
Fast Evolution of Large Digital Circuits

XIAOXUAN SHE
State key Laboratory of ASIC & System

Fudan University
825 Zhangheng Road, Shanghai

CHINA
Chamb_she@hotmail.com

Abstract: - Evolvable hardware (EHW) refers to self-reconfiguration hardware design, where the configuration
is under the control of an evolution algorithm. One of the main difficulties in using EHW to solve real-world
problems is scalability, which limits the size of the circuit that may be evolved. This paper outlines evolvable
hardware based on a 2-LUT (2-input lookup table) array, which allows the evolution of large circuits via
decomposition. The proposed EHW has been tested with multipliers and logic circuits taken from the
Microelectronics Centre of North Carolina (MCNC) benchmark library. The experimental results demonstrate
that the proposed scheme improves the evolution of logic circuits in terms of the number of generations, area
and delay, reduces computational time and enables the evolution of large circuits. The proposed EHW
automatically generates a complete circuit netlist in a SDRAM. Because of the low cost and large data storage
of a SDRAM, the evolvable hardware provides a good platform to evolve large circuits.

Key-words: - Evolvable hardware, Evolutionary computation, Adaptive systems, Digital circuits, Problem
decomposition, Circuit design

1 Introduction
Evolvable hardware (EHW) [1] is a technique to
automatically design circuits (sensors [2], digital,
analogue, optics, antennas, and robots [3]), where the
circuit configuration is under the control of evolution
algorithms (EAs) [4]-[8]. In these evolution
algorithms, first all the chromosomes are randomly
initialized. Second, the fitness value of each
individual is computed. Third, the fittest individual is
selected. Fourth, if the fitness value of the
chromosome is 100% or the number of generations
has reached the maximum value set by the user for
that particular experiment, the evolution process
stops. If the conditions are not met, a new population
will be generated by crossovering and mutating the
best chromosomes (selected at the third step). In the
next cycle, all newly created chromosomes are

evaluated and operated in the same way. The
evolution process continues until the fitness value of
the chromosome is 100% or the number of
generations has reached the maximum value set by
the user for that particular experiment.

The chromosome defines the structure of the logic
circuit, the connectivity between logic cells, and cell
types. The chromosome of EHW can be subdivided
into gate-level [9]-[11] and function-level [12]-[15]
representations. In gate-level evolution, the design of
digital circuits is based on primitive hardware gates
such as AND and OR. Gate-level EHW can only
evolve solutions for simple problems. In
function-level evolution, the design of circuits is
based on higher functions such as sin, adders, etc.
Function-level EHW can evolve solutions for
complicated problems, but it requires human
intervention to select the most appropriate functions

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1988 Issue 12, Volume 7, December 2008

for specific problems.
In order to evolve large and complex circuits,

Stomeo, Kalganova, and Lambert introduced a
divide-and-conquer approach for the evolution of a
complex task [16]. The principle is to divide a
complex task into simpler subtasks in order to evolve
each of these subtasks and then to merge the evolved
subsystems, reassembling a new evolved complex
system. Hong and Chou divided a complex circuit
into modules based on outputs [17]. This scheme
reduces the number of required generations of
evolution, but this separation of modules based on
outputs is only possible when there are many outputs
in hardware. It has little effect when the hardware
has few outputs. Stomeo et al. decomposed a
complex system into two subsystems G and H based
on inputs [18]. The subsystem H is generated with
MUXes and does not participate in the evolution
process. The subsystem G, which has fewer inputs
and more outputs than the original system, is evolved
in an AND-OR PLA (Programmable Logic Array)
structure. This decomposition scheme reduces the
number of generations of evolution, but the AND-OR
PLA have only AND gates and OR gates for
evolution and hence may require more generations
than evolvable hardware with a bit more types of
logic gates.

Evolvable hardware can be commercial FPGAs
such as Xilinx devices [19], VRCs (Vitual
Reconfigurable Circuits) [20], [21] or ASICs [22].
Ideally, evolvable hardware needs fine grained
configuration and be random configuration safe.
However, current devices such as Xilinx FPGAs only
have course partial reconfiguration capabilities [23].
The older XC6200 [24] series was an exception,
having a more flexible configuration system,
however, it is no longer manufactured. A VRC
solution is to implement a custom reconfigurable
architecture on top of a commercial FPGA, but
implementing one reconfigurable circuit upon
another is inefficient limiting the size of circuit
available for use. An ASIC solution provides the
maximum flexibility to the designer, but the cost of
ASIC fabrication is great. The proposed evolvable

hardware is an ASIC solution.
This paper presents a new type of evolvable

hardware based on a 2-input lookup table array. A
2-LUT (2-input lookup table) is a 4-bit memory
module, which uses the address lines as its 2 inputs
and returns the contents of the addressed location as
the output of a Boolean function. The proposed
evolvable hardware has the following merits.
z It is capable of evolving large combinational

circuits and sequential circuits with a small
number of lookup tables. It can automatically
decompose a large circuit into smaller
sub-circuits based on both inputs and outputs,
and combine these evolved sub-circuits together
to generate a complete circuit netlist.

z It is capable of evolving area and delay
optimized circuits. It can evolve combinational
circuits and sequential circuits with the smallest
area or the shortest delay.

z It reduces the number of generations to evolve a
large circuit significantly. It requires fewer
generations than direct evolution, the
decomposition scheme based on outputs [17]
and the decomposition scheme based on an
AND-OR PLA [18].

z It automatically generates a complete circuit
netlist in a SDRAM. Because of the low cost
and large data storage of a SDRAM, the
evolvable hardware provides a good platform to
evolve large circuits

This paper is organized as follows: the next
section describes the principles and architecture of
proposed evolvable hardware. Section 3 gives the
experimental results, followed by the conclusions.

2 Proposed Evolvable hardware

2.1 Decomposition
The proposed evolvable hardware comprises lookup
tables and Muxes. It can tackle a hard-to-evolve
system that cannot become evolved within a certain

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1989 Issue 12, Volume 7, December 2008

number of generations. The proposed scheme
reduces the number of inputs and outputs of the
evolved logic circuit, so that the number of required
generations decreases to speed up the evolutionary
process. The proposed method is based on rewriting
the truth table in such a way that the inputs needed to
describe the system are decomposed in two parts.
Supposing that a system with n inputs and m outputs,
see Fig.1(a), should be evolved using an evolutionary
algorithm. The functionality of this system can be
described by the truth table given in Fig.1(b), where

np 2= is the number of products (or the so-called

number of input-output combinations). The system
depicted in Fig.1(a) can be decomposed into two
subsystems as shown in Fig.1(c). The subsystem
(lookup tables) with r inputs and s outputs is the
evolvable part of the newly created system, where

rnms −×= 2 . The subsystem (Muxes) with s data

inputs, n-r control inputs and m outputs is the fixed
part of the circuit that is generated using multiplexers.
This part does not participate in the evolutionary
process.

Fig.1. General description of logic circuits and decomposition of the initial logic circuit

Here is an example to describe how this system
works. Supposing that a combinational logic circuit
with 12 inputs and 12 outputs should be evolved. To
reduce the number of required generations, using the
above decomposition approach, this logic circuit is
decomposed into four 10-input/12-output lookup
tables as shown in Fig.2(a). A Mux tree is used to
generate the final outputs as shown in Fig.2(a). In
Fig.2(a), [0:11] represents a 12-bit aggregated output
{output 0, output 1, …, output 11}. The 10 inputs {x0,
x1, …, x9} are input to 4 lookup tables (Lookup table
0-3) concurrently. The resultant four 12-bit outputs

(L0-3[0:11]) are input into two Muxes (their control
inputs are both x10) to generate two 12-bit outputs
(LL0-1[0:11]). The final Mux controlled by x11
outputs the final 12-bit result of the logic circuit
f[0:11]. In Fig.2(a), the Mux tree does not participate
in the evolutionary process. The four lookup tables
(Lookup table 0-3) can be evolved sequentially or
concurrently. If there is only one EA (Evolution
Algorithm) engine, these four lookup tables can be
evolved sequentially. If there are four EA engines,
they can be evolved in parallel to reduce the
evolution time further.

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1990 Issue 12, Volume 7, December 2008

To reduce the number of required generations
further, this 12-input/12-output logic circuit can be
decomposed based on both inputs and outputs. For
example, the decomposed logic circuit depicted in
Fig.2(a) can be further decomposed into two 6-output

subsystems as shown in Fig.2(b). If there is only one
EA engine, theses lookup tables (Lookup table 0-7)
can be evolved sequentially. If there are multiple EA
engines, they can be evolved in parallel to reduce the
evolution time further.

 (a) Decomposition based on inputs

(b) Decomposition based on inputs and outputs

Fig.2. Decomposition of a 12-input/12 output combinational circuit
A complex logic circuit, which is difficult to

evolve, can be decomposed (in inputs and outputs)
using the method discussed above until the EA is
able to evolve it. In Fig.3, an example is given to
show how a system is decomposed into smaller

subsystem. The EA is applied until a subsystem is
small enough to be evolved. If it will not become
evolved within a certain number of generations, it
will be decomposed into subsystems.

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1991 Issue 12, Volume 7, December 2008

Fig.3. Example of input and output decomposition of a system
A subsystem (a multi-input multi-output lookup

table, e.g. lookup table 0 in Fig.2(a) or s17=(5,2) in
Fig.3) can be built with an array of 2-LUTs (2-input
1-output lookup tables) as shown in Fig.4. In Fig.4,
primary inputs (Input [0:n-1]) are connected to the
inputs of all Muxes in the first column. Two Muxes

will select two inputs for a 2-input LUT. The outputs
of LUTs in a column are connected to the inputs of
all Muxes in the next column. Some of the LUTs in
the final column generate primary outputs (Outputs
[0:m-1]). The control bits of Muxes and contents of
LUTs are chromosomes in evolution.

Fig.4. Array of 2-LUTs

2.2 Area and delay optimization
The fitness function evaluates the evolved circuits in
terms of their functionality. In our experiment, a
dynamic fitness function has been considered. It has
two main criteria: first design and second, once the

circuit is fully functional evolved, optimization
which leads to shorter delay and reduced number of
active LUTs used in the circuit configuration. The
dynamic function f is calculated as:

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1992 Issue 12, Volume 7, December 2008

where f1 is a design criterion that defines the
percentage of correct bits in the evolved circuit, f2 is
the optimization criterion for the optimization stage.

The fitness function for the functionality of the
evolved circuit f1, or so-called design criterion is
calculated as follows:

||
2

1001001
2

1

1

0
i

fc

m

i
in dy

m
f

n

−−= ∑∑
=

−

=

 (1)

where m and n are the number of outputs and inputs
of the given logic circuit respectively, 2n is the
number of input-output combinations, yi is the ith
digit of the output combination produced by the

evaluation of the circuit, id is the ith digit of the

desired output combination for the fitness case fc,

and || ii dy − is the absolute difference between the

actual and the required outputs. The fitness function
for the optimization stage is calculated as follows:

)()(2 MDPALUTLUTdelayALUTLUTarea NNWNNWf −+−=

(2)

where LUTN is the total number of LUTs present in

the chromosome, ALUTN is the number of active

LUTs, MDPALUTN is the number of active LUTs in

the maximum delay path, areaW and delayW are the

weights of area optimization and delay optimization.

1=+ delayarea WW .

The method to decide if a LUT is active is as
follows. A 2-input LUT is a 4-bit memory addressed
by its inputs. This LUT can be represented as
Y=memory [A, B], where A and B are inputs, and Y
is the content of the location addressed by the inputs
A and B. In other words, assuming that the 4-bit LUT
contents are represented by abcd, when inputs AB

are 00, 01, 10, and 11, Y is equal to a, b, c, and d
respectively. When the LUT contents are 0000 or
1111, Y=0 or Y=1. This LUT is inactive because a
LUT generating a constant needs not be used in the
actual construction of a logic circuit. When the LUT
contents are 0011 or 0101, Y=A or Y=B. This LUT
acts as a wire and needs not be used in the actual
circuit construction, so it is also inactive. In addition,
some redundant LUTs may exist in the fully
functional evolved circuit. Each LUT is eliminated to
see if this circuit is still fully functional. If so, this
redundant LUT is also regarded as inactive. Hence a
2-input LUT is regarded as active if its contents are
not 0000, 1111, 0011 or 0101, and it is not a
redundant LUT.

The delay of each LUT is a constant. In delay
optimization, only active LUTs are counted in delay
calculation because the LUTs acting as wires and
constants and redundant LUTs need not be used in
the actual construction of a logic circuit. The
interconnect delay (for wires) can be optimized in
actual circuit layout, and hence is not considered in
circuit evolution. The number of active LUTs in the
maximum delay path decides the delay of the
evolved circuit. All outputs of the evolved circuit are
backtracked to inputs (via the control bits of Muxes)
to find the maximum delay path which has the largest
number of active LUTs.

2.3 Evolution of synchronous finite state
machines
Sequential circuits, or simply finite state machines
have two main characteristics: (i) there is at least one
feedback path from the system output signal to the
system input signal; and (ii) there is a memory
capability that allows the system to determine current
and future output signal values based on the previous
input and output signal values. A finite synchronous
state machine is shown in Fig.5(a), wherein the
feedback signals constitute the machine state, the
control logic is a combinational circuit that computes
the state machine output signals (also called primary
output signals) from the state signals (also called
current state) and the input signals (also called

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1993 Issue 12, Volume 7, December 2008

primary input signals). It also produces the signals of
new machine state (also called next state). The
combinational circuit of the control logic can be
evolved (using the method discussed above) as
shown in Fig.5(b). Various delay and area
optimizations can be achieved via adjusting the

values of areaW and delayW in equation (2). In

Fig.5(b), primary inputs and assigned current states
are the inputs of the evolved circuit, and primary

outputs and assigned next states are the outputs of
the evolved circuit. The complexity of this control
logic will vary for different assignments of current
states and next states. In this paper, we focus on
evolving control logic for a given state transition. We
assume that the best state assignment has been found.
It is clear that finding the best state assignment is a
NP-complete problem. It can be solved using a
genetic algorithm [25].

Fig.5. A finite synchronous state machine and evolution of control logic

2.4 Proposed architecture
As Fig.6 shows, the proposed evolution architecture
comprises an EA (Evolution Algorithm) engine, a
LUT array, a netlist generator, a combiner, a
SDRAM and a controller. The controller plays the
role of master and controls the entire system. In the
EA engine, the population generator generates
populations of chromosomes. The initial population
is generated randomly. These chromosomes are
performed by genetic operators selection, crossover
and mutation to generate offspring. These offspring

chromosomes are sent to a LUT array (in Fig.6) for
computation. The computation results are sent to the
EA engine to perform fitness evaluation. The fittest
individuals are put into the population generator for
the next evolution. The evolution proceeds until the
fitness value of the chromosome meets expectation
or the number of generations has reached the
maximum value set by the user for that particular
experiment. If the fitness value of the chromosome
meets expectation, the netlist generator (in Fig.6)
generates the circuit netlist according to this

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1994 Issue 12, Volume 7, December 2008

chromosome and stores it in a SDRAM. If the circuit
cannot become evolved within the maximum number
of generations set by the user, the controller (in Fig.6)
decomposes the evolved circuit into sub-circuits that
are small enough to be evolved using the
decomposition method discussed above. When the
netlist of all sub-circuits are generated and stored in
the SDRAM, the combiner (in Fig.6) combines them
together via Muxes (if the evolved circuit is a
sequential circuit, the combiner will also add D
flip-flops as shown in Fig.5(a).), and writes the
reassembled netlist back to the SDRAM. The
complete circuit netlist is stored in the SDRAM now.
A random number generator is required for
population generation, crossover and mutation in the
EA engine. The proposed architecture uses multiple
Cellular Automata (CA) [26] to generate random
numbers. To extract a random number from a bank of
CAs, one composes the number by taking a single bit
from each CA.

 According to the chromosome (representing the
circuit structure in the LUT array), the netlist
representing connections between active LUTs,
circuit inputs, and circuit outputs is acquired via the
control bits of Muxes associated with LUTs. When a
circuit or a sub-circuit cannot become evolved within
the maximum number of generations set by the user,
the controller decomposes it based on inputs and
outputs. Supposing that a circuit or a sub-circuit to be
decomposed has n inputs and m outputs, if mn ≥ ,
this circuit is decomposed into smaller sub-circuits
with n-1 inputs and m outputs, else if mn < , this
circuit is decomposed into smaller sub-circuits with n

inputs and 





2
m

outputs.

The proposed architecture (except the SDRAM) is
fabricated in an ASIC. The ASIC has a total area of
2.5 mm2 and its maximum operational frequency is
250 MHZ. The target technology is 0.12 µm CMOS
(the HCMOS9 process from STMicroelectronics). In
our experiments, the proposed architecture uses a
6 × 8 2-LUT array and a 128MB SDRAM for
evolution.

Fig.6. Proposed evolution platform

3 Experiments
The aim of the experiments is to prove that the
proposed method requires less generations in
comparison with the following evolution
computation methods: direct evolution (which does
not use any decomposition technique), the
decomposition scheme based on outputs [17], the
decomposition scheme based on an AND-OR PLA

[18], and the decomposition scheme based on a
4-LUT (4-input lookup table) array (that is the
variation of the proposed scheme in which the
2-LUT array is replaced by a 4-LUT array). The aim
of the experiments is also to illustrate the
performance of the proposed scheme during area and
delay optimization processes.

The well-known evolution algorithm (1+λ) ES
[27] is applied to all evolution schemes, where λ

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1995 Issue 12, Volume 7, December 2008

represents the population size. First, all the
chromosomes are randomly initialized. Second, the
fitness value of each individual is computed. Third,
the fittest individual is selected. Fourth, the
previously selected individual is used to test if the
conditions to stop the process have been met. These
conditions are: the fitness value of the chromosome
is 100% or the number of generations has reached
the maximum value set by the user. If the conditions
are not met, a new population will be generated by
crossovering and mutating the best 2 chromosomes
(selected at the third step)λ times in order to obtain
other 2λ individuals. In the next cycle, all newly
created chromosomes are evaluated, the fitness value
of each of them is compared with the fitness value of
the best chromosome of the previous generation, and
the best (1+ λ) individuals are selected. In our
experiments, the population size is 5, crossover rate
is 1, mutation rate is 0.05, the maximum number of
generations is 1,000,000, and the termination

criterion for all decomposition schemes is 2000
generations without any improvement in the fitness
function.

3.1 Experimental results: fully functional
evolution
The experimental results obtained by using the
proposed scheme, direct evolution, the
decomposition scheme based on outputs [17], the
decomposition scheme based on an AND-OR PLA
[18], and the decomposition scheme based on a
4-LUT array are shown in Table 1. In Table 1, all the
characteristics of the circuit are given. For example,
by looking at the multiplier circuit Mult3, it has 6
inputs and 6 outputs. Then the average number of
generations required to evolve this circuit is reported.
The last column gives the average time spent for
each experiment. The evolved circuits are (3-5 bit)
multipliers and benchmark circuits from the MCNC
benchmark library [28].

Table 1. Experimental results from the proposed scheme, direct evolution, the decomposition scheme based on
outputs, the decomposition scheme based on an AND-OR PLA, and the decomposition scheme based on a
4-LUT array, where In and Out are the number of inputs and outputs in the given logic function. “Not evolved”
indicates the case when it does not find a solution within the maximum generation.
Hardware In Out Evolution method Average

generations
Total time spent
for each experiment
in seconds

Multiplier circuits
Direct evolution 507899 6765
Decomposition in outputs 21948 288
Decomposition in a 4-LUT array 13774 180
Decomposition in an AND-OR PLA 9156 123

Mult3 6 6

Proposed scheme 6875 92
Direct evolution Not evolved
Decomposition in outputs 146663 1718
Decomposition in a 4-LUT array 132118 1471
Decomposition in an AND-OR PLA 87411 1040

Mult4 8 8

Proposed scheme 65658 790
Direct evolution Not evolved
Decomposition in outputs 740164 16033
Decomposition in a 4-LUT array 607616 13161
Decomposition in an AND-OR PLA 506347 10968

Mult5 10 10

Proposed scheme 381978 8278

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1996 Issue 12, Volume 7, December 2008

Logic circuits taken from MCNC benchmark library
Direct evolution 554598 5405
Decomposition in outputs 28121 269
Decomposition in a 4-LUT array 17587 130
Decomposition in an AND-OR PLA 11665 90

Add2_7 7 4

Proposed scheme 8836 72
Direct evolution Not evolved
Decomposition in outputs 168053 10713
Decomposition in a 4-LUT array 157896 5952
Decomposition in an AND-OR PLA 132414 4908

Addm4 9 8

Proposed scheme 103582 3839
Direct evolution 989758 8928
Decomposition in outputs 87752 781
Decomposition in a 4-LUT array 57899 375
Decomposition in an AND-OR PLA 38533 250

Rd84 8 4

Proposed scheme 29199 196
Direct evolution Not evolved
Decomposition in outputs Not evolved
Decomposition in a 4-LUT array 205618 18639
Decomposition in an AND-OR PLA 136412 12167

Cm162 14 5

Proposed scheme 107837 9718
Direct evolution Not evolved
Decomposition in outputs Not evolved
Decomposition in a 4-LUT array 528656 32585
Decomposition in an AND-OR PLA 352361 21652

Add6 12 7

Proposed scheme 265789 17332
Direct evolution 808454 35788
Decomposition in outputs 43643 1878
Decomposition in a 4-LUT array 36880 1365
Decomposition in an AND-OR PLA 24560 884

5×pl 7 10

Proposed scheme 18487 670
Based on the results found, one may conclude that
the main advantages of using the proposed scheme
are:
z a smaller amount of generations are required

during evolution
z it solves the tasks quicker than other evolution

schemes.
The reason why the proposed scheme requires

fewer generations than the decomposition scheme
based on an AND-OR PLA may be that the AND-OR
PLA have only AND gates and OR gates for
evolution, but a 2-LUT (in the proposed scheme)

provides 16 Boolean functions for evolution. The
reason why the proposed scheme requires fewer
generations than the decomposition scheme based on
a 4-LUT array may be that a 4-LUT provides 216
Boolean functions for evolution and a 2-LUT
provides 16 Boolean functions for evolution, which
means the search space of a 4-LUT array is much
larger than a 2-LUT array. The reason why the
proposed scheme requires fewer generations than the
decomposition scheme based on outputs may be that
the proposed scheme can decompose circuits based
on both inputs and outputs.

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1997 Issue 12, Volume 7, December 2008

3.2 Experimental results: optimization
evolution
Section 3.1 gives the experimental results at the
design stage (for fully functional evolution, whose
fitness function is equation (1)). This section will
give experimental results at the area and delay
optimization stage (whose fitness function is
equation (2)).

In this section, those combinational circuits (in

Table 1) are further optimized in area. Table 2 gives
the experimental results at the design stage (for fully
function evolution) and the area optimization stage in
evolution. Only active LUTs are counted in area
optimization because inactive LUTs (redundant
LUTs and the LUTs acting as constants or wires) are
not used in the actual construction of a logic circuit.
As Table 2 shows, the proposed scheme reduces
active LUTs by 35-45% at the optimization stage.

Table 2. Area optimization
Hardware Number of active LUTs

(design stage)
Number of active LUTs
(optimization stage)

Reduced active LUTs
(percentage)

Mult3 45 25 44%
Mult4 180 115 36%
Mult5 684 412 40%
Add2_7 135 88 35%
Addm4 740 429 42%
Rd84 548 339 38%
Cm162 8486 4667 45%
Add6 4193 2516 40%
5×pl 270 176 35%

Three state machines shiftreg, lion9 and train11
[29] are generally used as benchmarks. The state
assignments used (as shown in Table 3) are the best
ones so far. These benchmark state machines are
evolved at the design stage and the delay
optimization stage. The delay optimization evolution
can improve maximum operational frequencies of
these state machines. The delay of each LUT is a
constant. In delay optimization, only active LUTs are
counted in delay calculation because inactive LUTs

(the LUTs acting as wires and constants and
redundant LUTs) need not be used in the actual
construction of a logic circuit. The interconnect delay
(for wires) can be optimized in actual circuit layout,
and hence is not considered in circuit evolution. The
number of active LUTs in the maximum delay path
decides the delay of the evolved circuit. As Table 3
shows, the proposed scheme reduces active LUTs in
the maximum delay path by 43-67% at the
optimization stage.

Table 3. Delay optimization, where In and Out stand for the number of primary inputs and the number of
primary outputs respectively.
State
machine

In Out State assignments Active LUTs
in maximum
delay path
(design)

Active LUTs
in maximum
delay path
(optimization)

Reduced active LUTs
in maximum delay path
(percentage)

Shiftreg 1 1 [4,0,3,7,5,1,2,6] 6 2 67%
Lion9 2 1 [10,8,12,9,13,15,7,3,11] 8 4 50%
Train11 2 1 [2,6,1,4,0,14,10,9,8,11,3] 7 4 43%

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1998 Issue 12, Volume 7, December 2008

4 Conclusion
In this paper, the evolvable hardware based on a
2-LUT array, which can automatically decompose a
large combinational or sequential circuit into smaller
sub-circuits and combine them together to generate a
complete circuit netlist, has been presented and
compared with other EHW techniques.

The proposed scheme has been tested on the
evolution of multipliers and logic circuits taken from
the MCNC benchmark library. The experimental
results have confirmed the proposed scheme requires
fewer generations to evolve fully functional solutions,
reduces the time for an experiment, and allows the
evolution of large circuits. The proposed scheme has
also been tested in area and delay optimization
evolution. The experimental results have confirmed
that the proposed scheme can achieve the area and
delay optimization of large combinational circuits
and sequential circuits.

The proposed evolvable hardware automatically
generates a complete circuit netlist in a SDRAM.
Because of the low cost and large data storage of a
SDRAM, the evolvable hardware provides a good
platform to evolve large circuits.

References:
[1] X. Yao, T. Higuchi. “Promises and challenges of
evolvable hardware”, IEEE Trans. Systems, Man and
Cybernetics, Part C, vol.29, Feb. 1999, pp. 87 – 97.
[2] Jinchuang Zhao, Xuekun Song, Wenli Fu, Jingjie
Lei, “Preliminary Research of Evolvable Sensor”,
Third International Conference on Natural
Computation, Vol.5, 24-27 Aug. 2007, pp.195 – 198.
[3] J.D. Lohn, G.S. Hornby, “Evolvable hardware:
using evolutionary computation to design and
optimize hardware systems”, IEEE Computational
Intelligence Magazine, Vol.1, Issue 1, Feb. 2006,
pp.19 - 27.
[4] Oliveira, Tiago Carvalho Junior, Valfredo Pilla,
“An Implementation of Compact Genetic Algorithm
on FPGA for Extrinsic Evolvable Hardware”, 4th
Southern Conference on Programmable Logic, 26-28
March 2008, pp.187 – 190.

[5] E. Benkhelifa, A. Pipe, G. Dragffy, M. Nibouche,
“Towards evolving fault tolerant biologically
inspired hardware using evolutionary algorithms”,
IEEE Congress on Evolutionary Computation, 25-28
Sept. 2007, pp.1548 – 1554.
[6] Wei-Rong Guan, Hai-Yun Zhou, Bin Song, “The
Optimization Speed of Eitist Evolutionary
Algorithms in Off-Line EHW”, International
Conference on Machine Learning and Cybernetics,
Aug. 2006, pp.2154 – 2158.
[7] Y. Jewajinda, P. Chongstitvatana, “A
Cooperative Approach to Compact Genetic
Algorithm for Evolvable Hardware”, IEEE Congress
on Evolutionary Computation, 16-21 July 2006,
pp.2779 – 2786.
[8] E. Stomeo, T. Kalganova, C. Lambert, “A Novel
Genetic Algorithm for Evolvable Hardware”, IEEE
Congress on Evolutionary Computation, 16-21 July
2006, pp.134 – 141.
[9] J. Lee, J. Sitte, “Gate-level Morphogenetic
Evolvable Hardware for Scalability and Adaptation
on FPGAs”, First NASA/ESA Conference on
Adaptive Hardware and Systems, 15-18 June 2006,
pp.145 – 152.
[10] L. Sekanina, “Evolutionary Design of Digital
Circuits: Where Are Current Limits”, First
NASA/ESA Conference on Adaptive Hardware and
Systems, 15-18 June 2006, pp.171-178.
[11] L. Sekanina, T. Martinek, Z. Gajda, “Extrinsic
and Intrinsic Evolution of Multifunctional
Combinational Modules”, IEEE Congress on
Evolutionary Computation, 16-21 July 2006,
pp.2771-2778.
[12] D. Dhanasekaran, K. Boopathy Bagan, “Fault
Tolerant Dynamic Antenna Array in Smart Antenna
System Using Evolved Virtual Reconfigurable
Circuit”, 21st International Conference on VLSI
Design, 4-8 Jan. 2008, pp.77 – 83.
[13] B. Karunya, R. Uma, “Functional Level
Implementation Of Evolvable Hardware Using
Genetic Algorithms”, International Conference on
Mixed Design of Integrated Circuits and System,
22-24 June 2006, pp.671-674.
[14] K. Glette, J. Torresen, M. Yasunaga, Y.

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 1999 Issue 12, Volume 7, December 2008

Yamaguchi, “On-Chip Evolution Using a Soft
Processor Core Applied to Image Recognition”, First
NASA/ESA Conference on Adaptive Hardware and
Systems, 15-18 June 2006, pp.373 – 380.
[15] Z. Vasicek, L. Sekanina, “An Area-Efficient
Alternative to Adaptive Median Filtering in FPGAs”,
International Conference on Field Programmable
Logic and Applications, 27-29 Aug. 2007, pp.216 –
221.
[16] E. Stomeo, T. Kalganova, C. Lambert,
“Generalized Disjunction Decomposition for
Evolvable hardware”, IEEE Trans. Systems, Man and
Cybernetics, Vol.36, No.5, Oct. 2006, pp.1024-1043.
[17] Jin-Hyuk Hong, Sung-Bae Cho, “MEH:
modular evolvable hardware for designing complex
circuits”, IEEE Congress on Evolutionary
Computation, Vol.1, 8-12 Dec. 2003, pp.92 – 99.
[18] E. Stomeo, T. Kalganova, C. Lambert, N.
Lipnitsakya, Y. Yatskevich, “On evolution of
relatively large combinational logic circuits”,
NASA/DoD Conference on Evolvable Hardware, 29
June-1 July 2005, pp.59 – 66.
[19] R.S. Oreifej, R.N. Al-Haddad, H. Tan, R.F.
DeMara, “Layered Approach to Intrinsic Evolvable
Hardware using Direct Bitstream Manipulation of
Virtex II Pro Devices”, International Conference on
Field Programmable Logic and Applications, 27-29
Aug. 2007 pp.299 – 304.
[20] L. Sekanina, S. Friedl, “On routine
implementation of virtual evolvable devices using
COMBO6”, NASA/DoD Conference on Evolvable

Hardware, 24-26 June 2004, pp. 63 – 70.
[21] L. Sekanina, “Towards evolvable IP cores for
FPGAs”, NASA/DoD Conference on Evolvable
Hardware, 9-11 July 2003, pp.145 – 154.
[22] A.J. Greensted, A.M. Tyrrell, “RISA: A
Hardware Platform for Evolutionary Design”, IEEE
Workshop on Evolvable and Adaptive Hardware, 1-5
April 2007, pp.1 – 7.
[23] Two flows for partial reconfiguration: Module
Based or Difference Based – Xapp 290, Xilinx, 2004.
[24] XC6200 Field Programmable Gate Arrays –
Data Sheet, Xilinx, 1997.
[25] N. Nedjah, L.M. Mourelle, “Evolutionary state
assignment for synchronous finite state machine”,
Proc. of International Conference on Computation
Science, LNCS, Springer-Verlag, 2004.
[26] S. Bonissone, R. Subbu, “Evolutionary
Multiobjective Optimization on a Chip”, IEEE
Workshop on Evolvable and Adaptive Hardware, 1-5
April 2007, pp.61 – 66.
[27] T. Kalaganova, J. Miller, “Evolving more
efficient digital circuits by allowing circuit layout
and multi-objective fitness”, 1st NASA/DoD
Workshop on Evolvable Hardware, July 1999,
pp.54-63.
[28] S. Yang, “Logic Synthesis and Optimization
Benchmark User Guide Version 3.0”, MCNC, 1991.
[29] Collaborative Benchmarking Laboratory, North
Carolina State University, www.cbl.ncsu.edu/pub/
Benchmark_dirs/LGSynth89/fsmexamples/, Nov.
2003.

WSEAS TRANSACTIONS on COMPUTERS Xiaoxuan She

ISSN: 1109-2750 2000 Issue 12, Volume 7, December 2008

