6000
BaudRate(Mb) 100

Prop.
Delay(ms) 10

Table 14. Parameters for Grid System for protein
annotation workflow

During this second experiment, our dynamic-
balanced scheduler improves the time of execution of
the FCFS and RR schedulers. Results are presented in
Table 15.

Prot. annot.
workflow

Time (sec)

Balanced 2702.52
FCFS 3741.82

RR 3916.23
Table 15. Execution time; protein

annotation workflow

5 Conclusions and future work

A grid environment is usually heterogeneous in
nature in the real world at least for the different
computing speeds at different participating sites. The
heterogeneity presents a challenge for effectively
arranging load sharing activities in a computational
grid. This paper explores job scheduling and
allocation issues in heterogeneous computational
grids when a task, during the scheduling process,
cannot fit in any single site in the grid.
We have proposed a balanced scheduler in a grid
environment. With this technique we have fulfilled
three objectives: Firstly execution time has been
shortened, secondly we have obtained a better
loading distribution among resources in the grid and
thirdly we have used idle, non cost-increasing
resources.
As future research directions, we will conduct
additional experiments to comprehensively compare
other scheduling strategies using fuzzy logic that
would enable us to set up a utility grid structure.
These utility models are very effective in shared
inter-organizational settings to increase computing
capacity whilst keeping security and reducing
operating costs.

6 Acknowledgments

This work has been financially supported by the
Andalusian Government (Research Project P06-SEJ-
01694).

References

[1] I. Foster and C. Kesselman (editors), The Grid: Blueprint for
a new Computing infrastructure. Morgan Kaufmann Publishers,
San Francisco, USA, (1999)

[2] R. Buyya, D. Abramson, and J. Giddy, Nimrod/G: An
Architecture for a Resource Management and Scheduling System
in a Global Computational Grid, 4th International Conference
and Exhibition on High Performance Computing in Asia-Pacific
Region (HPC ASIA 2000), Vol 1,2000, pp 283.

[3] Reakook Hwang, Mitsuo Gen, Hiroshi Katayama. A
comparison of multiprocessor task scheduling algorithms with
communication costs. Computers and Operations Research
Volume 35, Issue 3, 2008, pp 976-993.

[4] Anthony Sulistio, Uros Cibej, Srikumar Venugopal, Borut
Robic and Rajkumar Buyya A Toolkit for Modelling and
Simulating Data Grids: An Extension to GridSim. Concurrency
and Computation: Practice and Experience (CCPE), Wiley
Press, New York, USA 2007.

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 19 Issue 1, Volume 8, January 2009

[5] Cao, J., Spooner, D.P., Jarvis, S.A., Nudd, G.R.: Grid load
balancing using intelligent agents. Future Generation Comput.
Syst. Vol. 21(1), 2005, pp 135–149.

[6] Meiqun Liu, Kun Gao, Zhong Wan, A Novel Architecture for
Data Mining Grid Scheduler, WSEAS Transactions on Systems
Issue 1, Volume 7, 2008 pp 373-383.

[7] Wang Da-Zhen, Zhan Jun-Shan, Wan Fang, Zhu Lei., A
Dynamic Task Scheduling Algorithm in Grid Environment.
WSEAS Transactions on Computers, Issue 7, Volume 5, 2006, pp
1632-1634.

[8] Reche López, P., Gómez González, M., Ruiz Reyes, N.,
Jurado F., “Optimization of biomass fuelled systems for
distributed power generation using Particle Swarm
Optimization”. Electric Power Systems Research. Issue 8, Vol.
78, 2008, pp. 1448-1455.

[9] Yu, J. and Buyya, R., A Budget Constrained Scheduling of
Workflow Applications on Utility Grids using Genetic
Algorithms, Workshop on Workflows in Support of Large-Scale
Science, Proceedings of the 15th IEEE International Symposium
on High Performance Distributed Computing (HPDC 2006, IEEE
CS Press, Los Alamitos, CA, USA), 2006, Paris, France.

[10] Duan, R., Prodan, R., Fahringer, T.: Run-time optimisation
of grid workflow applications, 7th IEE/ACM International
Conference on Grid Computing, 2006, pp. 33–40.

[11] Spooner, D.P., Cao, J., Jarvis, S.A., He, L., Nudd, G.R.:
Performance-Aware Workflow Management for Grid Computing.
The Computer Journal, Vol 48, 2005, pp 347–357.

[12] Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-
Crummey, J., Liu, B., Johnsson, L.: Scheduling strategies for
mapping application workflows onto the grid. Proceedings of the
14th International Symposium on High Performance Distributed
Computing (HPDC 2005), 2005, pp. 125–134.

[13] Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal,
A., Kennedy, K.: Task scheduling strategies for workflow-based
applications in grids. Proceedings of the Cluster Computing and
Grid 2005 (CCGrid 2005), 2005, pp. 759–767.

[14] Weiss, G., Pinedo, M.: Scheduling Tasks with Exponential
Service Times on Non- Identical Processors to Minimize Various
Cost Functions. Journal of Applied Probability, 1980, pp 187–
202.

[15] Domenico Ferrari. Real-time communication in an
internetwork. Journal of High Speed Networks, Vol. 1, 1992.

[16] Tanebaum, A.S., Modern operating systems. Prentice-Hall,
1993.

[17] Antonio J. Yuste, Francisco David Trujillo, Alicia Triviño,
Eduardo Casilari, An adaptive gateway discovery for mobile ad
hoc networks. Proceedings of the 5th ACM international
workshop on Mobility management and wireless access,
MobiWac '07, 2007, pp 159-162.

[18] J. A. Fernández Prieto, Juan R. Velasco Pérez. Adaptive
Genetic Algorithm control parameter optimization to verify the
network protocol performance. 12th International Conference on
Information Processing and Management of Uncertainty in

Knowledge Based Systems (IPMU), Torremolinos(Spain) pp.
785-791, 2008.

[19] J.E. Muñoz, S. García Galán, N. Ruiz-Reyes, P. Vera-
Candeas, Audio coding improvement using evolutionary
speech/music discrimination. IEEE International Conference on
Fuzzy Systems (FUZZY-IEEE 2007), London, pp 1-6, 2007.

[20] Abderrazak Henni, Mouloud Koudil, Karima Benatchba,
Hassane Oumsalem, Kamel Chaouche, A parallel environment
using taboo search and genetic algorithms for solving partitioning
problems in codesign, WSEAS Transactions on Systems, Issue 1,
Volume 3, 2004, pp 8-13.

WSEAS TRANSACTIONS on COMPUTERS
A. J. Sanchez Santiago, A. J. Yuste, J. E. Munoz Exposito,
S. Garcia Galan, J. M. Maqueira Marin, S. Bruque

ISSN: 1109-2750 20 Issue 1, Volume 8, January 2009

