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Abstract. The new paradigm of distributed computation, grid computing, has given rise to a large amount of research on 
resource scheduling. Unlike the distributed computation, grid computing uses heterogeneous resources, for what grid 
computing entails new challenges as the adaptation of parallel algorithms before developed for homogeneous resources 
cluster to the dynamic and heterogeneous resources. In this paper we present a dynamic-balanced scheduler for grid 
computing that solves two typical kinds of problems of grid computing, using for them the cycles of some resources of the 
grid. The first problem is based on iterative tasks that usually appear in optimization problems. The second problem is a 
directed acyclic graph (DAG) problem. Experimental results using dynamic-balanced scheduler show that it is possible to 
obtain an improved use of the resources in the grid. This strategy enables to adapt the length of a task to the computing 
capacity of each resource at any given moment. Furthermore, this scheduling strategy enables to execute all the tasks in a  
shorter time. 
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1 Introduction 
 
Over the past few years, the development of high 
speed networks, increasing overall computing 
capacity and low cost of storage devices have given 
rise to a new paradigm of distributed computation: 
grid computing [1]. 
A Grid System, fig. 1, is made up by a set of Virtual 
Organizations (VO). A VO comprises a set of 
independent organizations that share heterogeneous 
resources to achieve a common mission, but that are 
not limited to an alliance among firms. Interaction 
among members of the virtual organization is mainly 
done through computer networks.  
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Figure 1. A Grid System 

 
Unlike traditional distributed computation, which 
usually uses a geographical limited area, a grid 
system can be run throughout several organizations 
that utilize heterogeneous resources in a large 
geographical area.  
Despite of its advantages, Grid computing also 
entails many new challenges, like the adaptation of 
parallel programs previously developed for 
homogeneous resources clusters to the dynamic and 
heterogeneous Grid resources with minimal 
intrusion into the code or resource scheduling. In a 
grid environment, the scheduler is the manager of 
the workflow, acting as intermediary between the 
user and the distributed resources, thus concealing 
the complexity of the grid system [2]. The scheduler 
identifies available resources, negotiates and 
organizes their use, decides when to execute the 
tasks and eventually organizes the results.  
Overall, a scheduler makes a decision on when to 
execute a task in a given resource. This assignment 
is aimed to maximize (or minimize) an objective 
function, such as the time of execution, number of 
tasks not executed, execution costs, etc. Most of the 
recent literature treats the length of a task as a 
constant [3], which can not change during execution. 
This assumption for a grid, which is a highly 
dynamic environment, can make the scheduling 
algorithms simple and efficient; but can undermine 
the scheduling algorithms applicability in some 
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situations.  
At the time of scheduling, the workload of the 
resources in the grid may be unknown. Furthermore, 
this workload may change over time, as the tasks 
start and finish periodically. Ignoring such uncertain 
factors may result in an increasing number of 
scheduling errors. 
Nowadays many applications have been developed 
for traditional homogeneous parallel systems. 
Adapting these applications, developed for 
homogeneous environments, to dynamic 
heterogeneous resources entails a new challenge 
which has to do with keeping a high level of 
application efficiency. An adequate workload 
optimization method should take into account two 
main characteristics: 
 

(1) Application characteristics, such as 
memory requirements, data being transferred 
between processes, application communication 
structures, hard disk or other I/O activity, etc. 

 
(2) Resource characteristics, such as 

memory of the resources and computational 
capacity, network bandwidth, disk I/O speed, and 
the heterogeneity level of the resources randomly 
assigned to the application by the Grid resource 
broker. 

 
The workload optimization method should be: 
 

 (a) Self-adapting and flexible with respect 
to the type of application. 

 
(b) Computationally inexpensive; i.e. not to 

induce a large overhead on the application 
performance. 

 
(c) Should not require significant 

modifications in the code.  
 
In sum, the load balancing should be dynamic and 
fully automated since the complexity of the Grid 
environment should be hidden from end-users. 
Traditionally there are two approaches that have 
proved useful for workload balancing in parallel 
applications: (1) to carefully calculate the 
distribution of the workload, taking into account all 
the properties of the environment and application (a 
time and resource consuming task requiring expert 
knowledge of the application structure and 
algorithms being used); and (2) distributing the 
workload in a straight forward way, optimizing the 
processing capacity of the resources. 
Our aim, focused on computational grid, consists of 

building a scheduler for a SME (Small-Medium 
Enterprise) that allows to use the resources’ idle 
cycles to execute tasks, which in a local machine 
would take several days, whereas in a grid system 
can only take a few hours.  
We will develop a scheduler that can be used by the 
company’s network managers, in such a way that is 
not necessary for them to obtain additional training 
or hire new employees. 
With the scheduler we propose, we will minimize 
the overall response time for the entire workflow, 
while operation costs remain unchanged since the 
firm can use its own idle resources to run the grid.  
Our scheduler splits the total workflow according to 
the idle cycles of each resource, so that all the 
resources can finish each task at the same time. The 
new scheduler is easy to use, is flexible and only 
needs an estimation of the process capacity of each 
resource as the main input. The simulations carried 
out in this research show that our algorithm 
improves others schedulers presented in prior 
literature.        
This document is organized as follows: in section 2 
we analyze recent work in grid resource scheduling. 
In section 3 we describe the dynamic-balanced 
scheduler for typical problems of grid computing. In 
Section 4 we show the results of the simulation using 
[4]. Finally, in section 5 we present the conclusions 
and future directions. 

 
2 Background 
 
Resource scheduling for tasks in a grid environment 
has been extensively studied in recent years. Some 
works focus on the scheduling of a set of independent 
tasks using scheduling techniques such as genetic 
algorithms [5],  data mining [6] or swarm intelligence 
[7-8]. Other works have studied scheduling 
technologies using economic/market-based modelss 
[9]. 
More recent works consider data dependencies 
between tasks, which are threaded as a workflow with 
transitions indicating direct data dependencies. To 
minimize the complexity of scheduling a workflow, a 
workflow is partitioned into a set of subworkflows, 
each being assigned to a resource. In [10], Duan et al. 
proposed a workflow partitioning algorithm based on 
a set of rules that intend to minimize the data flow 
between subworkflows. Spooner et al. [11] proposed 
a two level algorithm that consisted of one global 
scheduler and a number of local schedulers, one for 
each grid resource. 
Another research line leaves out the assumption that 
each grid resource must be a cluster. Instead, a grid 
resource is simply considered as the one that is 
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capable of providing services, computation, and/or 
storage. Some researches propose to determine the 
grid resources for all tasks in a workflow before the 
workflow is started, which is referred to as static 
resource scheduling in subsequent discussion. In [12], 
a pair of a task (t) and a grid resource (r) receives a 
rank which is a linear combination of computing and 
data transfer time for executing t on r. Three 
algorithms, namely min-min, max-min, and 
sufferage, were proposed to minimize the makespan 
of the entire workflow based on the ranks. 
Considering the fact that grid may be highly dynamic, 
some researches propose to perform resource 
scheduling only for tasks that are ready to execute, 
referred to as dynamic resource scheduling. Blythe et 
al. [13] adopted min-min strategy for both static and 
dynamic resource scheduling and concluded that the 
static resource scheduling is more suitable for data-
intensive workflows, while dynamic resource 
scheduling performs better for computation-intensive 
workflows. 
Weiss and Pinedo [14] have shown that the SEPT 
(Short Expected Processing Time) strategy, which 
gives priority to jobs with shortest expected 
processing times, and the LEPT (Long Expected 
Processing Time) strategy, which gives priority to 
jobs with longest expected processing times, can be 
used to minimize expected flow time and expected 
makespan respectively, when the processing time of 
each job follows an exponential distribution. 
However, in a real grid environment, the processing 
time of each task by a resource may not follow an 
exponential distribution. 
In these works the length of a task from a workflow is 
known in advance and the optimizations are based on 
an in advance predetermined workflow. Conversely, 
we experiment in this work with several workflows in 
which the size of each task is different. 
 
3 The proposed algorithm 
 
The design space for Grid Schedulers in general is 
very rich. First, it depends on what objective function 
the user wants to minimize or maximize – examples 
being minimizing overall job completion time, 
minimizing communication time and maximizing 
resource utilization or throughput. Second, it depends 
on how the job requirements, job performance 
models, and Grid resource models are specified and 
used. The scheduler must also carefully choose 
between different implementations of user 
authentication, allocation, and reservation. Other 
choices include scheduling application components 
for single or multiple users and whether rescheduling 
or re-planning is required. 

There are usually two types of problems in task 
scheduling: an optimization problem and a directed 
acyclic graph (DAG) problem, fig. 2. In this figure 
we show an example of a simple DAG with 10 tasks. 
Tasks 5, 6 and 7, cannot start until the previous tasks 
2, 3, 4 has finished. For the last task, 10, it cannot 
begin until tasks 8 and 9 are finished, even if  task 7 
was finished before.  

  
1

2 3 4

5 6 7

8 9

1 0

 
       Figure 2.  A DAG  

 
With the adaptive dynamic-balanced scheduler we try 
to validate two problems: on the one hand a genetic 
algorithm for solving optimization problems which 
has a set of independent workflows, and on the other 
hand a DAG problem. In both cases we have used 
CPU idle cycles of some resources, which a company 
has in several networks, minimizing the time of 
execution of each workflow. 
Each task requires some data as input and output and 
may be executed in one of a several resources, which 
satisfy the overall objective.  
 
3.1 The model 
 
We develop a general model to verify the validity of 
our scheduler. Our model is made up by a set of 
tasks, grouped in a workflow. A workflow will not 
begin next iteration unless the prior one had been 
finished. A typical example of this is produced in 
processes of optimization, like genetic algorithms, in 
which until a generation has not been fully evaluated, 
it is not possible to evaluate the following generation. 
In order to formulate an integrated model, the 
following parameters are introduced: 
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Parameters: 
 
n: numbers of resources 
iter: numbers of iterations 
N: load for each iteration 
Ni: task for each resource 
µi: instructions per second (MIPS) 
Ti: time of iteration 
OT: overall time of a workflow 
 
In our scheduling, we have chosen our objective 
function: minimize overall job completion time. It is 
only necessary to count the maximum time of 
execution from the worst relation task–resource. This 
time can be worked out with the following 
mathematical equation (1). 
 

  ∑
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The time of an iteration (2) is given by the longest 
time needed to execute a task in the worst available 
resource. 
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Where Tsi is the time that takes sending a task to the 
resource that is going to execute it and Tri the time 
that takes receiving the result from a task. We 
consider the time of sending and receiving a task 
negligible, because if this time is higher than the time 
of execution of the task we do not send it to the grid. 
Thus, the time of one particular iteration can be 
simplified by (3): 
 

    
i

i
ii

NMAXT
µ

≅                          (3) 

       
To minimize this Ti we assign a proportional load to 
each following resource, this way we do not depend 
on the resource that offers a worse performance: 
 

        

∑
=

×= n

i
i

i
i NN

1
µ

µ
                          (4) 

 
Thus, the innovation in this study lies in that we carry 
out a previous study of the idle cycles of all the 
resources we have, adapting the length of a task is 
according to the total idle cycles. 

With this proposal we obtain two results: on the one 
hand we carry out a better load balancing for the 
resources, assigning higher loads to the resources 
presenting a higher availability and, on the other 
hand, we reduce the time of execution of the 
workflows.  
 
3.2 An execution  
 
In the following figures we show the process of 
execution of iteration in our model by a simple 
example. 
In the first step, fig. 3, we can identify three resources 
of our Grid System. The scheduler asks the resources, 
by the function Init_Job(I_J), for the µi idle that they 
have. Every resource sends to the scheduler the 
number of idle cycles that it has available for this 
iteration. 
 
 

3 1 2 8  M I P S

2 9 8 0  
M I P S

3 2 4 5  
M I P S

S c h e d

R 1 R 2 R 3

I _ J

I _ J

    
     Figure 3. Step 1.Get MIPS idle from each resource 

 
In the second step, a workflow enters the Grid 
System, and the scheduler realizes his work, splits 
this workflow according to the idle cycles of each 
resource, fig 4. 
 

W o r k f l o w
5 0 0 0 0 0 0

T 1 T 2 T 3

1 6 7 2 1 9 0 1 5 9 3 0 7 1 1 7 3 4 7 3 9

 
Figure 4. Step2 .Split workflow according idle MIPS of 

each resource 
 
In the next step, fig. 5, each resource executes his 
task, finishing the execution in a similar time for all 
the resources, so we do not depend on the execution 
of the worst resource. 
 

T 1 T 2 T 3

R 1 R 2 R 3

 
Figure 5. Step3. Execute the tasks in the 

corresponding resources 
 

In the last step, the scheduler obtains the results for 
this iteration and the idle MIPS that they have for the 
execution of the next iteration. 
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Figure 6. Step 4. Get results and the idle MIPS for the 
next iteration 
 
As seen during the example, our scheduler is highly 
dynamic, because after every execution, the scheduler 
is able to re-obtain the actual number of idle cycles. 

 
4 Experimental results 
 
Due to the difficulties associated to real tests, the 
benefits of this scheduler have been verified through 
the use of simulations. Simulations offer big benefits 
opposite to other methods that are currently used to 
measure a system’s behavior: 
a. Simulations allow experimentation in the system 
without interrupting the activity of the system and 
therefore avoiding potential damages. 
b. Simulations are independent on the process or real 
system. Therefore, it is possible to use simulations in 
different stages before their actual implementation in 
real settings.  
c. Simulations improve the comprehension of the 
behaviour of the system since they provide numerical 
results.  
d. Simulations allow to carry out comparative 
analyses of different scenarios. 
Therefore, it was necessary to develop our scheduler 
using the GridSim toolkit [4]. GridSim is a simulation 
toolkit for resource modelling and application 
scheduling in parallel and distributed computing 
systems.   
Table 1 shows the type of the resources we have used 
in our analysis. The MIPS for each PE (Processing 
Element) is the maximum MIPS for each resource. 
This value can change according to the use of CPU's 
cycles that the user of the resource needs at any given 
moment, modelled by a uniform distribution. We 
assume that delay of transmission is negligible 
compared with the time of execution of a task. 

 
Resourc. R1 R2 R3 R4 R5 

S.O. Win Unix Win Win Win 
Arq. IBM Solaris IBM IBM IBM 
P.E. 1 1 1 1 1 
MAX 
MIPS 

2000   2500 3000 3500 4000 

           Table 1. Type of resources 
 
We compare our proposal with other, more traditional 
schedulers, space-shared and time-shared policies. 

FCFS (First-Come First-Served) [15] is a time-shared 
algorithm. This is one of the simplest, executes the 
workflows to completion in the order they are 
submitted. It has a big drawback; if a resource has 
few idle cycles to offer, the execution of the 
remaining workflows will turn out slow, since it is 
necessary to fulfil all tasks of a workflow to execute 
the following workflow. 
RR (Round Robin) [16] is a time-shared algorithm; it 
is one of the oldest, simplest, fairest and most widely 
used scheduling algorithms, designed especially for 
time-sharing systems. A small unit of time, called 
time slices or quantum is defined. All runable 
processes are kept in a circular queue. The scheduler 
goes around this queue, allocating the CPU to each 
process for a time interval of one quantum. New 
processes are added to the tail of the queue. The 
scheduler picks the first process from the queue, sets 
a timer to interrupt after one quantum, and dispatches 
the process. If the process is still running at the end of 
the quantum, the CPU is pre-empted and the process 
is added to the tail of the queue. If the process 
finishes before the end of the quantum, the process 
itself releases the CPU voluntarily. In either case, the 
CPU scheduler assigns the CPU to the next process in 
the ready queue. Every time a process is granted the 
CPU, a context switch occurs, which adds overhead 
to the process execution time. 
The experiments can be divided in two groups. 
Firstly, we have executed a workflow based on 
independent tasks that usually appear in optimization 
problems. Secondly, we executed a DAG problem. 
 
4.1 An optimization problem 
 
The Genetic Algorithm (GA) is a method for solving 
optimization problems that is based on natural 
selection, the process that drives biological evolution. 
The GA repeatedly modifies a population of 
individual solutions. At each step, the GA randomly 
selects individuals from the current population to be 
parents and uses them to produce the children for the 
next generation. Over successive generations, the 
population evolves toward an optimal solution. The 
GA can be applied to solve optimization problems 
that are not well suited for standard optimization 
algorithms, including problems in which the objective 
function is discontinuous, non-differentiable, 
stochastic, or highly nonlinear as our problem. GA is 
frequently used in research like in network 
communications [17-18], for speech/music 
discrimination [19] or for partitioning problems in 
code sign [20]. 
We have carried out several simulations by changing 
the number of iterations; each iteration being made 
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up by a workflow and the available resources. We 
defined the length of a workflow large enough, to 
take advantage of a system grid, and moderately 
small in order to not overload the less efficient 
resources. 
We have developed four experiments with 25, 50, 75 
and 100 resources that we explain in detail below. 
 
4.1.1 First experiment 
 
The first experiment was made up by 25 resources 
and 100, 500 and 1000 iterations. The times are 
shown in table 2, 3 and 4. We can see in fig. 7 that 
the execution time was getting shorter for the RR and 
balanced algorithms. 

 
 

Nº iterations=100 
Workflow length= 500000000 

Nº resources= 25 

Algorithm Time (sec.)  

FCFS 815681,27 
RR 1028379,16 

Balanced 751859,56 
Table 2.  100 iterations and 25 resources 
 
 

Nº iterations =500 
Workflow length=  500000000 

Nº resources= 25 

Algorithm Time (sec.) 

FCFS 4070361 
RR 5108821,63 

Balanced 3761625,95 
Table 3. 500 iterations and 25 resources 

 
 

Nº iterations=1000 
Workflow length=  500000000 

Nº resources= 25 

Algorithm Time (sec.) 

FCFS 8153256,08 
RR 10218636,6 

Balanced 7532137,76 
Table 4. 1000 iterations and 25 resources 
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Nº iterations=100 Nº iterations =500 Nº iterations=1000
0
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m

e(
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Figure 7. Experiment with 25 resources and Workflow 

length= 500000000 
 
4.1.2 Second experiment 
 
Table 5, 6 and 7, and fig. 8 show a comparison 
between the time for the three schedulers for 50 
resources and 100, 500 and 1000 iterations. Fig. 8 
depicts that the higher the number of iterations, the 
larger the difference of execution time, which 
implies that FCFS and RR degenerate very quickly 
as the number of iterations grows. 

 
 

Nº iterations =100 
Workflow length=  500000000 

Nº resources= 50 

Algorithm Time (sec.) 

FCFS 526393,32 
RR 548574,52 

Balanced 402459,76 
Table 5.  100 iterations and 50 resources 

 
Nº iterations =500 

Workflow length=  500000000 
Nº resources= 50 

Algorithm Time (sec.) 

FCFS 2637932,84 
RR 2740363,3 

Balanced 2016518,16 
Table 6.  500 iterations and 50 resources 
 

Nº iterations =1000 
Workflow length=  500000000 

Nº resources= 50 

Algorithm Time (sec.) 

FCFS 5269542,88 
RR 5487507,1 

Balanced 4031486,28 
Table 7.  1000 iterations and 50 resources 
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Figure 8. Experiment with 50 resources and Workflow 

length= 500000000 
 
4.1.3 Third experiment 
 
Tables 8, 9 and 10, and fig. 9 exhibits time of 
execution for 75 resources and 100, 500 and 1000 
iterations. Like in the aforementioned experiments, 
our balanced scheduler offers better results. 
 

Nº iterations =100 
Workflow length=  500000000 

Nº resources= 75 

Algorithm Time (sec.) 

FCFS 352608,2 
RR 436609,265 

Balanced 313611,72 
Table 8.  100 iterations and 75 resources 
 
 

Nº iterations =500 
Workflow length=  500000000 

Nº resources= 75 

Algorithm Time (sec.) 

FCFS 1760069,48 
RR 2173044,77 

Balanced 1567549,15 
Table 9.  500 iterations and 75 resources 
 
 

Nº iterations =1000 
Workflow length=  500000000 

Nº resources= 75 

Algorithm Time (sec.) 

FCFS 3522367,51 
RR 4357151,66 

Balanced 3136368,64 
Table 10.  1000 iterations and 75 resources 
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Figure 9. Experiment with 75 Resources and 

Workflow length= 500000000 
 
4.1.4 Fourth experiment 
 
The last experiment that we carried out, tables 11, 12, 
13 and fig. 10, with 100 resources, offer the 
minimum execution time of all our tests. 
 
 

Nº iterations=100 
Workflow length=  500000000 

Nº resources= 100 

Algortihm Time (sec.) 

FCFS 350501,83 
RR 343266,82 

Balanced 270239,52 
Table 11.  100 iterations and 100 resources 
 
 

Nº iterations =500 
Workflow length=  500000000 

Nº resources= 100 

Algortihm Time (sec.) 

FCFS 1748339,75 
RR 1722092,89 

Balanced 1350322,72 
Table 12.  500 iterations and 100 resources 
 
 

Nº iterations=1000 
Workflow lengh=  500000000 

Nº resources= 100 

Algortihm Time (sec.) 

FCFS 3502678,19 
RR 3438388,70 

Balanced 2698851,20 
Table 13.  1000 iterations and 100 resources 
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100 Resources
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Figure 10. Experiment with 100 Resources and 

Workflow length= 500000000 
 
4.1.5 Summary of results 
 
The previous examples that we have carried out in 
this study show a comparison of times from the point 
of view of the iterations, meanwhile this last 
experiment compares execution times according to 
the resources being used.  
In fig. 11 we show a comparison for 100 iterations 
and 25, 50, 75 and 100 resources. The dynamic-
balanced scheduler we proposed offers again better 
results than any other two schedulers for every mix of 
resources. 
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Figure 11. Experiment with 100 iterations and 

Workflow length= 500000000 
 
Fig. 12 exhibits the execution time for 500 iterations 
and 25, 50, 75 and 100 resources.  At any given 
combination of resources our balanced scheduler 
obtains the shorter execution time. 
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Figure 12. Experiment with 500 iterations and 

Workflow length= 500000000 
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Figure 13. Experiment with 1000 iterations and 

Workflow length= 500000000 
 

Fig. 13 exhibits the execution time for 1000 iterations 
and 25, 50, 75 and 100 resources. 
 
 
4.2 A DAG problem 

 
In this experiment we executed a standard DAG, 
which consisted of a protein annotation workflow 
(Fig. 14), [9].  
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Figure 14. Protein annotation workflow 

 
This experiment, protein annotation workflow, was 
executed with the parameters shown in Table 14. 

 
 

Resources 100 
S.O. Win 
Arq. IBM 

MAX MIPS 6000 
BaudRate(Mb) 100 

Prop. 
Delay(ms) 10 

Table 14. Parameters for Grid System for protein 
annotation workflow 

 
During this second experiment, our dynamic-
balanced scheduler improves the time of execution of 
the FCFS and RR schedulers. Results are presented in 
Table 15. 

 
 

Prot. annot. 
workflow 

Time (sec) 

Balanced 2702.52 
FCFS 3741.82 

RR 3916.23 
Table 15. Execution time; protein 

annotation workflow 
 
 
 

5 Conclusions and future work 
 
A grid environment is usually heterogeneous in 
nature in the real world at least for the different 
computing speeds at different participating sites. The 
heterogeneity presents a challenge for effectively 
arranging load sharing activities in a computational 
grid. This paper explores job scheduling and 
allocation issues in heterogeneous computational 
grids when a task, during the scheduling process, 
cannot fit in any single site in the grid. 
We have proposed a balanced scheduler in a grid 
environment. With this technique we have fulfilled 
three objectives: Firstly execution time has been 
shortened, secondly we have obtained a better 
loading distribution among resources in the grid and 
thirdly we have used idle, non cost-increasing 
resources.  
As future research directions, we will conduct 
additional experiments to comprehensively compare 
other scheduling strategies using fuzzy logic that 
would enable us to set up a utility grid structure. 
These utility models are very effective in shared 
inter-organizational settings to increase computing 
capacity whilst keeping security and reducing 
operating costs. 
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