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Abstract:- This paper propose a novel algorithm for mining closed frequent sequences, a scalable, 
condensed and lossless structure of complete frequent sequences that can be mined from a sequence 
database. This algorithm, FMCSP, has applied several optimization methods, such as equivalence 
class, to alleviate the needs of searching space and run time. In particular, since one of the main issues 
in this type of algorithms is the redundant generation of the closed sequences, hence, we propose an 
effective and memory saving methods, different from previous works, does not require the complete 
set of closed sequences to be residing in the memory. 
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1 Introduction 

Mining sequential patterns is a task of finding 
the full set of frequent sequences that satisfy a 
given minimum support in a sequence database. 
Sequential pattern mining was introduced in [2], 
has gradually become an essential data mining 
task, with broad applications, including market 
and customer analysis, web log analysis, pattern 
discovery in protein sequences, and mining 
XML query access patterns for caching.  

In this paper, we propose a solution to 
mine closed sequences, rather than mining the 
full set of frequent sequences. Closed sequences 
are the unique maximal sequences of the 
equivalence classes.  

The problem can be described as follows: 
Assume that I={ i1, i2,…, i|I|} is a finite items 
set and D is a data set containing n transactions, 
each transaction s∈D is a sequence of distinct 
items s=〈i1,…,i|s|〉, in which ij∈I. Let S be a 
k-items sequence, where S =〈i1,…,ik〉  is a 
sequence of k distinct items ij∈ I. Given a k-
items sequence s, let its support be supp(s) 
which is defined as the number of transactions 

in D that include s. To mine all the frequent 
sequences from D requires finding all the 
sequences that support no less than the 
minimum support and this has to search through 
the huge search space which is given by the 
power set of I. Han and Kamber[17] defined :A 
sequence database consists of sequences of 
ordered elements or events.  

Sequential pattern mining has been studied 
extensively in recent years. Most previous 
studies are required to specify a minimum 
support threshold to perform the mining 
procedure. Usually, in practice, it is difficult for 
knowledge workers to provide an appropriate 
threshold previously. The reason why we mine 
closed sequential patterns is that they are 
compact representations of frequent sequential 
patterns. Further, we proposed an efficient 
algorithm, called FMCSP, which makes use of 
the minimum support constraint and the 
properties of closed sequential patterns to 
perform dynamic support searching and 
database pruning. 

Sequential Patters Mining was first 
introduced by Agrawal and Srikant in [1]: 
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Given a set of sequences, where each sequence 
consists of a list of itemsets, and given a user-
specified minimum support threshold (min 
support), sequential pattern mining is to find all 
frequent subsequences whose frequency is no 
less than min support. This mining algorithm 
has a consequence of the following two 
problems. 

First, sequential pattern mining often 
generates huge number of candidate patterns in 
an exponential curve, which is inevitable when 
the database consists of long frequent sequential 
patterns. For example, assume the database 
contains a frequent sequence 〈i1,…,ik〉, k=20, 
it will generate 220 -1 frequent subsequences 
which are essentially redundant patterns. 

Second, setting minimum support is also a 
difficult job for knowledge works: The smaller 
value of minimum support may lead to generate 
larger amount of candidate sequential patterns, 
whereas a too big one may cause no answer 
found. 

In practice, to get an appropriate minimum 
support, one needs to have domain knowledge 
about the data, and be able to estimate the scale 
of how many patterns will be generated within a 
mining process with a particular threshold of 
minimum support.  

A sequence s is called closed if there exists 
no super sequence of s with the same support in 
the database. Several studies to the first 
problem was proposed recently by Yan, et al. 
[9], Han, et al. [6]. Their algorithm can mine 
closed sequential patterns. Mining sequential 
patterns with closed patterns may largely reduce 
the number of patterns generated in the process 
and without losing any information because it 
can be used to derive the complete set of 
sequential patterns.  

As to the second problem, as proposed in 
[5], a solution is to change the task of mining 
frequent patterns to mining top-k frequent 
closed patterns of minimum length min-l, where 
k is the number of closed patterns to be mined, 
top-k refers to the k most frequent patterns, and 
min-l is the minimum length of the closed 

patterns. This setting is also desirable in the 
context of sequential pattern mining. 
Unfortunately, most of the techniques 
developed in [5] cannot be directly applied in 
sequence mining. This is because subsequence 
testing requires order matching which is more 
difficult than subset testing. Moreover, the 
search space of sequences is much larger than 
that of itemsets. Nonetheless, some ideas 
described in [5] are still influential in our 
algorithm. Mining closed sequences [6] has 
indicated that previous studies have presented 
that a frequent pattern mining algorithm should 
not mine all frequent patterns but only the 
closed ones because the latter leads to not only 
more compact yet complete result set but also 
better efficiency. However, most of the 
previously developed algorithms of closed 
pattern mining work under the candidate 
generate-and-prune methodology which is 
inherently costly in searching space, space 
usage and runtime when the support threshold is 
low or the patterns become long. 

In recent years many studies of sequence 
mining have concluded a valuable point of view 
that for both itemsets and sequences, one should 
not mine all frequent patterns for saving both 
space and runtime. But the closed patterns, 
itemsets and sequences, are not only more 
compact and complete set but also better 
efficiency [7,8,9,10]. However, unlike mining 
frequent itemsets have been studied heavily, 
there are not so many methods proposed for 
mining closed sequential patterns. Like most of 
the frequent closed itemset mining algorithms, 
CloSpan [9] follows a candidate maintenance-
and-test paradigm, i.e., it needs to maintain the 
set of already mined closed sequence 
candidates which can be used to prune search 
space and check if a newly found frequent 
sequence is promising to be closed. 
Unfortunately, under such a paradigm a closed 
pattern mining algorithm has rather poor 
scalability because a large number of frequent 
closed patterns, or candidates, will need large 
memory and lead to large search space for the 
closure checking of new patterns, when the 
support threshold is low or the patterns are long. 
Can we find a way to mine frequent closed 
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sequences without candidate maintenance? This 
seems to be a very difficult task. 
 
 
2 Preliminary 
Let I = {i1, i2, . . . , in} be a set of distinct items. 
A sequence S is an ordered list of events, 
denoted as 〈e1, e2, . . . , em〉, where ei is an 
item, i.e., ei  I for 1 ≤ i ≤ m. For brevity, a 
sequence is also written as e1e2 . . . em. From the 
definition we know that an item can occur 
multiple times in different events of a sequence. 
The number of events (i.e., instances of items) 
in a sequence is called the length of the 
sequence and a sequence with a length l is also 
called an l-sequence. For example, ABCD is a 
4-sequence.  

A sequence na aaaS ...21=  is contained in 

another sequence nb bbbS ...21= , if there exist 

integers miii n ≤<<<≤ ...1 21  such that 
ninii bababa === ,...,,

21 21 . If sequence Sa is 
contained in sequence Sb, Sa is called a 
subsequence of Sb and Sb a supersequence of Sa, 

denote as ba SS p . An input sequence database 
D is a set of tuples (sid, S), where sid is a 
sequence identifier, and S an input sequence. 
The number of tuples in D is called the base 
size of D, denoted as |D|. A tuple (sid, S) is said 
to contain a sequence S α , if S is a 
supersequence of Sα, i.e., SS pα . The absolute 
support of a sequence S α  in a sequence 
database D is the number of tuples in D that 
contain S α , denoted as supp (S α ), and the 
relative support is defined as the percentage of 
tuples in D that contain Sα  

D
Ssuppsupportrelative )(_ α=  

Let T and S, DT ⊆ and Is ⊆ , be subsets 
of all the transactions and sequences appearing 
in D. The following two functions can describe 
the concept of closed sequences: 

{ }tsTtSsTf ∈∈∀∈= ,|)(  Find all 
sequences in T 

{ }tsSsDtSg ∈∈∀∈= ,|)(  Find all 
transactions in S 

Definition 1. An sequence S is closed iff  

SSgfSgfSc === )())(()( o  

The composite function is named as the closure 
operator. The closure operator defines the 
equivalence class of sequences. 

Definition 2. For itemsets belongs to the same 
equivalence class iff they are supported by the 
same set of transactions. 

 
 
3 The FMCSP Algorithm 
Initially, FMCSP has no need to input the threshold 
of min_sup. First, create Lattice with FAL algorithm 
[16]. In the meaning time, itemset is generated 
during the FAL process. In the end, equivalence 
class table, ECT, is generated and sorted into a 
projected ECT. For now, the sequential database D 
is lossless and completely represented by the lattice, 
ECT and Projected-ECT. 

 

Algorithm FMCSP (D) 
//Input: D 
//Output: Frequent Sequencesf 
int min_sup; 
CreateLattice(D); 
ItemSet=GenerateItemset(D); 
ECT=GenerateClassTable(ItemSet); 
PECT=Projected(ECT); 
cin>>min_sup 
FrequentSequences= Tuples in PECT with 
Frequency noless than min_sup 

 

Fig. 1 

It is convenient to demonstrate the idea of 
closure operator with example. In table 1, as a 
simple transaction database, there are 6 
sequences with diverse length from 1 to 4. 
Items includes A, B, C, D, E, F and G, totally 7 
items.  
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Table 1 example sequence 

SID sequence 

1 B D   

2 A B C D 

3 A C D  

4 C    

5 A B E  

6 F G   

Function of f(1), f(2), f(3), f(4), f(1,2), f(1,3) and 
f(1,4) are shown as below: 

. 

ACDf
Cf
Df
BDf

FGf
ABEf
Cf
ACDf
ABCDf
BDf

=
=
=
=

=
=
=
=
=
=

)3,2(
)4,1(
)3,1(
)2,1(

)6(
)5(
)4(
)3(
)2(
)1(

 

Fig.2 

Functions of g(A), g(B), g(C),…, g(G) and 
g(AB), g(AC),…, g(CD) and g(ABC), 
g(ABD),…, g(BCD) and g(ABCD) are shown as 
below: 

}6{)(
}2{)(

}2{)(
}3,2{)(

}5{)(
}2{)(
}2{)(
}3,2{)(

}5{)(
}2,1{)(

}2{)(
}5{)(

}3,2{)(
}3,2{)(
}5,2{)(

}6{)(
}6{)(
}5{)(

}3,2,1{)(
}4,3,2{)(
}5,2,1{)(
}5,3,2{)(

=
=

=
=
=
=
=

=
=
=
=
=
=
=
=

=
=
=
=
=
=
=

FGg
ABCDg
BCDg
ACDg
ABEg
ABDg
ABCg
CDg
BEg
BDg
BCg
AEg
ADg
ACg
ABg
Gg
Fg
Eg
Dg
Cg
Bg
Ag

 

Fig.3 

In this example, there are 10 equivalence 
classes {2}, {5}, {6}, {1,2}, {2,3}, {2,5}, 
{1,2,3}, {1.2.5}, {2,3,4} and {2,3,5} supported 
by different transactions. In {1,2} equivalence 
class there is only one sequence 〈BD〉 , it 
means in the set of sequences only sequence 
〈BD〉is supported by transaction 2 (TID=2) 
and so on so forth.  

In this example, the whole database is 
converted into a Equivalence Class Table 
(ECT), shown as table 2, and sorted by 
frequency in ascendant order.  The first column 
is the series number of equivalent class. The 
second column is the title of the equivalent 
class. The third column is the element 
sequences of each equivalent class. The last 
column is the frequency, counts, of each 
equivalent class.  
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Table 2 Equivalence Class Table (ECT) 

 

The size of search space is the number of 
equivalent class, in this example, is 10. 

It is convenient to project the ECT from 
ECT into frequency indexing table, as shown in 
Table 3, to speed up searching runtime of a 
certain support equivalence class.   

Table 3 Projected ECT (PECT) 

Frequency Serial No. 

1 1 2 3  

2 4 5 6  

3 7 8 9 10 

The search space, with projected view, has been 
limited to only 3 tuples.  

Let minimum support, min_sup, equals to 3, the 
frequent sequences are <D>, <B>,<C> and <A>. 
Let min_sup=2, the frequent sequences are 
<BD>, <AC>, <AD>, <CD>, <ACD>, <AB> 
and <D>, <B>,<C>, <A>. 

With FMCSP, the minimum support threshold 
is no longer limited to a prefixed variable which 
means FMCSP a more flexible algorithm than 
our previous works [16]. For example, sequence 
AC is tested by closure function as below: 

ACDfACgf == )3,2())((  

Obviously, sequence AC is not equal to 
sequence ACD, so sequence AC is not a closed 
sequence. In other example of sequence BD, 
tested with closed function as below 

BDfBDgf == )2,1())((  

Shows the result of closed function is the same 
as the input sequence, BD, so sequence BD is a 
closed sequence. It is also clear that a sequence 
is closed if and only if no supersequences of S 
with the same support exist in the lattice. Each 
equivalence class contains elements sharing the 
same supporting transactions and closed 
sequences are their maximal elements.  

 We demonstrate the construction of 
Lattice with FAL algorithm via example.  The 
first sequence read from database linked to root 
node is <BD>. Shown as fig. 4.  

 

Fig.4 

Next sequence read from sequence database is 
<ABCD>. Since there is no sequence in the 
lattice that contains sequence <ABCD>, so it is 
linked to root the node, as a sibling node of 
sequence <BD>, shown as fig. 5. Sequence 
node <BD> and <ABCD> are highlight with 
bold frame to indicate that these two sequence 
are read from original sequence database. 

 

Fig.5 

But, the new sequence <ABCD> contains the 
sequence <BD> that already exists in the lattice. 
So sequence node <BD> has to reconnect its 
upper link to sequence node <ABCD>. After 
next two consecutive sequences, <ACD> and 
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<C>,  are read from sequence database. The 
lattice is attached with sequences <ACD> and 
<C>, shown as fig. 6. 

 

Fig.6 

Finally, the last two sequences, <ABE> 
and <FG> were linked into the lattice. In Fig. 7, 
10 closed sequences were framed with broad 
rectangle. Each closure represented an 
equivalence class. 

 

Fig. 7 Lattice with 10 equivalence classes 
 
 
4 Conclusion 
Unfortunately, Apriori-like algorithms may fail to 
extract all the frequent sequences from dense data 
sets, which contain strongly correlated sequences 
and long frequent sequential patterns. Such data sets 
are, in fact, very hard to mine since the Apriori 
closed-downward principle does not guarantee an 
effective pruning of candidates, while the number of 

frequent sequences grows up very quickly as the 
minimum support threshold is decreased.  
Many studies have incept the concept to elaborate 
all frequent pattern mining to more compact results 
and significantly better efficiency of memory 
usage. Our study shows that this is usually true 
when the number of frequent patterns is 
extremely huge, in this case the number of 
frequent closed patterns is also tend to be very 
large. In most case, the previously developed 
closed pattern mining algorithms rely on 
candidates to check if a newly found frequent 
pattern is closed or if it can invalidate some 
already mined closed candidates. Because the 
set of already mined frequent closed patterns 
keeps growing during the mining process, not 
only will it consume more memory, but also 
lead to inefficiency due to the growing search 
space for pattern closure checking. In this paper, 
we proposed FMCSP, a novel algorithm for 
mining frequent closed sequences. It has 
improved the drawback of the candidate 
maintenance-and-test paradigm, constructing 
more compact searching space compare to the 
previously developed closed pattern mining 
algorithms. FMCSP adopts a breadth-first 
method can output the frequent closed patterns 
online. 
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