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Abstract: -The B+-tree and its variants have been reported as the good index structures for retrieving data.
Database systems frequently establish the B+-tree style indices for fast access to data records. However,
traditional B+-tree index could be a performance bottleneck because of its inflatable hierarchy. Many works
focus on improving indexing techniques. In fact, the optimization of data organization inside index nodes is the
most critical factor to improve retrieval quality. Some handles like pre-partition of data space, node splitting by
force, node splitting with unbalanced partition, and node splitting upon overflow loading always burden index
structures with plenty of storage space and building overhead. In this paper, we propose a new index scheme to
highly aggregate the external structure in a B+-tree. It also adopts a better splitting policy to completely remove
the suffering from data insertion orders. Our new index technique can compress data records in leaves and in
turn reduce index size to improve query performance. In addition, the entire index’s space utilization is 
promoted to a higher level; thereby the index’s space requirement becomes smaller and easily resides in
memory.
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1 Introduction
As the price of memory continuously becomes
cheaper, many of database tables and indices are
easily placed in main memory. Traditional
bottleneck of disk access is replaced by memory
access [5]. It has been revealed that commercial
DBMSs spend half the execution time on memory
access when a whole database fits in memory [2].
As a result, today’s database applications are
becoming increasingly compute and memory bound.
Many works address the techniques focusing on
minimizing memory latencies when the database is
accessed. The latency time in retrieving data from
the memory resided with a huge index is
considerably time-consuming. In fact, compactly
coordinating the data arrangement in a database
index is essential toward the acquisition of memory
performance.

On the other hand, modern processors make use
of processor cache to alleviate memory bound.
Modern processors have up to several megabytes of
SRAM as the cache, which can be accessed in one
or two process cycles while one memory access

costs tens of processor cycles. Typically, theindex’s 
node size is equal to the cache line size in order to
minimize the number of cache misses. However, the
low space utilization (50%~70%) in traditional
index nodes can not provide sufficient data for every
cache allocation, which makes the processor need
more cache accesses to embrace the requested data.
For promoting the data quality for every cache
allocation, aggregating data at leaf nodes and
increasing the space utilization of external structures
are necessary when an index scheme is developed.

Ailamaki et al. [1] have reported that faster
processors do not improve database system
performance to the same extent as scientific
workloads. The result is that from the perspective of
the processor, memory has been getting slower at a
dramatic rate. This makes it increasingly difficult to
achieve high processor efficiencies. For narrowing
the performance gap between processors and
memory, many works propose the techniques
focusing on minimizing memory latencies, such as
concurrency control algorithms [13, 19], cache-
conscious algorithms [17], and prefetching B+-trees
[7]. These techniques have modified core database
algorithms to make them more hardware friendly. In
this paper, our focus returns to the design logics of
index schemes. Memory access performance and
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cache misses is improved by our compressed index
structure: compressed B+-tree. The techniques
mentioned previously in improving memory
latencies can collaborate with our scheme to gain
the better performance.

2 Overviews of Previous Works
Many traditional index schemes focus on improving
index techniques. One of the common policies is to
adopt pre-partitions of data space [6, 11, 15, 19]
before processing the index scheme. Applying space
pre-partitions is difficult to meet the requirements of
real data distribution since the data sequence used to
develop an index can not be determined before
processing an index scheme. Pre-partitioning
policies are incapable of maintaining high data
aggregation in the resulting external structures,
especially in case of high data skewness. Other
policies adopt immediate node splitting when an
emerging data intends to join a full target. Node
splitting policies can adopt unbalanced partition [10,
18], or alternatively, balanced partition [8, 14, 16,
21]. Splitting policies are the typical examples
severely suffering from the problem of data
insertion order. Based on the design issue of node
splitting policies, the neighboring data already
arranged together are very likely separated by
consequent data. Such scenario frequently fragments
the data space. Since the handle of splitting is
irreversible, the departure of neighboring data can
not recover except executing many deletions and
reinsertions. These traditional indices resided in
memory can not supply caches with high data
retrieval quality. R*-tree [3] and extended CIR-tree
[12] use the re-insertion techniques to reorganize
parts of improper data arrangement in leaves.
Although less splits are performed, the insertion
routine is called more often in restructuring an R*-
tree or an extended CIR-tree. The problem of
unnecessary splits suffered from data insertion order
is not completely eliminated by their methods. The
cache quality and the cache misses still stay at a low
level.

Instead of improving index techniques, many
efforts focus on improving the index access methods.
Hankins et al. [9] developed an analytical model
based on the fundamental components of the search
process. This model is validated with experimental
results and demonstrating that using node sizes
much larger than the cache lines can result in better
search performance for the CSB+-tree [17].
Prefetching B+-trees [7] use prefetching to
effectively create wider nodes than the natural data
transfer size. These wider nodes reduce the height of

the B+-tree and accelerate operations of searches and
range scans on B+-tree indices. In fact, the essential
idea of B+-tree’s indexing technique is invariant in 
[7, 9]. Their performance improvements are not
gained from taking full advantage of the
architectural innovations.

A new concurrent B+-tree algorithm [13]
provides high concurrency to conquer the
performance bottleneck. A bottom-up tree
restructuring method using key-range indicators
contained in each leaf node always preserves a
semantically consistent state of the B+-tree.
Although a concurrent B+-tree can execute efficient
range searches and is suitable for the high
performance transaction processing. The time and
space efficiencies of index maintenance are
respectively deteriorated by the tree restructuring
technique and extra key-range indicators.

Because B+-tree and its variants adopt the similar
index policies, we only concentrate on the
performance difference between conventional B+-
tree and our compressed B+-tree in this paper. We
analyze the effect of our proposed index scheme and
make the following contributions:
 Our insertion algorithm breaks the dilemma

derived from data insertion order.
 The storage utilization is significantly increased

and the storage requirement is remarkably
reduced.

 No restructuring handle is required; thereby no
additional overhead is requested.

 The more condensed index resides in the
memory. Caches are supplied data with higher
quality and quantity. Cache misses and memory
bound are improved.
The rest of this paper is organized as follows.

Section 3 demonstrates our design logics by an
example. Section 4 describes and explains all related
algorithms in building a compressed B+-tree. Section
5 analyses the performance of a compressed B+-tree
comparing with traditional B+-tree. Section 6
employs the real geographical data for competitive
studies. Several measurements used to evaluate
various performances are given in this section. In
Section 7, we summarize our key results.

3 New Index Scheme
The motivation of our new index technique comes
from the exploitation of the unused space around
full targets. The vacant space available in a full
target’s predecessor or successor can be taken for 
dispersing the upcoming overload in the target. B*-
tree proposed by [4] had pointed out increasing
storage utilization has the impact of speeding up the

WSEAS TRANSACTIONS on COMPUTERS Hung-Yi Lin, Rong-Chang Chen, Shih-Ying Chen

ISSN: 1109-2750 2002 Issue 12, Volume 7, December 2008



search since the height of the resulting tree is
smaller. The index structure of B*-trees is based on
the structure of B-trees which employs a local
redistribution scheme to delay splitting until a full
target’s next sibling is also fully loaded. This
scheme guarantees that 2 full nodes are divided into
3, so the utilization of each node is at least 2/3 full
(i.e. 66%). In this study, although our idea has some
design similar to B*-trees, we address three major
characteristics that differs significantly from B*-
trees.
1. B*-tree is a variant of B-tree that attempts to

improve the storage utilization of B-tree while
our intention is on improving B+-tree.

2. A supervisal mechanism is developed to evaluate
the degree of data aggregation in the external
index structure. This mechanism also plays the
criterion to pick the suitable sibling (target’s
predecessor or successor) and decide the optimal
data quantity for executing local redistribution.

3. Since our local redistribution scheme involves at
most 3 nodes, it guarantees that 3 full nodes are
divided into 4. The utilization of each node is at
least 75% which outperforms B*-tree’s 66%.

We proceed to illustrate our design by the
following example. Suppose a data sequence of {5,
8, 1, 4, 3, 12, 9, 6, 15, 7} is assigned to be organized
by an index. To exemplify, the maximum number of
node capacity is assumed to be 5. Fig. 1(a) and 1(b)
shows the building procedures induced by our
proposed scheme and the conventional index
scheme, respectively. We state the relative
operations between the conventional scheme and
our scheme step by step as follows.
Step 1. Initially, data 5, 8, 1, 4, and 3 are inserted

into the root in turn. Then, datum 12 is going
to join the full root.

Step 2. The root’s splitting grows the index with 
one more level. Next, data 9 and 6 join the
right leaf in turn and make the target full.

Step 3. Again, datum 15 is joining the right leaf. In
Fig. 1(a), the full target appeals to its left
sibling. Whereas, in Fig. 1(b), one leaf
splitting is activated.

Step 4. In Fig. 1(a), data 5 and 6 in the right leaf are
removed to the left leaf and the relative upper
entry is modified accordingly. The spared
space make datum 15 accommodate in the
target. In Fig. 1(b), the third leave is generated
for datum 15. After that, datum 7 is the last
insertion.

Step 5. Finally, our scheme allocates 3 nodes for
ten data while the conventional index scheme
allocates 4 nodes.

We note that, in Step 4, the migration of data 5
and 6 to the left sibling causes the data variance at
leaf level smaller than that only moving datum 5.
Namely,

)15,12,9,8,6()5,4,3,1()15,12,9,8()6,5,4,3,1( 2222 ssss  .
To evaluate the data aggregation within a certain
leaf, the compactness of data organization is critical
as well. So, not only data variance but also data
density must be taken into account. A sufficient data
quantity with a small data variance is the necessary
condition for high data aggregation. We term )( iN

the data aggregation of node Ni which is formulated

as
)(
)(

2
i

i

Ns
NU , where )( iNU is the space utilization of

node Ni.

(a) (b)
Fig. 1 The constructing procedures of (a) a

compressed index and (b) a conventional index.

Suppose two neighbor nodes A and B (B is next
to A) are involved for data redistribution. We
assume there are originally n and m data entries
contained in A and B. Accordingly, the data
aggregation of them is denoted as )()( BA mn  .
One or several seems to be likely move from A to B,
or B to A. In case of one data is removed from A to
B, the data aggregation becomes

)()( 11





  LmRn BA , where 
RA represents node A

takes away its rightmost datum and 
LB represents

node B accommodates this datum at its left side. If
necessary, the second datum may be taken away as

well from 
RA and pushed into 

LB and so forth. As
a result, the data aggregation becomes

)()( 



  LkmRkn BA , where mMk 1 and M
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is the node capacity. The optimal number k for data
redistribution depends on selecting the minimum
from all possible combinations. On the other hand,
in case of migrating the leftmost data from B to A’s
right side, the value of k is decided by
minimizing )()( 




  LkmRkn BA . The detailed
calculation process is given in the Appendix.

For a comprehensive study of the problem
derived from insertion orders, all possibilities
( 12910   =3,628,800) of insertion orders for
the 10 data {5, 8, 1, 4, 3, 12, 9, 6, 15, 7} are fully
generated for analysis. The effect of data insertion
orders on the external structure is listed in Table 1.
Using the same node capacity, no matter what data
sequence is adopted; our proposed scheme organizes
these data into the same index as shown in the result
of Fig. 1(a). However, a traditional scheme results
in four cases with different data classifications
according to different data sequences. The term
in Table 1 means the entire data aggregation of
an index which is computed by collecting all
individual data aggregation )( iN of leaves. That
is,

)(
leavesall

i
i

N
.

Our proposed scheme only results in the data
classification as given in the first case of Table 1
which possesses the 100% external space utilization
and the corresponding  value is the largest among
all cases. Unfortunately, under a low probability of
1.38%, a traditional scheme can achieve the data
classification as Case 1. With a high probability of
98.62% in this example, a traditional scheme
indexes these 10 data in inflatable hierarchies (case
2~4) whose data aggregations are smaller than that
of case 1. In addition, the external space utilization
in Cases 2~4 is only 67%. This example validates
the fact that traditional index schemes frequently
suffer from improper data sequences.

4 Structure and Algorithms
The construction of a tree hierarchy is based on
organizing the leaf nodes. Thus, the policy in

coordinating data inside leaf nodes and the strategy
in allocating new leaf nodes are so critical for the
consequent entry arrangement in the internal nodes.
The internal nodes of an index serve as a directory
for fast data retrieval. The efficacy of such directory
significantly impacts the maintenance and query
performance of the index structure.

The base structure of the compressed B+-tree is
similar to that of the B+-tree. The leaf nodes
preserve the data which are classified by the entries
preserved in the internal nodes. In order to support
our new indexing scheme, each compressed B+-
tree’s leaf contains a pointer to its right sibling and a
pointer to its left sibling (the pointer is non-null if
the sibling exists). The major difference between
compressed B+-tree and B+-tree is the leaf splitting
policy. A compressed B+-tree appeals to the vacant
space found in the right sibling and even the left
sibling of the arrived target leaf encountering a new
insertion. This leaf collaboration delays leaf
splitting as far as possible. We assert that the
overhead spent in a data migration is far lower than
that spent in activating a split. Splitting operations
should be invoked in the circumstance that no
alternative handle can support the proper processing.

Suppose M is the maximum number of node
capacity. The internal node of a compressed B+-tree
is represented as [p0, k1, p1, … ki, pi], where pi is the
pointer referring to the node located at the next level
and ki is the key used as the boundary value between
two groups of data, Mi 1 . The external node of
a compressed B+-tree is designed as [

L , d1, …, di,

R ]. Two pointers
L and R link to the predecessor

and successor leaves, respectively. The key di

preserves the indexed data, Mi 1 . The following
notations are used through our algorithms.

 T: The root of the compressed B+-tree.
 N, NN, O: A node of the compressed B+-tree.
 parent(N): The parent of node N.
 load(N): The load of node N.
 k, k1, k2, k3: The key in a node.
 S, S1, S2: The sets used to collect keys.

Table 1 Four cases of data classifications organized by the traditional index scheme.
Case #leaves Data contents in leaves (×10-2) Frequency Probability

1 2 (1,3,4,5,6)、(7,8,9,12,15) 8.7 50,112 1.38%
2 (1,3,4)、(5,6,7,8)、(9,12,15) 7.1 30,798 0.85%
3 (1,3,4)、(5,6,7)、(8,9,12,15) 7.6 63,594 1.75%
4

3
(1,3,4,5)、(6,7,8)、(9,12,15) 7.2 3,484,296 96.02%

Total 3,628,800 100%
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Algorithm Insert(T, I)
Input: The root T of a compressed B+-tree and the
data I to be inserted.
Output: The root of the new compressed B+-tree.
1. N  T.
2. While N is a non-leaf node,

If 1.kNI  ,
N  N.p0

else, for a specific key N.ks such
that 1..  ss kNIkN , )(Nloads 
N  N.ps.

3. If N is under-full, then join I in N and increase
load(N) by one.

4. If N is full, let N' contain the entries of N plus I
and select one of the following cases:

Case a: MNload L  ).( and MNload R  ).(
For three leaves LN . , N', and RN . , if
removing the largest entry from N' to RN .
can result in the smaller total data
aggregation (  ) than that removing the
smallest entry from N' 'to LN . , then data
migration is invoked between N' and RN . .
Inversely, data migration is invoked between

LN . and N'.
Case b: MNload L  ).( and MNload R  ).(

Data migration is invoked between N' and

RN .
Case c: MNload L  ).( and MNload R  ).(

Data migration is invoked between LN .
and N'.

Case d: Two siblings of N are both full.
Invoke Split(N, I)

5. Return T.

In the Case a of insertion algorithm,
)).(())'(().(   LRRL NNN and LN.

).())'(( RL NN   are evaluated and compared to
determine the direction of data migration. In
addition, for retaining their data aggregation at a
high level, not only one but several data may be
adjusted between leaves in the handles of Cases a, b,
and c.

As mentioned in Section 3, a full target in a B*-
tree only appeals to the next sibling when
encountering a new insertion. It is easy to simplify
our listed cases in the insertion algorithm to meet
the basic ideal of B*-tree. In this study, we term the
index structure proposed by our design as
compressed B+-tree (denoted by CB+-tree). The
simplified design only appealing to the next sibling

is termed as compressed BR
+-tree (denoted by 

RCB -
tree).

Algorithm Split(O, I)
1. SSort all keys in O plus I increasingly.
2. If O is a leaf,

a. k1 the




 

2
)1(M -th largest key in S.

b. Allocate a new node NN.
c. O the first





 

2
)1(M -th keys in S. NN the

remainder keys in S.
d. NNO LR  )..( ; RR ONN  .. ;

NNO R. ; ONN L. .
e. Join k1 in parent(O) and create a new pointer

referring to NN.
f. Increase load(parent(O)) by one.
g. If load(parent(O))M,

Invoke Split(parent(O), k1).
3. If O is a non-leaf node,

a. k the median of S.
b. Allocate a new node NN and the data larger

than k in S are migrated to NN.
c. O the data smaller than k in S.
d. If O is the root, create a new root T containing

k and two pointers referring to O and NN.
e. Else

i. Join k in parent(O) and create a new pointer
referring to NN.

ii. Increase load(parent(O)) by one.
iii. If load(parent(O))  M, invoke

Split(parent(O), k).

The logic of algorithm Split is the same as that
suggested by a traditional B+-tree. Notably, splitting
handles not only spend time overhead but also
consume memory space. Algorithm Delete has also
been modified to ensure high data aggregation
around the arrived leaf. In general, δ= 2M is a
reasonable threshold used to determine when to
activate data repartition or data merging between the
target and the underflow siblings.

Algorithm Delete(T, I, δ)
Input: The root T of a compressed B+-tree and the
data I to be removed.
Output: The root of the new compressed B+-tree.
1. N T.
2. While N is a non-leaf node,

If 1.kNI  ,
N  N.p0

else for a specific key N.ks such
that 1..  ss kNIkN , )(Nloads  .
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N  N.ps.
3. If I is not found, return「Not found」and exit.
4. Remove I from N. Decrease load(N) by one.
5. If load(N) < δ, select one of the following cases:
Case a: nullN R. and MNloadNload R  ).()(

Merge the data in N and RN . into N.
Remove the related key and pointer
corresponding to RN . at the parent. And
then, execute data migration for achieving
the smallest total data aggregation between

LN . and N.
Case b: nullN L. and MNloadNload L  )().(

Execute the similar handles as Case a on the
opposite direction.

Case c: MNloadNload L  )().( and

MNloadNload R  ).()(
Evaluate and compare two measurements

)).(())(().(   LRRL NNN and

).())(()).(( RLRL NNN   to
determine the direction for processing data
migration and achieve the maximal data
aggregation.

6. Return T.

5 Analytical Evaluations
The following system parameters are used to
evaluate the storage requirement and query
performance of a CB+-tree.

 B: Memory block size;
 t: Integer size;
 p: Pointer size;

Every leaf node in a CB+-tree contains many key
values (entries) and two pointers. The order
(capacity) of the external structure in a tree
hierarchy is denoted by M1. Then, a CB+-tree’s M1

can be determined as following:





  t

pBMBptM )2(2 11
.

However, every leaf node in a traditional B+-tree
contains many key values and only one pointer. So,
the M1 of a traditional B+-tree is





 

t
pB )( . In

addition, entries in the non-leaf nodes of a CB+-tree
and a traditional B+-tree both are pairs of a key
value and a pointer to a sub-tree. The order of the
internal structure (M2) in a CB+-tree and a

traditional B+-tree is smaller than M1. As a result,
M2 is given as following:








 )(

)()( 22 pt
pBMBpptM .

We assume the total data amount for processing
the indexing work is N. Since our CB+-tree has full
accommodation at the leaf level, the number of leaf
nodes is determined as







1M
N . For convenience,

assuming that all nodes in the traditional B+-tree are
%)3.69i.e.(%1002ln  full on average [20]. Since

CB+-tree does not grantee the compact organization
in its internal structure. The accommodation of non-
leaf nodes in a CB+-tree is also supposed to be
69.3% full. We account for the leaf and non-leaf
nodes together, the total amount of nodes generated
by a CB+-tree is

)
12ln

2ln
()

2ln
1

1(
2

2

121 

















M

M
M
N

MM
N


.

On the other hand, the total amount of nodes
generated by a traditional B+-tree is

)
12ln

2ln
(

2ln
)

2ln
1

1(
2ln 2

2

121 

















M

M
M

N
MM

N


.

The height of a CB+-tree and a traditional B+-tree

are approximated by
  1log

1
2ln2









M
N

M
and

  1
2ln

log
1

2ln2









M

N
M

, respectively. The data search

in a CB+-tree or a traditional B+-tree is single path.
To a certain extent, the query performance of a CB+-
tree and a traditional B+-tree is quite similar. The

time complexity is )(log
1

2 M
N

O M
.

In a general implementation, parameter B is
allocated as 4 Kbytes and parameters t and p
employs 16 bytes and 32 bytes to represent the
indexed data. For the completeness of analysis, we
apply the data amount N=106 in the simulation. The
related results are listed in Table 2. Notably, the
number of leaf entries actually used in B+-tree is

177%3.69254  . The number of non-leaf entries
actually used in CB+-tree and B+-tree is

59%3.6985  . The ratio of storage requirement

between CB+-tree and B+-tree is 702.0
5748
4038

 .
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Table 2 The simulated results of CB+-tree and B+-
tree when inserting 106 data.
Scheme M1 M2 # leaves # nodes Height
CB+-tree 252 85 3969 4038 4
B+-tree 254 85 5650 5748 4

6 Experimental Results on Spatial
Data
Four spatial datasets: SC, UK, CA, and LB are
employed to implement practical indexing
applications. Dataset SC contains 36,176 points
representing the coast line of Scandinavia, and
dataset UK contains 39,828 points representing the
boundary of the United Kingdom. Datasets CA and
LB include 62,556 and 53,145 points representing
locations in California and Long Beach County.
They are given in Fig. 2.

SC UK

CA LB
Fig. 2 Four spatial datasets.

Three index structures: conventional B+-trees
(abbreviated as B+), 

RCB -trees (abbreviated as

RCB ), and CB+-trees (abbreviated as CB ) were

implemented in C++ programming language and
executed on a workstation with an Intel Pentium
1.73 GHz processor. In this section, the
experimental results contain three parts. The first
part investigates the data behavior in external
structures for all datasets. The second part proceeds
to evaluate the entire structure behavior for all
datasets. The third part measures the data
aggregation for internal and external structure. For
external structures, three measurements (NL, UL)
were evaluated for comparative studies. NL is the
total number of leaves generated in an index. UL is

the average space utilization for all leaves. We note
that the term UL multiplied by the node capacity M
can approximate the average number of data
inserted between two consecutive splits. Namely,

MUL  indicates the splitting period. With respect
to entire structures, four measurements (N, S, P, U)
were investigated. N is the total number of nodes
generated in an index. S counts the total number of
splits in an index. P and U are the average splitting
period and the total space utilization in an index.

For each dataset, the x- and y-coordinates of 2D
geographical point data are handled respectively.
Namely, all x-coordinate values in a dataset are
indexed by B+, 

RCB , and CB . And then, all y-

coordinate values are processed. All seven
measurements as mentioned in section 6 are
evaluated for analysis. Again, the maximum node
capacity is fixed as 40 for all structures. NL(x) and
NL(y) are the amounts of leaf nodes generated by
indexing the x-coordinate and y-coordinate of spatial
data. The results obtained from B+ are taken as the
benchmark and assigned as 100. As given in Fig. 3,

CB and 
RCB allocate the more economic amounts

of leaf nodes than B+. The data points in SC and UK
appear to be a more sparse distribution than CA and
LB. Using of traditional index schemes to deal with
sparse data easily causes much vacant space in
leaves. As learned from the behavior of UL(x) and
UL(y) in Fig. 3, our method still keeps the space
utilization of leaves at a high level no matter what
the data distribution appears. The improvement of
space efficiency for the external CB varies from

15% to 25% as compared to B+. Stated precisely,
CB utilize their external structures at the level

from 82% to 87% and 
RCB at the level from 72% to

77%. While B+ only performs from 64% to 71%.
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Fig. 3 The effect of spatial datasets on external
index structures.

Fig. 4 presents the experimental results of total
number of nodes (N(x) and N(y)), total number of
splits (S(x) and S(y)), average splitting period (P(x)
and P(y)), and total space utilization (U(x) and U(y))
for four datasets. Again, B+ are taken as the
benchmark structures when evaluating the behavior
of total number of nodes and total number of splits.
Since the number of leaves dominates the total
number of nodes in an index; hence, N(x) (and N(y))
exhibit a similar behavior to NL(x) (and NL(y)).
Besides, N(x) and N(y) also have a quite similar
behavior to S(x) and S(y) due to the generation of
non-leaf nodes is derived from leaf splitting. Fig. 4
summarizes these results, showing that compressed
B+-trees consume considerably fewer storage and
time cost than B+-trees.

Fig. 4 The effect of spatial datasets on entire index
structures.

An easy split has handles involving with one leaf
node and the corresponding entry at the upper level.

While a complicated split can propagate the splitting
process upward to the root and involve several non-
leaf nodes. In the building process of an index, splits
are expensive and irreversible; hence, they should
be invoked in the circumstance that no alternative
handle can support the proper processing.
Measurement P in Fig. 5 reveal that CB and 

RCB

activate fewer splits and hence spend less time cost
in completing their whole structures. As to the total
space utilization U, the quite similar results to UL

are shown in the last row of diagrams in Fig. 7.

Fig. 5 The comparisons of time and space
efficiencies.

Last but not least, the data aggregation  is
investigated for all cases. As shown in the first row
of diagrams in Fig. 6, CB and 

RCB have the

higher  values than B+. The improvement appears
apparently in the cases of CB and sparse data

distribution. Associating the experimental results of
UL with, the data arrangement in leaves of CB
presents the most compact accommodation with the
least data variance. However, although CB and


RCB generate the fewer interior entries than B+,

while these entries have diverse values for
classifying lower data authentically. Namely, for
achieving the high data aggregation at leaf level,

CB and 
RCB likely have the low data aggregation

in their internal structures. Since our method does
not deal with internal structures, compactness and

WSEAS TRANSACTIONS on COMPUTERS Hung-Yi Lin, Rong-Chang Chen, Shih-Ying Chen

ISSN: 1109-2750 2008 Issue 12, Volume 7, December 2008



aggregation are not improved in interior nodes. We
term ω the data dispersion measured from the
internal structure of an index,

where )(
leaves-nonall

1

2
i

i

NS


 . The ω values of B+ are

taken as the bench mark and the relative ω values
of CB and 

RCB are evaluated for comparison. As

shown in the second row of diagrams in Fig. 6, no
regular improvement of data dispersion is found.

Fig. 6 Data aggregation and dispersion of external
and internal structure.

7 Conclusion
In this paper, associating the utility of free space
from the siblings around a full target leaf is
suggested as a better policy than traditional node
splitting policies. Three important contributions are
provided by our index scheme. First of all, the
dilemma derived from data insertion order is solved.
Second, many unnecessary splits activated by
traditional index schemes are eliminated completely.
Third, the data classification becomes more
authentic and reliable. The concrete efficacy
brought to the practical database applications
regarding to access performance is twofold. First,
the main memory is fitted with the condensed index
structures. Second, the caches are equipped with the
higher quality of data and the less frequency of
cache misses is caused. In addition, many
mentioned techniques relating to computer
architecture techniques or concurrency algorithm

can collaborate with our method to achieve the even
higher database performance.
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Appendix
The totally ordered entries contained in node A and
B are assumed to be },,,{ 21 naaa  and },,,{ 21 mbbb  .
Their corresponding data variance )(2 Asn and

)(2 Bsm are given as following:
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following calculation:
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Inversely, the term )or( 
LR BB is used to denote the

modified node of B which an entry is
accommodated to B’s right side (or left side). Then,
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