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Abstract: - Evolvable hardware (EHW) refers to self-reconfiguration hardware design, where the configuration 
is under the control of an evolution algorithm. One of the main difficulties in using EHW to solve real-world 
problems is scalability, which limits the size of the circuit that may be evolved. This paper outlines evolvable 
hardware based on a 2-LUT (2-input lookup table) array, which allows the evolution of large circuits via 
decomposition. The proposed EHW has been tested with multipliers and logic circuits taken from the 
Microelectronics Centre of North Carolina (MCNC) benchmark library. The experimental results demonstrate 
that the proposed scheme improves the evolution of logic circuits in terms of the number of generations, area 
and delay, reduces computational time and enables the evolution of large circuits. The proposed EHW 
automatically generates a complete circuit netlist in a SDRAM. Because of the low cost and large data storage 
of a SDRAM, the evolvable hardware provides a good platform to evolve large circuits. 
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1 Introduction 
Evolvable hardware (EHW) [1] is a technique to 
automatically design circuits (sensors [2], digital, 
analogue, optics, antennas, and robots [3]), where the 
circuit configuration is under the control of evolution 
algorithms (EAs) [4]-[8]. In these evolution 
algorithms, first all the chromosomes are randomly 
initialized. Second, the fitness value of each 
individual is computed. Third, the fittest individual is 
selected. Fourth, if the fitness value of the 
chromosome is 100% or the number of generations 
has reached the maximum value set by the user for 
that particular experiment, the evolution process 
stops. If the conditions are not met, a new population 
will be generated by crossovering and mutating the 
best chromosomes (selected at the third step). In the 
next cycle, all newly created chromosomes are 

evaluated and operated in the same way. The 
evolution process continues until the fitness value of 
the chromosome is 100% or the number of 
generations has reached the maximum value set by 
the user for that particular experiment.  

The chromosome defines the structure of the logic 
circuit, the connectivity between logic cells, and cell 
types. The chromosome of EHW can be subdivided 
into gate-level [9]-[11] and function-level [12]-[15] 
representations. In gate-level evolution, the design of 
digital circuits is based on primitive hardware gates 
such as AND and OR. Gate-level EHW can only 
evolve solutions for simple problems. In 
function-level evolution, the design of circuits is 
based on higher functions such as sin, adders, etc. 
Function-level EHW can evolve solutions for 
complicated problems, but it requires human 
intervention to select the most appropriate functions 
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for specific problems.  
In order to evolve large and complex circuits, 

Stomeo, Kalganova, and Lambert introduced a 
divide-and-conquer approach for the evolution of a 
complex task [16]. The principle is to divide a 
complex task into simpler subtasks in order to evolve 
each of these subtasks and then to merge the evolved 
subsystems, reassembling a new evolved complex 
system. Hong and Chou divided a complex circuit 
into modules based on outputs [17]. This scheme 
reduces the number of required generations of 
evolution, but this separation of modules based on 
outputs is only possible when there are many outputs 
in hardware. It has little effect when the hardware 
has few outputs. Stomeo et al. decomposed a 
complex system into two subsystems G and H based 
on inputs [18]. The subsystem H is generated with 
MUXes and does not participate in the evolution 
process. The subsystem G, which has fewer inputs 
and more outputs than the original system, is evolved 
in an AND-OR PLA (Programmable Logic Array) 
structure. This decomposition scheme reduces the 
number of generations of evolution, but the AND-OR 
PLA have only AND gates and OR gates for 
evolution and hence may require more generations 
than evolvable hardware with a bit more types of 
logic gates.  

Evolvable hardware can be commercial FPGAs 
such as Xilinx devices [19], VRCs (Vitual 
Reconfigurable Circuits) [20], [21] or ASICs [22]. 
Ideally, evolvable hardware needs fine grained 
configuration and be random configuration safe. 
However, current devices such as Xilinx FPGAs only 
have course partial reconfiguration capabilities [23]. 
The older XC6200 [24] series was an exception, 
having a more flexible configuration system, 
however, it is no longer manufactured. A VRC 
solution is to implement a custom reconfigurable 
architecture on top of a commercial FPGA, but 
implementing one reconfigurable circuit upon 
another is inefficient limiting the size of circuit 
available for use. An ASIC solution provides the 
maximum flexibility to the designer, but the cost of 
ASIC fabrication is great. The proposed evolvable 

hardware is an ASIC solution. 
This paper presents a new type of evolvable 

hardware based on a 2-input lookup table array. A 
2-LUT (2-input lookup table) is a 4-bit memory 
module, which uses the address lines as its 2 inputs 
and returns the contents of the addressed location as 
the output of a Boolean function. The proposed 
evolvable hardware has the following merits. 
z It is capable of evolving large combinational 

circuits and sequential circuits with a small 
number of lookup tables. It can automatically 
decompose a large circuit into smaller 
sub-circuits based on both inputs and outputs, 
and combine these evolved sub-circuits together 
to generate a complete circuit netlist. 

z It is capable of evolving area and delay 
optimized circuits. It can evolve combinational 
circuits and sequential circuits with the smallest 
area or the shortest delay. 

z It reduces the number of generations to evolve a 
large circuit significantly. It requires fewer 
generations than direct evolution, the 
decomposition scheme based on outputs [17] 
and the decomposition scheme based on an 
AND-OR PLA [18].  

z It automatically generates a complete circuit 
netlist in a SDRAM. Because of the low cost 
and large data storage of a SDRAM, the 
evolvable hardware provides a good platform to 
evolve large circuits 

This paper is organized as follows: the next 
section describes the principles and architecture of 
proposed evolvable hardware. Section 3 gives the 
experimental results, followed by the conclusions. 
 
 

2 Proposed Evolvable hardware 
 
 
2.1 Decomposition 
The proposed evolvable hardware comprises lookup 
tables and Muxes. It can tackle a hard-to-evolve 
system that cannot become evolved within a certain 
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number of generations. The proposed scheme 
reduces the number of inputs and outputs of the 
evolved logic circuit, so that the number of required 
generations decreases to speed up the evolutionary 
process. The proposed method is based on rewriting 
the truth table in such a way that the inputs needed to 
describe the system are decomposed in two parts. 
Supposing that a system with n inputs and m outputs, 
see Fig.1(a), should be evolved using an evolutionary 
algorithm. The functionality of this system can be 
described by the truth table given in Fig.1(b), where 

np 2= is the number of products (or the so-called 

number of input-output combinations). The system 
depicted in Fig.1(a) can be decomposed into two 
subsystems as shown in Fig.1(c). The subsystem 
(lookup tables) with r inputs and s outputs is the 
evolvable part of the newly created system, where 

rnms −×= 2 . The subsystem (Muxes) with s data 

inputs, n-r control inputs and m outputs is the fixed 
part of the circuit that is generated using multiplexers. 
This part does not participate in the evolutionary 
process. 

 

 

 
Fig.1. General description of logic circuits and decomposition of the initial logic circuit 

Here is an example to describe how this system 
works. Supposing that a combinational logic circuit 
with 12 inputs and 12 outputs should be evolved. To 
reduce the number of required generations, using the 
above decomposition approach, this logic circuit is 
decomposed into four 10-input/12-output lookup 
tables as shown in Fig.2(a). A Mux tree is used to 
generate the final outputs as shown in Fig.2(a). In 
Fig.2(a), [0:11] represents a 12-bit aggregated output 
{output 0, output 1, …, output 11}. The 10 inputs {x0, 
x1, …, x9} are input to 4 lookup tables (Lookup table 
0-3) concurrently. The resultant four 12-bit outputs 

(L0-3[0:11]) are input into two Muxes (their control 
inputs are both x10) to generate two 12-bit outputs 
(LL0-1[0:11]). The final Mux controlled by x11 
outputs the final 12-bit result of the logic circuit 
f[0:11]. In Fig.2(a), the Mux tree does not participate 
in the evolutionary process. The four lookup tables 
(Lookup table 0-3) can be evolved sequentially or 
concurrently. If there is only one EA (Evolution 
Algorithm) engine, these four lookup tables can be 
evolved sequentially. If there are four EA engines, 
they can be evolved in parallel to reduce the 
evolution time further. 
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To reduce the number of required generations 
further, this 12-input/12-output logic circuit can be 
decomposed based on both inputs and outputs. For 
example, the decomposed logic circuit depicted in 
Fig.2(a) can be further decomposed into two 6-output 

subsystems as shown in Fig.2(b). If there is only one 
EA engine, theses lookup tables (Lookup table 0-7) 
can be evolved sequentially. If there are multiple EA 
engines, they can be evolved in parallel to reduce the 
evolution time further. 

 

 
       (a) Decomposition based on inputs 

                         
(b) Decomposition based on inputs and outputs 

Fig.2. Decomposition of a 12-input/12 output combinational circuit 
A complex logic circuit, which is difficult to 

evolve, can be decomposed (in inputs and outputs) 
using the method discussed above until the EA is 
able to evolve it. In Fig.3, an example is given to 
show how a system is decomposed into smaller 

subsystem. The EA is applied until a subsystem is 
small enough to be evolved. If it will not become 
evolved within a certain number of generations, it 
will be decomposed into subsystems. 
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Fig.3. Example of input and output decomposition of a system 
A subsystem (a multi-input multi-output lookup 

table, e.g. lookup table 0 in Fig.2(a) or s17=(5,2) in 
Fig.3) can be built with an array of 2-LUTs (2-input 
1-output lookup tables) as shown in Fig.4. In Fig.4, 
primary inputs (Input [0:n-1]) are connected to the 
inputs of all Muxes in the first column. Two Muxes 

will select two inputs for a 2-input LUT. The outputs 
of LUTs in a column are connected to the inputs of 
all Muxes in the next column. Some of the LUTs in 
the final column generate primary outputs (Outputs 
[0:m-1]). The control bits of Muxes and contents of 
LUTs are chromosomes in evolution. 

 
Fig.4. Array of 2-LUTs 
 
2.2 Area and delay optimization 
The fitness function evaluates the evolved circuits in 
terms of their functionality. In our experiment, a 
dynamic fitness function has been considered. It has 
two main criteria: first design and second, once the 

circuit is fully functional evolved, optimization 
which leads to shorter delay and reduced number of 
active LUTs used in the circuit configuration. The 
dynamic function f is calculated as: 
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where f1 is a design criterion that defines the 
percentage of correct bits in the evolved circuit, f2 is 
the optimization criterion for the optimization stage. 

The fitness function for the functionality of the 
evolved circuit f1, or so-called design criterion is 
calculated as follows: 
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where m and n are the number of outputs and inputs 
of the given logic circuit respectively, 2n is the 
number of input-output combinations, yi is the ith 
digit of the output combination produced by the 

evaluation of the circuit, id is the ith digit of the 

desired output combination for the fitness case fc, 

and || ii dy − is the absolute difference between the 

actual and the required outputs. The fitness function 
for the optimization stage is calculated as follows: 

)()(2 MDPALUTLUTdelayALUTLUTarea NNWNNWf −+−=

(2) 

where LUTN  is the total number of LUTs present in 

the chromosome, ALUTN  is the number of active 

LUTs, MDPALUTN  is the number of active LUTs in 

the maximum delay path, areaW  and delayW  are the 

weights of area optimization and delay optimization. 

1=+ delayarea WW . 

The method to decide if a LUT is active is as 
follows. A 2-input LUT is a 4-bit memory addressed 
by its inputs. This LUT can be represented as 
Y=memory [A, B], where A and B are inputs, and Y 
is the content of the location addressed by the inputs 
A and B. In other words, assuming that the 4-bit LUT 
contents are represented by abcd, when inputs AB 

are 00, 01, 10, and 11, Y is equal to a, b, c, and d 
respectively. When the LUT contents are 0000 or 
1111, Y=0 or Y=1. This LUT is inactive because a 
LUT generating a constant needs not be used in the 
actual construction of a logic circuit. When the LUT 
contents are 0011 or 0101, Y=A or Y=B. This LUT 
acts as a wire and needs not be used in the actual 
circuit construction, so it is also inactive. In addition, 
some redundant LUTs may exist in the fully 
functional evolved circuit. Each LUT is eliminated to 
see if this circuit is still fully functional. If so, this 
redundant LUT is also regarded as inactive. Hence a 
2-input LUT is regarded as active if its contents are 
not 0000, 1111, 0011 or 0101, and it is not a 
redundant LUT. 

The delay of each LUT is a constant. In delay 
optimization, only active LUTs are counted in delay 
calculation because the LUTs acting as wires and 
constants and redundant LUTs need not be used in 
the actual construction of a logic circuit. The 
interconnect delay (for wires) can be optimized in 
actual circuit layout, and hence is not considered in 
circuit evolution. The number of active LUTs in the 
maximum delay path decides the delay of the 
evolved circuit. All outputs of the evolved circuit are 
backtracked to inputs (via the control bits of Muxes) 
to find the maximum delay path which has the largest 
number of active LUTs. 
 
2.3 Evolution of synchronous finite state 
machines 
Sequential circuits, or simply finite state machines 
have two main characteristics: (i) there is at least one 
feedback path from the system output signal to the 
system input signal; and (ii) there is a memory 
capability that allows the system to determine current 
and future output signal values based on the previous 
input and output signal values. A finite synchronous 
state machine is shown in Fig.5(a), wherein the 
feedback signals constitute the machine state, the 
control logic is a combinational circuit that computes 
the state machine output signals (also called primary 
output signals) from the state signals (also called 
current state) and the input signals (also called 
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primary input signals). It also produces the signals of 
new machine state (also called next state). The 
combinational circuit of the control logic can be 
evolved (using the method discussed above) as 
shown in Fig.5(b). Various delay and area 
optimizations can be achieved via adjusting the 

values of areaW  and delayW  in equation (2). In 

Fig.5(b), primary inputs and assigned current states 
are the inputs of the evolved circuit, and primary 

outputs and assigned next states are the outputs of 
the evolved circuit. The complexity of this control 
logic will vary for different assignments of current 
states and next states. In this paper, we focus on 
evolving control logic for a given state transition. We 
assume that the best state assignment has been found. 
It is clear that finding the best state assignment is a 
NP-complete problem. It can be solved using a 
genetic algorithm [25].

 

 
Fig.5. A finite synchronous state machine and evolution of control logic 
 
2.4 Proposed architecture 
As Fig.6 shows, the proposed evolution architecture 
comprises an EA (Evolution Algorithm) engine, a 
LUT array, a netlist generator, a combiner, a 
SDRAM and a controller. The controller plays the 
role of master and controls the entire system. In the 
EA engine, the population generator generates 
populations of chromosomes. The initial population 
is generated randomly. These chromosomes are 
performed by genetic operators selection, crossover 
and mutation to generate offspring. These offspring 

chromosomes are sent to a LUT array (in Fig.6) for 
computation. The computation results are sent to the 
EA engine to perform fitness evaluation. The fittest 
individuals are put into the population generator for 
the next evolution. The evolution proceeds until the 
fitness value of the chromosome meets expectation 
or the number of generations has reached the 
maximum value set by the user for that particular 
experiment. If the fitness value of the chromosome 
meets expectation, the netlist generator (in Fig.6) 
generates the circuit netlist according to this 
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chromosome and stores it in a SDRAM. If the circuit 
cannot become evolved within the maximum number 
of generations set by the user, the controller (in Fig.6) 
decomposes the evolved circuit into sub-circuits that 
are small enough to be evolved using the 
decomposition method discussed above. When the 
netlist of all sub-circuits are generated and stored in 
the SDRAM, the combiner (in Fig.6) combines them 
together via Muxes (if the evolved circuit is a 
sequential circuit, the combiner will also add D 
flip-flops as shown in Fig.5(a).), and writes the 
reassembled netlist back to the SDRAM. The 
complete circuit netlist is stored in the SDRAM now. 
A random number generator is required for 
population generation, crossover and mutation in the 
EA engine. The proposed architecture uses multiple 
Cellular Automata (CA) [26] to generate random 
numbers. To extract a random number from a bank of 
CAs, one composes the number by taking a single bit 
from each CA. 

  According to the chromosome (representing the 
circuit structure in the LUT array), the netlist 
representing connections between active LUTs, 
circuit inputs, and circuit outputs is acquired via the 
control bits of Muxes associated with LUTs. When a 
circuit or a sub-circuit cannot become evolved within 
the maximum number of generations set by the user, 
the controller decomposes it based on inputs and 
outputs. Supposing that a circuit or a sub-circuit to be 
decomposed has n inputs and m outputs, if mn ≥ , 
this circuit is decomposed into smaller sub-circuits 
with n-1 inputs and m outputs, else if mn < , this 
circuit is decomposed into smaller sub-circuits with n 

inputs and 





2
m

outputs. 

The proposed architecture (except the SDRAM) is 
fabricated in an ASIC. The ASIC has a total area of 
2.5 mm2 and its maximum operational frequency is 
250 MHZ. The target technology is 0.12 µm CMOS 
(the HCMOS9 process from STMicroelectronics). In 
our experiments, the proposed architecture uses a 
6 × 8 2-LUT array and a 128MB SDRAM for 
evolution.

Fig.6. Proposed evolution platform 
 
 

3 Experiments 
The aim of the experiments is to prove that the 
proposed method requires less generations in 
comparison with the following evolution 
computation methods: direct evolution (which does 
not use any decomposition technique), the 
decomposition scheme based on outputs [17], the 
decomposition scheme based on an AND-OR PLA 

[18], and the decomposition scheme based on a 
4-LUT (4-input lookup table) array (that is the 
variation of the proposed scheme in which the 
2-LUT array is replaced by a 4-LUT array). The aim 
of the experiments is also to illustrate the 
performance of the proposed scheme during area and 
delay optimization processes. 

The well-known evolution algorithm (1+λ ) ES 
[27] is applied to all evolution schemes, where λ  
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represents the population size. First, all the 
chromosomes are randomly initialized. Second, the 
fitness value of each individual is computed. Third, 
the fittest individual is selected. Fourth, the 
previously selected individual is used to test if the 
conditions to stop the process have been met. These 
conditions are: the fitness value of the chromosome 
is 100% or the number of generations has reached 
the maximum value set by the user. If the conditions 
are not met, a new population will be generated by 
crossovering and mutating the best 2 chromosomes 
(selected at the third step)λ times in order to obtain 
other 2λ individuals. In the next cycle, all newly 
created chromosomes are evaluated, the fitness value 
of each of them is compared with the fitness value of 
the best chromosome of the previous generation, and 
the best (1+ λ ) individuals are selected. In our 
experiments, the population size is 5, crossover rate 
is 1, mutation rate is 0.05, the maximum number of 
generations is 1,000,000, and the termination 

criterion for all decomposition schemes is 2000 
generations without any improvement in the fitness 
function. 
 
3.1 Experimental results: fully functional 
evolution 
The experimental results obtained by using the 
proposed scheme, direct evolution, the 
decomposition scheme based on outputs [17], the 
decomposition scheme based on an AND-OR PLA 
[18], and the decomposition scheme based on a 
4-LUT array are shown in Table 1. In Table 1, all the 
characteristics of the circuit are given. For example, 
by looking at the multiplier circuit Mult3, it has 6 
inputs and 6 outputs. Then the average number of 
generations required to evolve this circuit is reported. 
The last column gives the average time spent for 
each experiment. The evolved circuits are (3-5 bit) 
multipliers and benchmark circuits from the MCNC 
benchmark library [28].

 
Table 1. Experimental results from the proposed scheme, direct evolution, the decomposition scheme based on 
outputs, the decomposition scheme based on an AND-OR PLA, and the decomposition scheme based on a 
4-LUT array, where In and Out are the number of inputs and outputs in the given logic function. “Not evolved” 
indicates the case when it does not find a solution within the maximum generation. 
Hardware In Out Evolution method Average  

generations 
Total time spent  
for each experiment 
in seconds 

Multiplier circuits 
Direct evolution 507899 6765 
Decomposition in outputs 21948 288 
Decomposition in a 4-LUT array 13774 180 
Decomposition in an AND-OR PLA 9156 123 

Mult3 6 6 

Proposed scheme 6875 92 
Direct evolution Not evolved 
Decomposition in outputs 146663 1718 
Decomposition in a 4-LUT array 132118 1471 
Decomposition in an AND-OR PLA 87411 1040 

Mult4 8 8 

Proposed scheme 65658 790 
Direct evolution Not evolved 
Decomposition in outputs 740164 16033 
Decomposition in a 4-LUT array 607616 13161 
Decomposition in an AND-OR PLA 506347 10968 

Mult5 10 10 

Proposed scheme 381978 8278 
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Logic circuits taken from MCNC benchmark library 
Direct evolution 554598 5405 
Decomposition in outputs 28121 269 
Decomposition in a 4-LUT array 17587 130 
Decomposition in an AND-OR PLA 11665 90 

Add2_7 7 4 

Proposed scheme 8836 72 
Direct evolution Not evolved 
Decomposition in outputs 168053 10713 
Decomposition in a 4-LUT array 157896 5952 
Decomposition in an AND-OR PLA 132414 4908 

Addm4 9 8 

Proposed scheme 103582 3839 
Direct evolution 989758 8928 
Decomposition in outputs 87752 781 
Decomposition in a 4-LUT array 57899 375 
Decomposition in an AND-OR PLA 38533 250 

Rd84 8 4 

Proposed scheme 29199 196 
Direct evolution Not evolved 
Decomposition in outputs Not evolved 
Decomposition in a 4-LUT array 205618 18639 
Decomposition in an AND-OR PLA 136412 12167 

Cm162 14 5 

Proposed scheme 107837 9718 
Direct evolution Not evolved 
Decomposition in outputs Not evolved 
Decomposition in a 4-LUT array 528656 32585 
Decomposition in an AND-OR PLA 352361 21652 

Add6 12 7 

Proposed scheme 265789 17332 
Direct evolution 808454 35788 
Decomposition in outputs 43643 1878 
Decomposition in a 4-LUT array 36880 1365 
Decomposition in an AND-OR PLA 24560 884 

5×pl 7 10 

Proposed scheme 18487 670 
Based on the results found, one may conclude that 
the main advantages of using the proposed scheme 
are: 
z a smaller amount of generations are required 

during evolution 
z it solves the tasks quicker than other evolution 

schemes. 
The reason why the proposed scheme requires 

fewer generations than the decomposition scheme 
based on an AND-OR PLA may be that the AND-OR 
PLA have only AND gates and OR gates for 
evolution, but a 2-LUT (in the proposed scheme) 

provides 16 Boolean functions for evolution. The 
reason why the proposed scheme requires fewer 
generations than the decomposition scheme based on 
a 4-LUT array may be that a 4-LUT provides 216 
Boolean functions for evolution and a 2-LUT 
provides 16 Boolean functions for evolution, which 
means the search space of a 4-LUT array is much 
larger than a 2-LUT array. The reason why the 
proposed scheme requires fewer generations than the 
decomposition scheme based on outputs may be that 
the proposed scheme can decompose circuits based 
on both inputs and outputs. 
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3.2 Experimental results: optimization 
evolution 
Section 3.1 gives the experimental results at the 
design stage (for fully functional evolution, whose 
fitness function is equation (1)). This section will 
give experimental results at the area and delay 
optimization stage (whose fitness function is 
equation (2)).  

In this section, those combinational circuits (in 

Table 1) are further optimized in area. Table 2 gives 
the experimental results at the design stage (for fully 
function evolution) and the area optimization stage in 
evolution. Only active LUTs are counted in area 
optimization because inactive LUTs (redundant 
LUTs and the LUTs acting as constants or wires) are 
not used in the actual construction of a logic circuit. 
As Table 2 shows, the proposed scheme reduces 
active LUTs by 35-45% at the optimization stage.

 
Table 2. Area optimization 
Hardware Number of active LUTs 

(design stage) 
Number of active LUTs 
(optimization stage) 

Reduced active LUTs 
(percentage) 

Mult3 45 25 44% 
Mult4 180 115 36% 
Mult5 684 412 40% 
Add2_7 135 88 35% 
Addm4 740 429 42% 
Rd84 548 339 38% 
Cm162 8486 4667 45% 
Add6 4193 2516 40% 
5×pl 270 176 35% 

Three state machines shiftreg, lion9 and train11 
[29] are generally used as benchmarks. The state 
assignments used (as shown in Table 3) are the best 
ones so far. These benchmark state machines are 
evolved at the design stage and the delay 
optimization stage. The delay optimization evolution 
can improve maximum operational frequencies of 
these state machines. The delay of each LUT is a 
constant. In delay optimization, only active LUTs are 
counted in delay calculation because inactive LUTs 

(the LUTs acting as wires and constants and 
redundant LUTs) need not be used in the actual 
construction of a logic circuit. The interconnect delay 
(for wires) can be optimized in actual circuit layout, 
and hence is not considered in circuit evolution. The 
number of active LUTs in the maximum delay path 
decides the delay of the evolved circuit. As Table 3 
shows, the proposed scheme reduces active LUTs in 
the maximum delay path by 43-67% at the 
optimization stage.

 
Table 3. Delay optimization, where In and Out stand for the number of primary inputs and the number of 
primary outputs respectively. 
State 
machine 

In Out State assignments Active LUTs 
in maximum 
delay path 
(design) 

Active LUTs  
in maximum 
delay path 
(optimization) 

Reduced active LUTs 
in maximum delay path
(percentage) 

Shiftreg 1 1 [4,0,3,7,5,1,2,6] 6 2 67% 
Lion9 2 1 [10,8,12,9,13,15,7,3,11] 8 4 50% 
Train11 2 1 [2,6,1,4,0,14,10,9,8,11,3] 7 4 43% 
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4 Conclusion 
In this paper, the evolvable hardware based on a 
2-LUT array, which can automatically decompose a 
large combinational or sequential circuit into smaller 
sub-circuits and combine them together to generate a 
complete circuit netlist, has been presented and 
compared with other EHW techniques. 

The proposed scheme has been tested on the 
evolution of multipliers and logic circuits taken from 
the MCNC benchmark library. The experimental 
results have confirmed the proposed scheme requires 
fewer generations to evolve fully functional solutions, 
reduces the time for an experiment, and allows the 
evolution of large circuits. The proposed scheme has 
also been tested in area and delay optimization 
evolution. The experimental results have confirmed 
that the proposed scheme can achieve the area and 
delay optimization of large combinational circuits 
and sequential circuits. 

The proposed evolvable hardware automatically 
generates a complete circuit netlist in a SDRAM. 
Because of the low cost and large data storage of a 
SDRAM, the evolvable hardware provides a good 
platform to evolve large circuits. 
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