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Abstract: - The paper presents methodologies able to predict dynamic warm water consumption in district 
heating systems, using time-series analysis. A simulation model according to the day of a week has been 
chosen for modeling the domestic warm water consumption in a block of flats with 60 apartments. The 
analysis of the residuals indicates good simulation and prediction models for the cases studied. Double-cross 
validation was done using data collected by the SCADA system from District Heating Company of Iasi. 
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1   Introduction 
 Increasing energy efficiency is an important issue 
for District Heating Companies [1]. A source of 
saving energy is production of thermal energy 
according to demand. Very good information about 
future consumption are needed in order to do good 
production plans. Dynamic simulations enable the 
ongoing development of operational optimization 
models, but unfortunately, estimation of heat 
demands is a complex task. To make full advantages 
of the district heating network modeling, the 
systems must have measurement points. Nowadays, 
SCADA systems were implemented in Romania and 
historical data both regarding space heat and 
domestic warm water consumption are available. It 
is time to use them, not only for monitoring but also 
for a better management by doing realistic scenarios 
of future consumption. 
 For a typical district heating system, four load 
components shape the total heat-load: space heating 
for buildings, domestic warm-water, distribution 
loss, additional work day loads [2]. Werner 
investigated six Swedish district heating systems 
using 5-11 years monitoring data. He found out that 
60% of the heat was consumed for space heating, 
30% for domestic warm-water preparation, 6-8% by 
distribution losses, the rest representing loads that 
are dependent on the day of the week [3]. 
 There are computer programs such as  CONDOR, 
EcNetz, RNET, SYSTEM RORNET, TERMIS, 
BoFiT, ANSYS, DH SIM that can make space heat 
load prediction [4]. Scientific literature also suggests 
interesting models. For instance, Dotzauer [5] 
proposes a simple model based on the insight that 

the space heat demand is mainly affected by the 
outdoor temperature and the social behavior of the 
consumers. Artificial neural networks represent an 
alternative. The approach used by Ian Beausoleil-
Morrison and Moncef Krarti used a multilayer 
feedforward neural network with the back-
propagation learning algorithm [6] and leads to very 
good results. Prediction of thermal performance of a 
hot water system is presented in [7]. Time-series 
analysis is used to model systems and to predict 
their behavior in different area (alone or combined 
with other methods) [8], [9], [10]. 
 Even if domestic warm water is used within a 
house for bath/shower, wash hand basin, dish 
washing, clothes washing, studies about the thermal 
energy consumed for preparing it are only a few 
[11]. The energy used for heating domestic warm 
water depends on the human behavior most of all, a 
factor that is difficult to control. Usually, prediction 
means an average value for the monthly/daily fluid 
flow rates per person to be taken into consideration. 
It is not enough for a real-time operation of a district 
heating system. At least hourly heat load profiles are 
needed. 
 The objective of this work is to develop and 
analyze methodologies able to predict dynamic 
warm water consumption in district heating systems 
(DHS), using time-series analysis. Validation of the 
methods was performed by comparing the modeling 
results with acquired data via a monitoring system 
from the District Heating Company of the city of 
Iasi (Romania). 
 The theoretical bases are presented in section 2, 
the simulation algorithm in section 3, section 4 
presents the statistical analysis of computational 
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results and finally in Section 5 some conclusions are 
given. 
 
 
2   Theoretical basis 
 In order to predict dynamic warm water 
consumption in district heating systems, a 
simulation model using experimental data must be 
done.  
 The experimental data are sequence of values, 
each value corresponding to a time moment. 
Graphical representation of experimental data in 
time is a time history representation, and the 
sequence of data is a time series.  
 A time-series can be model as the output of a 
system that has as input a white noise signal. With 
this observation, the general form of a time-series 
model is [13]: 
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 In equation (1) t  represents the discretized time 
as multiple of sampling interval , ;  and 

 are model parameters (scalars);  is the value 
of the observed time-series at the moment t  and 

 is the value of the white noise considered as 
system input at the moment t .  and  are the 
number of model parameters for considered time-
series and model residuals, respectively. 
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 Equation (1) describes an ARMAX type model 
(Auto Regressive Moving Average with eXogenous 
inputs model). 
 The model (1) highlights the fact that value of 
modeled output at moment t  depends on the past 
time-history of time-series and of the exogenous 
input. 
 The following notation is made: 
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where  is considered as a back shift (delay) 
operator. 

1−q

 With notation (2) the model (1) becomes: 
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where  and  are polynomials in the 
delay operator  and they have the following 
forms: 
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where naiai ,1, =  and ncici ,1, =  are coefficients of 
model polynomials,  and ( 1−qA ) ( )1−qC , 
respectively. They are referred as parameters of the 
model. The degrees of the respective polynomials 
are  and , respectively. an cn
 The variance of the white noise  is considered 
to be 

( )te
σ . 

 The order of the model is the pair . ( )ca nn ,
 If ( ) 11 =−qC  then we have an autoregressive (AR) 
model and the model (3) becomes: 
 

   ( ) ( ) (tetyqA =−1 )      (5) 
 
 If θ  is the parameters vector defined in equation 
(6): 
 
   [ ]Tncna ccaa KMK 11=θ     (6) 
 
and ( )tϕ  is defined in equation (7): 
 
 ( ) ( ) ( ) ( ) ( )[ ]ca ntetentytyt −−−−= KMK 11ϕ   (7) 
 
an equivalent form of equation (1) is obtained: 
 
   ( ) ( ) (ttty T εθϕ += )     (8) 
 
 Choosing the appropriate order structure for the 
ARMA model is an iterative procedure which 
involves data analysis, model parameters estimation, 
model analysis, selection and validation.  
 In order to obtain a measure of the model fitness 
some quantities are calculated in equations (    
 The percentage of the output model variation that 
is explained by the model is represented by the fit 
function described in equation (9) 
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where  is the observed (real) time-series, y y~  is the  
simulated time-series and y  is the mean value of 
time series  calculated applying the formula: y
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where  is the number of samples from time series 
under consideration and  is i -th sample of the 
time-series . 

N
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 In equation (9) w  is the Euclidean norm of the 
time-series  calculated with the formula: w
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where  is the number of samples of the time-
series  and  is the value of the i -th sample of 
the time-series . 

N
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 Another criterion for model evaluation is the loss 
function. Loss function is calculated as the 
determinant of the covariance matrix of the 
prediction errors (residuals of the model). The loss 
function V  is calculated with the following relation: 
 

( ) ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛= ∑

=

=

Ni

i

T

iiN
V

1

ˆˆ1det θεθε            (12) 

 
where  is the estimate of the parameters vector θ̂ θ  
and iε  is the i-th value of the model residuals time-
series. 
 The Akaike Information Criterion (AIC) for an 
estimated model is defined as the value of the 
negative log-likehood function at the estimated 
parameters plus the number of estimated parameters 
[12]. If the disturbance source is Gaussian with 
covariance matrix , the logarithm of likehood 
function is: 

Λ
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where  is a constant. Maximizing this analytically 
with regard to  and then maximizing the results 
with regard to 

C
Λ

θ , gives 
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where p  is the number of outputs and V  is the loss 
function defined in equation (12). After removing 
constants and suitable normalization, the following 
expression is reached: 
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where  is the number of estimated parameters. d
 Akaike Final Prediction Error (FPE) [12] for an 
estimated model is calculated with the formula: 
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 It is technically possible for FPE to become 
negative if the number of estimated parameters 
exceed the number of data. In such a case it is better 
to use AIC. 
 The estimation θ̂  of the parameters vector is 
calculated using the condition [14]: 
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where the criterion function ( )θV  is defined in 
equation (18): 
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 The solution of equation (17) is: 
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 In equation (19) the following matrix: 
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has to admit an inverse and to be semi-positive 
defined. 
 Another form of the solution of equation (17), 
equivalent with solution (19) is: 
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 The matrix (21) admits inverse if the elements of 
the vector ( )tϕ  are linear independent. 
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 In order to predict the behavior of the system an 
on-line determination of the systems parameters can 
be made. This procedure is based on the recursive 
algorithm for the parameters estimation [14]. 
 If  is the estimation of the parameters of the 
system (8), the estimation based on the first  
measurements, then: 

( )tθ̂
t
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 Estimation (23) satisfies, by definition, the 
equation 
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 The weighted form of the criterion (18) is 
considered: 
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 In equation (25) λ  is the forgetting factor. This 
way the criterion function uses, for parameters 
estimation, the last  
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measurements. The other measurements, before 
these, are almost ignored. 
 The recursive algorithm is described by the 
following equations: 
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where  is of form (28), depending on the 
covariance matrix of the estimator: 
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 The recursive algorithm (28) must be initialized 
with  and . The value of the forgetting 
factor 

( )0θ̂ ( )0P
λ  must be also established. 

 If there are no a-priori information about θ , the 
following initializations are made: 
 

( ) 00ˆ =θ  and ( ) IP α=0            (29) 
 
where I  is the unity matrix of appropriate order and 
α  is constant. A value too small for α  leads to a 
slow convergence of the estimates, and a value too 
big for α  has as consequence oscillation with high 
amplitude of the parameters values (which are 
elements of vector θ ). If the analyzed system has 
time-varying parameters, then the chosen value for 
λ  must be less then 1 (smaller if the system 
parameters have a fast variation in time). Usual, 

[ ]]995.0,95.0∈λ . 
 
 

3   Numerical Simulation 
 The simulation modeling assumes measurements 
of data for a given period.. Data collected during 
three months by a datalogger were used in this 
study. The conversion of the pulse signal to a 
voltage signal appeared not to be as constant in time 
as desired and to give meaningful results the heat 
meter signal had to be filtered. 
 Figure 1 shows the consumption of domestic 
warm water for a block of flats. Like in other studies 
described by scientific literature, variation is large 
and unsystematic. In the present case, the monthly 
quantity of heat consumed for domestic warm water 
preparation was 243 KWh/month per apartment. 
Other studies took into consideration different 
values. For instance, Bohm B. investigated 
consumption of domestic warm water in 
Copenhagen and found out that the thermal energy 
used was 106 kWh/month per apartment. Yang used 
data from an apartment having a thermal energy 
consumption  for preparing warm water of 200-
222kWh/month, and Lawaetz used values in the 
domain 108-233kWh/month per apartment [15]. 
Yao R. and Steemers K. analyzed typically hourly 
domestic warm water load profile for an average 
size domestic house hold from U.K [11]. They took 
into consideration five types of consumers according 
to different occupancy scenarios: unoccupied from 
9.00-13.00, unoccupied from 9.00-18.00, 
unoccupied from 9.00-16.00, all day occupied, 
unoccupied from 13.00-18.00. They found out a 
typical consumption profile and used it in a 
computer program for prediction of daily load 
profile for households from U.K. 
 The building studied in the present paper has 60 
apartments; therefore it is difficult to choose a 
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model specific for all the inhabitants. A simulation 
model according to the day of a week has been 
chosen. Usually, studies assume that the behavior of 
consumers depends most of all on the fact that the 
day is a working one or not. What about the same 
type of day? Is really the consumption similar in 
non-working days? 

Fit Function  Model Saturday Sunday
AMX(2,2) 75.86 67.81 
AMX(2,4) 81.59 75.41 
AMX(2,6) 81.48 76.34 
AMX(4,4) 81.65 75.52 

AMX(4,10) 82.06 76.64 
 This work studies consumption of domestic warm 
water during two nonworking days: Saturday and 
Sunday. The simulation model was built using data 
for one single day and another day was used for 
validation. Also cross validation was done checking 
out the accuracy of predictions. 

 
       Table 2 

FPE  Model Saturday Sunday
AMX(2,2) 2.03443 2.0763 
AMX(2,4) 1.21434 1.2456 
AMX(2,6) 1.26239 1.1708 
AMX(4,4) 1.23486 1.2605 

AMX(4,10) 1.29019 1.2339 

 In order to choose a simulation model for 
modeling the warm water consumption many 
ARMA model were taken into consideration. The 
criteria for choosing one model or another were the 
value of fit function (9), the Akaike Final Prediction 
Error (16) and Akaike Information Criterion (15). 
For fit function larger values are better, while for 
FPE and AIC smaller values are better. 

 
       Table 3 

AIC  Model Saturday Sunday
AMX(2,2) 0.7102 0.7306 
AMX(2,4) 0.1942 0.2196 
AMX(2,6) 0.2330 0.1577 
AMX(4,4) 0.2109 0.2315 

AMX(4,10) 0.2544 0.2101 

 In Table 1 are presented the fit functions values 
for analyzed models, Table 2 contains values for 
FPE and Table 3 contains values for AIC. In the 
model name the first number represent the value for 

 and the second the value for . an cn
  

       Table 1 

 
Figure 1. Daily thermal power consumption of domestic warm water during a month. 
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Figure 2. Simulation model for Saturday. 

 
 
 
 

 
Figure 3. Simulation model for Sunday. 

 
 
 The chosen model for Saturday is described by 
equation (3) and the polynomials of the models are: 

 
A(q) = 1 - 1.006 q^-1 - 0.2217 q^-2 +  
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+0.1405 q^-3 + 0.09357 q^-4                    (30) 
 
C(q) = 1 + 0.5169 q^-1 + 0.3459 q^-2 + 
+ 0.1216 q^-3 + 0.1592 q^-4 - 0.8185 q^-5 –  
-0.3647 q^-6 - 0.293 q^-7 - 0.09375 q^-8 - 
- 0.2134 q^-9 - 0.1543 q^-10            (31) 
 
Estimated using PEM from data set zi1s. 
Loss function 1.0917 and FPE 1.29019. 
Sampling interval: 300 s. 
 
 Figure 2 presents the experimental data and the 
simulation output for Saturday. 
 The chosen model for Sunday is described by 
equation (3) and the polynomials of the models are: 
 
A(q) = 1 - 1.431 q^-1 + 0.0099 q^-2 + 
+ 0.5751 q^-3 - 0.1506 q^-4            (32) 
 
C(q) = 1 + 0.08072 q^-1 - 0.3723 q^-2 – 
- 0.03749 q^-3 - 0.0645 q^-4 - 0.9458 q^-5 – 
- 0.0696 q^-6 + 0.4276 q^-7 +  
+0.08007 q^-8 + 0.05085 q^-9 - 0.04453 q^-10 
                 (33) 
 
Estimated using PEM from data set zis2. 
Loss function 1.08164 and FPE 1.2783. 
Sampling interval: 300 s 
 
 It can be noticed that the polynomials of the 
models and the shape of a graph are different even if 
both days are non-working days. Concluding, a 
different simulation model has to be done for every 
day of the week. 
 
 
4 Statistical analysis 
 In order to validate the model, the residual 
analysis is used. Residuals represent the portion of 
the validation data not explained by the model. 
Residual analysis consists of two tests: the whiteness 
test and the independence test. According to the 
whiteness test criteria, a good model has the residual 
autocorrelation command inside the model 
confidence interval, indicating that the residuals are 
uncorrelated. According to the independence test 
criteria, a good model has residuals uncorrelated 
with past inputs. Evidence of correlation indicates 
that the model does not describe how part of the 
output relates to the corresponding input [12]. 
 
4.1  Simulation model 
 This work contains the autocorrelation of 
residuals for Saturday and Sunday, presented in 

Figure 4 and Figure 5, respectively. The horizontal 
dotted lines represent the limits of the confidence 
interval set to 99%. 
 It can be noticed that almost all values of the 
residuals autocorrelation are inside the confidence 
interval indicating a good simulation model for both 
days. 
 

 
 

Figure 4. Autocorrelation of residuals for simulation 
model. Day Saturday.. 

 
 

 
 

Figure 5. Autocorrelation for residuals for 
simulation model. Day Sunday. 

 
4.2 Prognosis model 
 The main purpose of modeling is forecasting  
consumption in order to have an efficient 
production. Space heating is obviously the first 
option of scientists’ works [16], [17]. Forecast of 
domestic warm water consumption is a different 
problem depending on other parameters, so different  
methods are needed [18].  The present work tries to 
do it using time-series analysis.  
 Previous paragraphs present two different 
simulation models: one for a Saturday day and the 
other for a Sunday day. The next step is to check 
with experimental data for other days of Saturday 
and Sunday, if these time-series simulation models 
are or not appropriate for prognosis.  
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 An analysis of residuals when the simulation 
model is used for prediction should give the answer 
to this problem. Each simulation model was used for 
prognosis of consumption for two different future 
days. Figure 6 presents the residuals of Saturday’s 
forecasting and figure 7 presents the residuals of 
Sundays’ forecasting. The confidence interval was 
set to 99%. 
 For both figures prediction for the first future day 
is represented with solid line, and the second future 
day is represented with dashed line. The confidence 
interval limits are the dotted lines. 
 

 
 
Figure 6. Autocorrelation of residuals for  prediction 

models. Prognosis for Saturday days. 
 
 

 
 
Figure 7. Autocorrelation of residuals for prediction 

models. Prognosis for Sunday days. 
 
 
 It can be noticed that the prediction is very good. 
Even if the confidence interval is tight, practically 
all the residuals are within it. 
 The prediction method described above considers 
that the system's parameters are constant in time. If 

these parameters vary in time, the recursive method 
described by equations (27) and (28) has to be 
applied. The recursive method has also the 
advantage that in any moment, the next value of the 
time series can be calculated. 
 In Figure 7 the evolution in time of the Saturday 
model parameters are presented. Figure 8 presents 
the experimental data (the blue line) and predicted 
data (green line) obtained applying the recursive 
algorithm for data for Saturday. 
 
 

 
 

Figure 7. Model coefficient time-history for 
Saturday. 

 
 

 
 
Figure 8. Experimental and recursive predicted data 

for Saturday 
 
 

 In Figure 9 the evolution in time of the Sunday 
model parameters are presented. Figure 10 presents 
the experimental data (the blue line) and predicted 
data (green line) obtained applying the recursive 
algorithm for data for Sunday. 
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Figure 9. Model coefficient time-history for Sunday. 

 
 

 
 

Figure 10. Experimental and recursive predicted 
data for Sunday 

 
 Neither of these two models (for Saturday and for 
Sunday) does not have model parameters, and a 
recursive method for model parameters evaluation 
might be more appropriate.  
 Figure 11 presents the time-history for model 
parameters for the days of the week-end and Figure 
12 presents the observed data and predicted data for 
the days of the weekend. As one can notice 
observing Figure 11, in this case the model 
parameters vary in time, but, after a time, they tend 
to have constant values. 
 

 
 

Figure 11. Model coefficient time-history for 
weekend days. 

 
 

 
 

Figure 12. Experimental and recursive predicted 
data for weekend days 

 
 
5 Conclusions 
 The paper presents a methodology for prognosis of 
domestic warm water consumption in district heating 
systems based on time series analysis. Double cross 
validation was done; the simulation model was used 
for prediction in other two cases. Recursive 
algorithm was applied highlighting that the model 
parameters are not constant in time. The results of 
the statistical analysis are very good pointing out that 
daily simulation models using time series analysis 
are a powerful and appropriate tool for the prognosis 
of consumption in district heating systems. 
 
 

WSEAS TRANSACTIONS on COMPUTERS Elena Serban, Daniela Popescu

ISSN: 1109-2750 2040 Issue 12, Volume 7, December 2008



References: 
[1] DHCAN (District Heating & Cooling and CHP: 

Promotional Materials for Candidate Countries 
and Pilot Actions in Hungary and Romania. 

[2] Heller A. J., Heat-load modeling for large 
systems, Applied Energy, 72, 2002, p. 371-387. 

[3] Werner S.,  The heat load in district-heating 
systems, Chalmers University of Technology, 
1984, Gothenburg. 

[4] Wigbels M., Bohm B., Sipilae K., Dynamic Heat 
Storage Optimisation and Demand Side 
Management, IEA Programme on District 
Heating and Cooling,  2005, Annex VII I 2005: 
8DHC-05.06, Technical University of Denmark, 
Department of Mechanical Engineering, Energy 
Engineering contract 1313-02-01-10-
006/4700005181. 

[5] Dotzauer E.  Simple model for prediction of 
loads in district-heating systems. In Applied 
Energy, 2002, (73), p.277-284. 

[6] Beausoleil-Morrison I., Krarti M, Predicting 
foundation heat losses: neural networks versus 
basesimp correlation, Building Simulation 
Conference, 8-10 September 1997, Prague, paper 
P052. 

[7] Bae C.H., Kang C.H., Chung K.T., Suh J.S., 
Prediction of Thermal Performance of Hot Water 
System with a Concentric Evacuated Tube Solar 
Collector using Axially Grooved Heat Pipe, in 
Proceedings of the 2006 WSEAS/IASME 
International Conference on Heat and Mass 
Transfer, Miami, Florida, USA, January 18-20, 
2006, pp. 50-55. 

[8] Jagan Mohan Reddy A., Suresh Babu Ch., 
Mallikarjuna P., Rainfall – Runoff Modeling: 
Comparison and Combination of Simple Time-
Series,Linear Autoregressive and Artificial 
Neural Network Models, in WSEAS Transactions 
on Fluid Mechanics, Vol. 3, Issue 2, 2008, pp. 
126-136. 

[9] Ichiyanagy K. et al., Forecasting of time Series 
of Wind and Solar Energy by Using AMeDAS 
Data, in WSEAS Transactions on Power Systems, 
Vol. 3, Issue 2, 2008, pp. 21-27. 

[10] Voget R. and Tinnirello, Time series Analysis 
and Forecasting Techniques for Correlated 
Observations, in WSEAS Transactions on 
Mathematics, Vol. 3, Issue 1, 2004, pp. 272-275. 

[11] Yao R., Steemers K. A method of formulating 
energy load profile for domestic buildings in the 
UK. Energy and Buildings 37, 2005, p. 663–671. 

[12] Ljung L., MATLAB System Identification 
Toolbox User’s Guide, MathWorks, 1997. 

[13] Box G. and Jenkins G.M., Time Series 
Analysis: Forecasting & Control (3rd Edition), 

Prentice Hall Publisher, 1994, ISBN 978-
0130607744. 

[14] Tertisco M., Stoica P., Popescu Th., Computer-
aided identification of the systems, Technical 
Publishing House, Bucharest, 1987. 

[15] Bohm B., Danig P.O., Monitoring the energy 
consumption in a district heated apartment in 
Copenhagen, with specific interest in the 
thermodynamic performance, Energy and 
Buildings, (36), 2004, p.229-236. 

[16] Nielson H.A., Madsen H. Predicting the Heat 
Consumption in District Heating Systems using 
Meteorological Forecasts, Department of 
Mathematical Modelling, Technical University of 
Denmark, Lyngby, December 2000. 

[17] Popescu D., Ungureanu F., Panaite E. 
Prediction Models of Consumers’ Behaviour 
Connected to a District Heating System, 
ECOS2007, 25-28 June 2007, Padova, Italia, 
p.585-591. 

[18] Popescu D. şi Şerban E., Simulation of domestic 
hot water consumption using time-seris models, 
in proceedings of WSEAS conferences, Heat and 
Mass Transfer, 20-22 august 2008, Rodos, 
Greece 

WSEAS TRANSACTIONS on COMPUTERS Elena Serban, Daniela Popescu

ISSN: 1109-2750 2041 Issue 12, Volume 7, December 2008


	Prediction of Domestic Warm-Water Consumption



