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Abstract: We consider the constraint satisfaction problem (CSP), where the values must be assigned to 
variables which are subject to a set of constraints. This problem is naturally formulated as 0-1 quadratic 
knapsack problem subject to quadratic constraint. In this paper, we present a branch-and-bound algorithm for 
0-1 quadratic programming, which is based on solving semidefinite relaxations. At each node of the 
enumeration tree, a lower bound is given naturally by the value of (SDP) problem and an upper bound is 
computed by satisfying the quadratic constraint. We show that this method is able to determine whether a 
(CSP) has a solution or not. Then we give some hints on how to reduce as much as possible the initial size of 
the (CSP). Some numerical examples assess the effectiveness of the theoretical results shown in this paper, and 
the advantage of the new modelization. 
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1 Introduction 
Constraint Satisfaction Problems (CSP) has been 
recognized as efficient models for solving many 
combinatorial and complexes problems. For 
example, problems from timetabling, scheduling, 
resource allocation, planning, Airspace sectorization 
[9], etc... 
This problem was introduced in 1974 by Montanari 
[22]. A (CSP) is stated as a triple (X, D, C), where: 
- { }1 2, ,......., NX X X X=  is a set of n variables. 

- { }1( ),......., ( )ND D X D X=

i

is the domain of each 

variable X X∈  

- { }1,......., mC c c= is a set of constraints. 
The constraint satisfaction problems (CSP) are 
usually represented as graphs, where nodes 
correspond to variables and edges to constraints. As 
arc consistency is one of the basic properties of 
(CSP) [12], it guarantees that any value of the 
domain of a variable can be found in, at least, a 
support of any constraint. Many algorithms have 
been proposed to establish arc consistency such as 

[21], [26], [2]. Another method to solve 
this problem is to modelize it as 0-1 quadratic 
knapsack problem subject to quadratic constraint, 

and to use the lagrangian dual to solve the latter 
model [7], [8]. 

3AC 7AC

In this paper, our objective is to present another 
branch-and-bound algorithm for 0-1 quadratic 
programming (QK), based on solving semidefinite 
relaxation. At each node of the enumeration tree, a 
lower bound is given naturally by the value of 
(SDP) problem. An upper bound is computed by 
satisfying the quadratic constraint, using an exact 
algorithm for solving unconstrained quadratic 0-1 
programming [4]. We show that this method is able 
to determine whether a (CSP) has a solution or not. 
In section 3, we present a modelization of binary 
(CSP) as 0-1 quadratic knapsack problem (QK). In 
section 4, we introduce strong (SDP) relaxations for 
0-1 quadratic knapsack problem (QK) [19]. In 
section 5 and 6, we present some theoretical results 
and algorithms for computing upper and lower 
bounds. The latter will be able to determine whether 
a (CSP) has a solution or not. Section 7 is devoted to 
give some hints on how to reduce as much as 
possible the initial size of the (CSP). Section 8 is a 
computation experiment. 
 
2 Preliminaries 
In this section, we collect several basic results about 
Positive Semidefinite matrices and semidefinite 
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programming. Further results will be mentioned as 
needed. Most of the results on matrices quoted in 
this paper can be found in standard matrix theory 
books, such as [16], [18]. 
Let denotes the space of symmetric nS n n×  
matrices, and the set of positive semidefinite 
matrices. We will use the notation  to express 
that 

nS +

0X ≥
X  is positive semidefinite. 

Given , we consider the (Frobenius) inner 
product defined by: 

, nA B S∈
A B•

 

 
, 1

( )
n

ij ij
i j

A B Tr AB A B
=

• = = ∑  

 The quadratic form Tx Ax  can thus also be written 
as ( T

 

 

)A xx• . Semidefinite programs are linear 
programs over the cone of positive semidefinite 
matrices. They can be expressed in many equivalent 
forms, e.g. 
 

    

0      A
 

( )  
                    1,...,
                 0

i i

Max X
Subject to

SDP
A X c i m

X

•⎧
⎪
⎪
⎨ • = =⎪
⎪ ≥⎩

0
1

                            
 

( )  
       ( ) 0

            

T

m

i i
i

m

Min c y
Subject to

DSDP
F x A y A

y IR
=

⎧
⎪
⎪⎪
⎨ = −⎪
⎪

∈⎪⎩

∑ ≥
 

Where , andmc IR∈ { }  0,.....,i nA S i m∈ ∀ ∈ .  

(DSDP) is the dual program of (SDP). 

 
Lemma 2.1 (Rank-One Constraints) [14] 
The set of ( , ) n

nX x S IR∈ ×  satisfying TX xx≥ is 
closed and convex. Actually 

[ ] [1
0  . 0 0 . 0

T
T x

X xx resp resp
x X
⎛ ⎞

− ≥ ⇔ ≥⎜ ⎟
⎝ ⎠

f f

These preliminaries results can also be used to solve 
the 0-1 quadratic problem with quadratic constraint 
using semidefinite relaxations.  
 
3 Modelization of the binary (CSP) 
The constraint satisfaction problem (CSP) is stated 
as a triple (X, D, C) where: 
- { }1 2, ,......., NX X X X=  is a set of n variables. 

- { }1( ),......., ( )ND D X D X=

i

is the domain of each 

variable X X∈  

- { }1,......., mC c c= is a set of constraints. 
In this modelization, we focus on the binary (CSP), 
i.e, the (CSP) with constraints of arity less than or 
equal to 2, and each constraint  between the 

variables 
ijC

iX and jX is defined by its relation ijR . 
In the following, we want to present a new 
formulation of the binary (CSP). 
For each variable iX  of the (CSP), we introduce 

id ( ( )id D X= i ) binary variables ikx   1,...., ik d=  
such that: 
 

1     X   ( )
0        Otherwise

i k k i
ik

if v v D X
x

= ∈⎧
= ⎨
⎩

 

 
Since each variable iX must be assigned to exactly 
one of the  domains, the following set of 
equations has to be satisfied: 

N

 

1

1     for all     1,.....,             (1)
id

ik
k

x i N
=

= =∑  

 
The modelization process of the binary constraint 
satisfaction problem (CSP) to a 0-1 quadratic 
program subject to quadratic constraint leads to a 
complex formula with a lot of indices on variables, 
which can be seen very hard to understand. We 
prefer to describe this process by an example. 
 
Example 3.1 

]

 

We are giving a binary constraint satisfaction 
problem (CSP), with { }1 2 3, ,X X X X=  and 

{ }1 2( ), ( ), ( 3)D D X D X D X=  where { }1( ) 1, 2D X = v v , 

{ }2 1 2 3( ) , ,D X v v v=  and { }3 1 2( ) ,D X v v=

i

.  Each 

constraint  between the variables ijC X and jX is 
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defined by its relation ijR ( ijR is a subset of the 

cartesian product , specifying the compatible 

values between
iD D×

i

j

x   and jx ). 

{ }12 1 2( , ), 2 1, ), ( 2 3, )(R v v=

{
v v v v

}13 1 1( , ) 2 2, ), (R v v= v v  

{ }23 1 2 2( , ), , )2 1, ), ( 2 2, 3), ((R v v v= v v v v v  

  If  is a constraint between two variablesijC iX  and 

jX  defined by its relation ijR  of the binary (CSP). 

For each couple ( ,  such that)srv v ( , )ij r sR v v¬ we 
generate a constraint: 
 

0

12 22x x+

11

21

31

     

                                 (2)

12 31x x+

12

22

32

ir jsx x =

23

 
 

These constraints can be aggregated in a single 
constraint: 
 

'
11 21 11 21 31 23 31( ) 0    (3)f x x x x x x x x x= + + + =11 32x x+

1    
1
1   

x x

 
The constraint (1) implies that: 
 

23x x x−
x x

= −
= −
= −

32

22x x≤ +

⎧
⎪
⎨
⎪
⎩

x x

 

 
By substitution in the equation (3), we obtain: 
 

'
12 32 22( ) 2 2 2 0f x x x− +22 122x x= −

12 1 ,  

22x+

23

 

=

≤

 
 

The constraints  and1x 32 1x ≤  
can be rewritten as follows: 
 

12 22 23( ) nd   0g x x x x =32x

'f
g x

∈

22 23x x= +

{ }

22

4

( )
( ) 1

0,1

x x= +
≤

1

23x

      a≤

0=

 
 

 
Thus, the (CSP) problem is equivalent to the 
following system: 
 
 

( )
                   (4)

f x

x

⎧
⎪
⎨
⎪
⎩

 

 
 

The (CSP) has a solution if and only if the system 
has a one. 
Finally, we consider the following 0-1 quadratic 
program with quadratic constraint (QK): 

{ }4

      ( )
 

( )        ( ) 1 

      0,1

Min f x
Subject to

QK g x

x

⎧
⎪
⎪⎪ ≤⎨
⎪ ∈⎪
⎪⎩

 

Theorem 3.2 
We consider the 0-1 Quadratic program (QK). The 
value V (QK) is equal to 0 if and only if the binary 
Constraint Satisfaction Problem (CSP) has a 
solution. With V(QK) is optimal value of the 
problem (QK). 
 
Proof 
By construction of the system, the value of the 
problem (QK) is nonnegative. The value V (QK) is 
equal to 0 if and only if there exists a solution of the 
system (4). Then, the CSP has a solution if and only 
if the value V (QK) is equal to 0. The theorem 3.2 is 
valid for any binary (CSP) and the equivalent 
system can be obtained easily following the above 
modelization. 
 
Without loss of generality, as we observed above, 
we will consider in this paper the following 
problem: 
 

{ }

0
1 , 1 

1 , 1 

   

 

( )  

      0,1   for all   1,...,

n n

i i ij i j
i i j i j

n n

i i ij i j
i i j i j

i

Min q q x q x x

Subject to

QK a x a x x b

x i n

= =

= =

⎧ + +⎪
⎪
⎪
⎪⎪ + ≤⎨
⎪
⎪ ∈ =
⎪
⎪
⎪⎩

∑ ∑

∑ ∑

p

p

 

Where j  are integers and n the 
number of binary variables of (QK) problem 

0 ,  ,  ,  and i ij iq q q a a

{

i

}( 1,..., )n N i N=

0 0  (1 ,ij i

 where max ,  id d d≤ =

1 , 1 ,

 ,  
n n

i ij
i i j i J

b a a a
= =

and 

)j n+ ≥ ≤p p ≤∑ ∑
p

 

Based on this formulation we will develop a branch-
and-bound method for 0-1 quadratic programming 
(QK), which is based on solving semidefinite 
relaxations. 
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4 Semidefinite Relaxation of (QK) 
The SDP relaxations can be used to solve the 
generalized following 0-1 quadratic Knapsack 
problem with quadratic constraint (QK): 
 

{ }

0
1 , 1 

1 , 1 

   

 

( )  

       0,1   for all   1,...,

n n

i i ij i j
i i j i j

n n

i i ij i j
i i j i j

i

Min q q x q x x

Subject to

QK a x a x x b

x i n

= =

= =

⎧ + +⎪
⎪
⎪
⎪⎪ + ≤⎨
⎪
⎪ ∈ =
⎪
⎪
⎪⎩

∑ ∑

∑ ∑

p

p

 

 

The above problem can be written as the following 
form: 
 

{ }

0     
 

( )    

0,1

T T

T T

n

Min x Qx q x q
Subject to

QK x Ax a x b

x

+ +⎧
⎪
⎪⎪ + ≤⎨
⎪ ∈⎪
⎪⎩

 

 
 
Where Q and  are n  real matrix, andA n× nq IR∈ , 

, . Without loss of generality, we can 
suppose that  and 

nRa I∈ b∈ IR
Q A  are symmetric. If this is not 

the case, Q  can be converted to symmetric form 
( )T

2
Q Q+ . 

 
The following constraint { }0,1ix ∈  can be written 
in the following form: 
 

{ } 20,1 ,  1,..., 0,  1,...,

                               ( ) 0
i i i

T

x i n x x i n

diag xx x

∈ = ⇔ − = =

⇔ − =
 

 
Setting TX xx=  can therefore be written as 
 

                                  
( ) 0

T

diag X x
X xx

− =

=
 

 
We formulate this problem (QK) using an additional 
variable TX xx= : 
 

0                       
 

( )    
           
          and   ( ) 0

T T

T T

T

Min x Qx q x q
Subject to

QK
x Ax a x b

X xx diag X x

+ +⎧
⎪
⎪
⎨

+ ≤⎪
⎪ = − =⎩

 

 
 
A natural method to obtain a semidefinite relaxation 
of (QK) is to relax the last constraint TX xx=  to 

TX xx≥
( , )

, which is now convex with respect to 
x X (lemma 2.1). 

 
1

   
T

T x
X xx

x X
⎡ ⎤

≥ ⇔ ≥⎢ ⎥
⎣ ⎦

0

)

 

 
Then, we obtain: 
 

{ }

0

0,1

                        
 

              
( )  

1
           0  and  ( )

            ( , )

T

T

T

n
n

Min Q X q x q
Subject to

A X a x b
SDP

x
d X x

x X
X x S IR

• + +⎧
⎪
⎪
⎪ • + ≤⎪
⎨

⎛ ⎞⎪ ≥ =⎜ ⎟⎪ ⎝ ⎠⎪
∈ ×⎪⎩

 

 
 
This relaxation is equivalent to another 

relaxation [23]: 
{ }0,1(SDP

{ }1,1( )−SDP
 

{ }

0

1,1

1 1

1
2         

1
2

 
 ( )  

10
2         

1
2

         0  ( )   Y S

T

T

T

T

n n

q q
Min W W Y

q Q

Subject to
SDP

a
W W Y

a A

Y diag Y e

−

b

+ +

⎧ ⎛ ⎞
⎪ ⎜ ⎟

•⎪ ⎜ ⎟
⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠
⎪
⎪
⎨

⎛ ⎞⎪
⎜ ⎟⎪

• ≤⎜ ⎟⎪
⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎪

⎪ ≥ =⎩ ∈
 

 

With          
1 0

1 1
2 2 n

W
e I

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 and  (1,.......,1)Te =
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Proposition 4.1 [20] 
The dual problem of (QK) is equivalent to (SDP) 
problem with ( , ) nu IR IRλ +∈ ×  and : r IR∈

 

 
 

( ) 0

                                       
 

1( )  ( ) ( , )
2       0

1 ( , ) ( , )
2

T
QK

Max r
Subject to

DL q r q u

q u Q u

λ λ

λ λ

⎧
⎪
⎪
⎪ ⎛ ⎞⎨ −⎜ ⎟⎪ ≥⎜⎪ ⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎩

⎟

 

 
 
Where ( , ) ( )Q u Q A D uλ λ= + +

) q a u
, 

( ,q uλ λ= + − 0 0( )q,  q bλ λ= −  
Here denotes the diagonal matrix constructed 
from the vector . 

( )D u
u

 
Note that the dual problem of the problem  

(i.e., the bidual of problem (QK)) is given by [19]: 
( )( )QKDL

 
 

{ }

0

0,1

                         
 

              
( )  

1
           0  and  ( )

            ( , )

T T

T T

T

n
n

Min x Qx q x q
Subject to

x Ax a x b
SDP

x
diag X x

x X
X x S IR

+ +⎧
⎪
⎪
⎪ + ≤⎪
⎨

⎛ ⎞⎪ ≥ =⎜ ⎟⎪ ⎝ ⎠⎪
∈ ×⎪⎩

 
 
5 computation of a lower bound 
In this section, we present a method to compute a 
lower bound, using Semidefinite Relaxations. In 
addition to some of the classical results [10][11], we 
also present a few either very recent or less well 
known results. In particular, we describe the 
relationship between the (CSP) and SDP relaxations 
for 0-1 Quadratic Knapsack problem (QK). 
Therefore, we show that the notion of SDP with 
some complementary assumptions can detect 
whether a (CSP) has a solution or not. 
 
 
 
 
 

Proposition 5.1 
Let  be an optimal value of the problem 

 and an optimal value of the 

problem . 

( )( QKV DL

( )( )QK

{ }0,1SDP

)

)

)

)

DL { }0,1(V SDP

( )
Then           
                 { } ( )0,1( ) ( ) ( QKV QK V SDP V DL≥ ≥
 
Proof 

• The last inequality is weak duality between 

( )( )QKDL   and  its dual { }0,1( )SDP  

Then    { } ( )0,1( ) ( QKV SDP V DL≥

• For the first inequality, take x  feasible in 
(QK). Then ( , )Tx X xx= is feasible in 

{ }0,1( )SDP  and has the same objective value.  

Thus, the feasible domain in { }0,1( )SDP  is 

larger than in (QK). 
Then    { }0,1( ) (V QK V SDP≥ )

)

)

)

0 0

)

0 0

0

Finally   { } ( )0,1( ) ( ) ( QKV QK V SDP V DL≥ ≥

 
Theorem 5.2 
 Let  be an optimal value of the problem 

 and an optimal value of the 

problem . 

( )( QKV DL

( )( )QK

{ }0,1SDP

DL { }0,1(V SDP

( )

If    or   then the 

(CSP) problem has no solution. 
( )( )QKV DL f { }0,1( )V SDP f

 
Proof 
Just apply proposition 5.1 
 We have   { } ( )0,1( ) ( ) ( QKV QK V SDP V DL≥ ≥

 If      or     ( )( )QKV DL f { }0,1( )V SDP f

Then            ( )( )QKV DL f

The theorem3.1 implies that the (CSP) has no 
solution. 
 
Theorem 5.3 
Let ( , )X x  be an optimal solution of the . { }0,1( )SDP
If  

1. 
T

X xx=  
2. 

{ }0 ,1
( , ) 0SDPV X x =  

Then the (CSP) problem has a solution. 
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Proof 
If ( , )X x  is a solution of the problem  

and

{ }0,1( )SDP
T

X xx= . Then x  is a feasible solution in (QK) 
problem. 
Take any y  feasible in (QK) then  is 
feasible in . 

( , )Ty yy

{ }0,1( )SDP

Because

 

( , )X x  is a solution of the , we 

can write:  
{ }0,1( )SDP

0 0 0

T T T T TQ xx q x q Q X q x q Q yy q y q• + + = • + + ≤ • + +

Then x  is a solution of the problem (QK) and 

( ) { }0 ,1( )( ) ( , ) 0SDPQKV x V X x= = . 

The theorem 3.2 implies that (CSP) has a solution. 
 
 
Algorithm 1  
This algorithm computes a lower bound for the 0-1 
Quadratic Knapsack problem (QK): 
begin 
Solve the semidefinite program  .  { }0,1( )SDP

Let ( , )X x  be an optimal solution of the . { }0,1( )SDP

   If       
{ }0 ,1

( , ) 0SDPV X x f  

          Then    the (CSP) problem has no solution 
   Else  

        If    (  
{ }0 ,1

( , ) 0SDPV X x =   and 
T

X xx= ) 

              Then x  is an optimal solution of (QK) 
        Else  
                 

{ }0 ,1
( , )SDPV X x

+

 is a lower bound of (QK)  

        End if 
 End if  
End  
 
Example 5.4 
To illustrate how these results can be understood, let 
us consider the instance of example 3.1: 
 

{ }

12 22 12 32 22 32 22 23 22

12 32 22 23

4

      ( ) 2 2 2 2
 

( )   g(x)=  1 

       0,1

Min f x x x x x x x x x x
Subject to

QK x x x x

x

= − + + −⎧
⎪
⎪⎪ + ≤⎨
⎪ ∈⎪
⎪⎩

 

Its SDP relaxation is: 
 

2 0 1 0 0
0 0 1 0 1

                                       1 1 0 0.5 0.5
0 0 0.5 0 0
0 1 0.5 0 0

     
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0

 1  ,  0 0 0 0.5 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0 0

Min Y

Subject to

Y

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟•−
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟• ≤
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠ ⎝

1 

          1,...,4
0

ii i

Y

X x i
Y

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨ ⎞

⎟⎪
⎟⎪

⎜ ⎟⎪ • =
⎜ ⎟⎪
⎜ ⎟⎪
⎜ ⎟⎪ ⎠⎪

= =⎪
⎪ ≥⎩
 
Where:

[ ]12 22 23 32 4

1
  ,  , , ,   and 

T
Tx

Y x x x x x
x X

⎛ ⎞
X S= = ∈⎜ ⎟

⎝ ⎠
 
The lower bound of (QK) is the optimal value 

{ }0,1( ) 0.61V SDP 0= − ≤ . Recall that, in this 

example, the optimal value . ( )V QK = 0
 
6 computation of an upper bound 
In this section, our main objective is to compute an 
upper bound. One of the methods that are used to 
compute this latter is to satisfy the quadratic 
constraint, i.e. solving the unconstrained quadratic 
0-1 programming: 
 

{ }

    ( )
 ( )  

0,1

T T

n

Min g x x Ax a x
Subject toP

x

= +⎧
⎪
⎨
⎪ ∈⎩

 

 
 

Various approaches have been used to solve the 
unconstrained quadratic 0-1 programming (P). Two 
recent overviews of these approaches are presented 
in [13] and [15]. One of the possible techniques 
introduced by Billionnet and Elloumi [4] is to 
convexify the objective function and then use a 
Mixed-Integer Quadratic Programming (MIQP) 
solver for solving the problem (P). Their algorithm 
works in detail as follows: 
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For any vector , let us define the perturbed 
function  in the following way 

nu IR∈
)x(ug

 
( ) ( ( )) ( )T T

ug x x A D u x a u x= − + +  
 
Here denotes the diagonal matrix constructed 
from the vector . 

( )D u
u

It is easy to see, that an equivalent problem to (P) is 
 
 

 

{ }

        ( )
 ( )  

          0,1

u

u
n

Min g x
Subject toP

x

⎧
⎪
⎨
⎪ ∈⎩

 

 
 

Relaxing the integrality constraint in problem 
gives the lower bound ( )uP ( )uβ on (P): 

 

[ ]

( )    ( )
  

                 0,1

u

n

u Min g x
Subject to

x

β =⎧
⎪
⎨
⎪ ∈⎩

 

 
 
If the vector u is chosen, such that , ( ) 0A D u− ≥

( )uβ is obtained by solving a convex quadratic 
problem, which can be done efficiently. 
Now, if is the maximize ofu∗ ( )uβ , the optimal 
lower bound β ∗ will be obtained, i.e. 
 
 

( )        ( )
                         

                          
                          ( ) 0

n

u Max u
Subject to

u IR
A D u

β β β∗ ∗= =⎧
⎪
⎪⎪ ∈⎨
⎪ − ≥⎪
⎪⎩

 

 
Proposition 6.1[4] 
The bound ( )uβ ∗  is equal to the value of the 
semidefinite program: 
 

                                      
 

1( )  ( )
2      0

1 ( ) ( )
2

T

Max r
Subject to

SDP r a u

a u A D u

⎧
⎪
⎪
⎪ ⎛ ⎞⎨ − +⎜ ⎟⎪ ≥⎜ ⎟⎪ ⎜ ⎟+ −⎪ ⎜ ⎟

⎝ ⎠⎩

 

 
And is also equal to the optimal value of its dual 
 

           
 

        
( )  

1
            0

               

T

ii i

T

n n n

Min A X a x
Subject to

X x
DSDP

x
x X

x IR X IR ×

• +⎧
⎪
⎪
⎪ =⎪
⎨

⎛ ⎞⎪ ≥⎜ ⎟⎪ ⎝ ⎠⎪
∈ ∈⎪⎩

 

 
Moreover, if ( , )r u∗ ∗

( )A D u
is an optimal solution of 

(SDP), then 0− ≥  holds and ( )uβ β∗ ∗= . 
  
Proposition 6.2 
Let y be an optimal solution of (P). If  
then the set of feasible solutions is empty. 

( )g y bf

 
Proof  
Let y be an optimal solution of problem (P). 
We have 

{ }{ } { }( )  ( ) / 0,1 ( )  0,1n ng y Min g x x g x x= ∈ ≤ ∀ ∈

 
If    ( )g y bf

Then     { }( )     0,1 ng x b x∀ ∈f  
Finally, the set of feasible solutions is empty. 
 
Proposition 6.3 
If ( )u bβ ∗ f  then the (CSP) has no solution. 
 
Proof 

( )uβ ∗ is the optimal lower bound for (P) then 
( )V P ( )uβ ∗≥  

If ( )u bβ ∗ f  then   ( )V P bf
The proposition 6.2 implies that the (CSP) has no 
solution. 
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Algorithm 2 
The present algorithm computes an upper bound for 
the 0-1 Quadratic Knapsack problem (QK): 
 
Begin 
Solve the semidefinite program (SDP). 
Let be an optimal solution of (SDP) ( , )r u∗ ∗

   If       ( )u bβ ∗ f  
          Then    the (CSP) problem has no solution 
   Else  
        Solve the Quadratic problem whose       ( )

u
P ∗

        Continuous relaxation is convex. 
   End if 
Let y be the optimal solution of problem (P) 
    If  ( )g y bf
       Then (CSP) has no solution 
    Else  
       y is feasible for the problem (QK)  
   End if  
End  
 
Example 6.4 
To illustrate how these results can be understood, let 
us consider the instance of the quadratic constraint 
exists in example 3.1: 
 

{ }

12 32 22 23

4

      ( )
 

0,1

Min g x x x x x
Subject to

x

= +⎧
⎪
⎨
⎪ ∈⎩

 

 
Its (SDP) relaxation is: 
 

 

4
4

0 0 0 0 0
0 0 0 0 0.5

1
        0 0 0 0.5 0

0 0 0.5 0 0
0 0.5 0 0 0

 
           1, ..., 4

1
      0   ( , )

T

ii i

T

x
Min

x X

Subject to
X x i

x
and X x S IR

x X

⎧ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎜ ⎟ ⎛ ⎞⎪ ⎜ ⎟ • ⎜ ⎟⎪ ⎜ ⎟ ⎝ ⎠
⎪ ⎜ ⎟
⎪ ⎜ ⎟

⎝ ⎠⎨
⎪
⎪

= =⎪
⎪

⎛ ⎞⎪ ≥ ∈ ×⎜ ⎟⎪ ⎝ ⎠⎩

 

 
Where       [ ]12 22 23 32, , ,x x x x x=  
 
Proposition 6.1 gives practical method for 
computing the best u and the lower bound∗ ( )uβ ∗ , 

based on the resolution of a semidefinite program 
[5]. The optimal vector can be obtained by solving 
the (SDP) is [ ]0.5, 0.5, 0.5, 0.5u∗ = − − − −

0.25 0.25 0.25 0
0.25 0.0625 0.0625 -0

0.0625 0.25 -0.125
0.0625 -0.125 0.25
0.125 0.0625 0.0625

( ) 0.25u

 and the 
corresponding solution is: 
 
 

      

1 .25
0.25 .125
0.25 0.0625
0.25 0.0625
0.25 - 0.25

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
The lower bound is  β ∗ = −

u
P ∗

. We use a 
Mixed-Integer Quadratic Programming (MIQP) 
solver for solving the problem ( ) . 
Then, we obtain an exact solution for the 
unconstrained quadratic 0-1 programming: 
 

[ ] [ ]12 22 23 32, , , 1,0,1,0x x x x =  
 

The value of the upper bound is equal to zero 
( ) 0V P =  

 
7 Reduction of the size of the problem 
(CSP) 
The main idea of this filter is to try to reduce as 
much as possible the initial size of the (CSP)[1].  
Arc consistency algorithms are widely used to prune 
the search space of (CSP). Many arc consistency 
algorithms have been proposed. On the one side, 
there are heavyweight arc consistency algorithms 
such as AC-2001[3], AC-3.1[26] and AC-7[2] that 
use additional data structures to avoid repeating 
their support checks. All these algorithms have 
optimal worst case time complexity of 2( )edϕ , 
where  is the number of constraints and   is the 
maximum domain size of the 
variables

e d

{ }( max ,  1,..., )id d i N= =

3d

. On the other 
side there are lightweight arc consistency algorithms 
such as AC-3[21], AC- [24], and AC-3P [25] 
which do not use additional data structures. These 
algorithms repeat their support checks and have 
non-optimal bound of 3( )edϕ for their worst case 
time complexity. However, despite the fact that 
these algorithms do not have an optimal worst case 
time complexity, experimental evaluation of these 
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algorithms has demonstrated that they are efficient 
on average [25]. 
 
8 Computational experiments  
In order to assess the effectiveness of the theoretical 
results shown in this paper, and the advantage of the 
new modelization, the preliminary numerical 
experiments were performed on randomly generated 
test (CSP) problems (with a relatively small number 
of variables, containing 5 to 20 variables). The 
computing of a solution consists of 2 phases. During 
the first phase we apply the algorithm AC-3. Then, 
some binary variables will be assigned to 0 or 1. 
The values are reported on the 0-1 quadratic 
knapsack problem (QK).  In the second phase, the 
obtained optimization problem was also solved with 
semidefinite relaxations, convex quadratic 
programming for the unconstrained 0-1 quadratic 
problems and branch-and-bound procedure. We 
choose to solve semidefinite programs using CSDP 
[5] software, applying the Interior-Point Method. 

  

 

j

We consider randomly generated instances of the 0-
1 quadratic knapsack problem; the absolute values 
of the coefficients and of the objective 
function are integers distributed between 0 and 20, 
and the coefficients  and of the quadratic 
constraint are integers distributed between 0 and 20, 
while b is an integer between 1 and 

. 

iq

ia

ijq

ija

1 , 1  

n n

i i
i i j i j

a a
= =

+∑ ∑
p

Our SDP relaxation is indeed very efficient for 
solving the 0-1 quadratic knapsack problem up to 
n=60 (number of binary variables). It is important to 
note that the objective of these simulations is to 
assess the effectiveness of the theoretical results and 
not to compare our results with those obtained using 
other exact methods. The preliminary results that 
have been obtained suggest that the proposed 
algorithm is promising as an efficient method for 
solving the (CSP) problem. 
To illustrate how these results can be understood, let 
us consider the instance of example 3.1: 
We use a branch-and-bound algorithm for 0-1 
quadratic programming, in which a lower bound is 

 and an upper bound is 

 
{ }0,1( ) 0.61V SDP = −

( ) 0V P =
We obtain an exact solution for the 0-1 quadratic 
knapsack problem (QK): 
     [ ] [ ]12 22 23 32, , , 1,0,0,1x x x x x= =  
By substitution in the system: 

11 12

21 22 23

31 32

1    
     1

1   

x x
x x x
x x

= −⎧
⎪ = − −⎨
⎪ = −⎩

 

 
We obtain 11 21 310 ,  1  and  0x x x= = =  

Then [ ] [ ]11 12 21 22 23 31 32, , , , , , 0,1,1,0,0,0,1x x x x x x x =  
We apply  
 

1     X   ( )
0        Otherwise

i k k i
ik

if v v D X
x

= ∈⎧
= ⎨
⎩

 

 
Then we have a solution of problem (CSP) 

1 2 2 1 3 ,   and 2X v X v X v= = =  
 Experiments results are in progress for searching 
adequate values of parameters such as threshold 
value of the Branch-and-Bound algorithm, the 
parameters of genetic algorithm (GA) [17]. 
 
Summary and conclusions 
In this paper, we discuss the use of various SDP 
relaxations to find a solution of (CSP) problem. This 
problem has been presented as a 0-1 quadratic 
knapsack problem subject to quadratic constraint. 
To solve this problem, we propose a branch-and-
bound method. At each node of the enumeration 
tree, a lower bound is given naturally by the value 
of (SDP) problem and an upper bound is computed 
by satisfying the quadratic constraint. Then a 
solution or failure may be detected prematurely. 
Some numerical examples assess the effectiveness 
of the theoretical results shown in this paper, and the 
advantage of the new modelization. 
Several directions can be investigated to try to 
improve this method: use a more efficient 
metaheuristics, for example genetic algorithm (GA) 
[17], determines the best frequency to simplify the 
problem when some variables are fixed. 
To make this approach more efficient, it can be 
combined with other metaheuristics or it can be 
computationally optimized by introducing analytical 
improvements, such as replacing the quadratic 
constraint in the 0-1 quadratic knapsack problem 
(QK) by linear constraints. Moreover, the approach 
introduced in this paper is also intrinsically easy to 
parallelize. 
This (CSP) problem has been presented as an 
optimization problem with quadratic constraint, in 
this way; new combinatorial optimization problem 
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can be solved via the neural networks approaches 
[6]. 
Finally, others studies are in progress to applied this 
approach to many problems such as Airspace 
sectorization, Aircraft conflict [9], etc… 
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