

Software Quality and Assurance

in Waterfall model and XP - A Comparative Study

Dr. Sana’a Jawdat Khalaf Dr. Mohamed Noor Al-Jedaiah

Sana_j_11@hotmail.com m_aljedaiah@ammanu.edu.jo

Abstract: -Dealing with an increasingly volatile organizational environment is a serious challenge for

managers of any software development .Traditional formal software development methodologies can

be characterized as reflecting linear, sequential processes ,and the related management approaches

,and be effective in development software with stable ,known ,consistent requirements .Yet most real-

world development efforts are much more likely to be conducted in more volatile environments, as

organizations adapt to changing technology, markets, and social conditions. Requirements for systems

must be able to change right along with them, often at “Internet speed” [1]. Project management

approaches based on the traditional linear development methodologies are mismatched with such

dynamic systems. The support of software quality in a software development process may be regarded

under two aspects: first, by providing techniques, which support the development of high quality

software and second, by providing techniques, which assure the required quality attributes in existing

artifacts. Both approaches have to be combined to achieve effective and successful software

engineering [2]. Agile methods may produce software faster but we also need to know how they meet

our quality requirements. In this paper we compare the waterfall model with agile processes to show

how agile methods achieve software quality under time pressure and in an unstable requirements

environment, i.e. we analyze agile software quality assurance. We present a detailed waterfall model

showing its software quality support processes. We then show the quality practices that agile methods

have integrated into their processes. This allows us to answer the question “Can agile methods ensure

quality even though they develop software faster and can handle unstable requirements?”[3]

Key-Words: - Agile processes, Extreme Programming, Waterfall model, Software development,

Software quality, Customer Satisfactions, Customer needs.

1 Introduction

A Successful software engineering strongly

depends on the delivery of high quality

software. High quality is typically defined by

quality attributes like customer satisfaction

(which is mainly determined by being on

budget and time). Besides skilled people, an

appropriate and well-working software

development process is a key success factor for

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1968 Issue 12, Volume 7, December 2008

achieving the demanded high quality software.

Traditional software development process

models four core process steps: analysis,

design, implementation and test. These

processes guarantee the correct analysis of

requirements and their valid implementation.

Some process models include deployment and

maintenance activities after test. These

processes support the stability of the running

system. Others mainly support the quality

attributes customer satisfaction by keeping the

project on time and budget. However, most of

them do not explicitly define software quality

development and software quality assurance as

a part of the software development model

itself. Yet, these quality support processes are

vital for achieving high quality software [2]

.The usage of software assurance techniques

can be minimized due the extensive usage of

software quality development techniques.

Thus, the total cost of software quality may be

reduced.

In this paper, we examine two of the most

known software development processes

regarding practices for supporting software

quality development and software quality

assurance in the software development process

itself. The findings can be used as basis for

selecting a suitable process for high quality

software development or for adopting running

processes to well-working practices found in

this study.

Section 2 gives an overview of the related

work on why software quality development

and software quality assurance in software

development process models?

Section 3 gives a short introduction in the

Waterfall model and Extreme Programming

(XP).

Section 4 describes the principles and

techniques, which we have derived form

analyzing the two models compared here, and

evaluates based on the principles and

techniques presented in this section . Finally,

we summarize our results and suggest to add

some standard for software quality support.

This standard may be applied to the definition,

adoption, or selection of software

development models.

2 Related work

It’s not enough to talk and talk by saying that

software quality is important .You have to

1-Explicitly define what is meant when you

say” software quality”.

2-Create a set of activities that will help ensure

that every software engineering work product

exhibits high quality.

3-Perform quality control and assurance

activities on every software project.

4-Use metrics to develop strategies for

improving your software process and, as a

consequence, the quality of the end product

[4].

Every one involved in the software engineering

process is responsible for quality .If a software

team stresses quality in all software

engineering activities ,it reduces the amount

of rework that it must do. That results in lower

costs and more importantly , improved time-

to-market.

Software quality is achieved by three

approaches: testing, static analysis and

development approaches [2]. The integration

of all three approaches is the most desirable

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1969 Issue 12, Volume 7, December 2008

approach. However, there is no consensus

about the details of such an integrated

framework. A different categorization of

approaches towards software quality regards

four ways to establish software quality:

software quality via better quality evaluation,

better measurement, better processes, and

better tools [2].

2.1 Software quality via better quality

evaluation

Almost every organization has its own

internal standards that provide a guideline for

measuring and monitoring quality. Standards

increase the level of understanding of the

process by the project members, thereby

promoting better communication. In addition

to standards, organizations need clearly

defined quality models to effectively meet the

demands from customers. It is important for

such organizations to explicitly develop a

quality model that best suits their interests and

implement it. One of the earliest quality

models was proposed by McCall Model

(McCall, Richards, and Walters 1977); this

model describes quality as being made up of a

hierarchical relationship between the quality

factors, quality criteria, and quality metrics.

ISO 9126 recently, a new standard for software

product evaluation, ISO 9126, has been

developed by the ISO (1992). This standard

has identified six basic quality characteristics

that must be present in a quality software

product. The standard also provides a sample

decomposition of these basic characteristics

into sub characteristics [4].

3 Two major Software Process

Models

The software development processes discussed

in this paper represent the most common and

widely used process models throughout the

industry. Even though, on an abstract level, the

waterfall model and agile methods like XP are

very different process methods, their actions

within the development sequence share some

similarities. In this section, we provide a short

description of both the waterfall model and

agile methods.

3.1 Waterfall model

Since the late 60s, many different software

development methodologies have been

introduced and used by the software

engineering community [3]. Over the years,

developers and users of these methods have

invested significant amounts of time and

energy in improving and refining them.

Owning to continuous improvement efforts,

most of the methodologies have reached a

mature and stable level. Hence, they are

referred as traditional software development

methods. Each of the traditional development

methods attempts to address different

development issues and implementation

conditions. Among the traditional development

approaches, the waterfall model is the oldest

the software development process model. It

has been widely used in both large and small

software intensive projects and has been

reported as a successful development approach

especially for large and complex engineering

projects [5]. The waterfall model divides the

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1970 Issue 12, Volume 7, December 2008

software development lifecycle into five

distinct and linear stages. Because it is the

oldest and the most mature software

development model we have chosen it to

investigate its QA process [3]. In addition we

chose the waterfall model because the phases

in a waterfall development are more linear than

other models. This provides us the opportunity

to clearly present the quality assurance (QA)

processes. In practice, the waterfall

development model can be followed in a linear

way. However, some stages can also be

overlapped. An iteration in an agile method

can also be treated as a miniature waterfall life

cycle. Despite the success of the waterfall

model with large and complex systems, it has a

number drawbacks, such as inflexibility in the

face of changing requirements, and a highly

ceremonious processes irrespective of the

nature and size of the project .Such drawbacks

can also be found in other traditional

development approaches. However, agile

methods were developed to address a number

of the problems inherent in the Waterfall

model [1].

3.2 ExtremeProgramming(XP)

 Extreme Programming was created by Kent

Beck, Ward Cunningham ,and Ron Jeffries

during their work on the C3 project in March

1996 and in October 1999, Extreme

Programming Explained was published. XP is

a discipline of software development based on

values of simplicity, communication, feedback,

and courage. It works by bringing the whole

team together in the presence of simple

practices, with enough feedback to enable the

team to see where they are and to tune the

practices to their unique situation.In Extreme

Programming, every contributor to the project

is an integral part of the whole team . The team

forms around a business representative called

"the Customer", who sits with the team and

works with them daily. Extreme Programming

teams use a simple form of planning and

tracking to decide what should be done next

and to predict when the project will be done.

Focused on business value, the team produces

the software in a series of small fully-

integrated releases that pass all the tests the

Customer has defined.[7] XP planning

addresses two key questions in software

development: predicting what will be

accomplished by the due date, and determining

what to do next. The emphasis is on steering

the project, which is quite straightforward,

rather than on exact prediction of what will be

needed and how long it will take, which is

quite difficult. hand, with so much visibility,

the Customer is in a position to cancel the

project if progress is not sufficient. On the

other hand, progress is so visible, and the

ability to decide what will be done next is so

complete, that XP projects tend to deliver more

of what is needed, with less pressure and

stress.

4. Finding common software

quality development practices

The best practices presented in this section,

which support software quality development

and software quality assurance, have been

extracted applying an analytical bottom-up

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1971 Issue 12, Volume 7, December 2008

approach. This approach is based on the

analysis of the chosen process models

(Waterfall and XP) adding all principles and

techniques defined in the processes to the

criteria catalogue, which apply to the basic

goal: support of software quality development

and software quality assurance. The criteria

descriptions are based on the definitions of

Waterfall, and XP and on expertise derived

from the local software engineering

community. The bottom-up approach ensures

that no criteria are selected which are not

implemented in at least one industrial process

model. Therefore the criteria catalogue will be

rather industrially practicable than

scientifically optimized.

4.1 Iterative software development

To establish higher software quality, a

software development process has to use an

iterative and incremental development

approach. Iterative software development is

characterized by

refining and improving artifacts in several

iteration cycles. Incremental software

development means to start with a draft

version of an artifact in the initial iteration and

to extend and refine it through the following

iterations. Iteration cycles include all

development activities analysis, design,

implementation, testing and finally

deployment. Quality assurance can be applied

more effectively during the overall process. By

using an iterative approach, a process gains

more flexibility in dealing with changing

requirements or scope. The product releases of

the product force early feedback from the

customer and the stakeholders, which is vital

for improving the overall quality of the

software. However, iterative development must

be supported by risk management and early

involvement of the end users to achieve its full

potential. XP builds on a very strict iterative

approach, demanding a daily build of all

components. This limits the time needed to

encounter errors and forces developers to fix a

problem as soon as possible. Of course,

incomplete components or single methods are

excluded from the daily build. The work

breakdown structure must consider these issues

to allow an integration of smaller components

every day. Using this approach requires a lot

planning, but definitely enables high software

quality [3].

4.2 Quality as an objective

A software development process needs to

define quality as a major objective to improve

overall software quality. Quality targets have

to be defined and documented by involving the

project team and the customer. This ensures

that the quality goals become achievable and

measurable.

4.3 Continuously verification of quality

A set of procedures that document every

change during the project is required to finally

ensure quality. Not only project status reports,

but also assessments of the current activities

and possible changes are needed to identify

problems as soon as possible. To support these

procedures, every project needs a defined

process to managed changes. All these actions

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1972 Issue 12, Volume 7, December 2008

can be implemented as meetings or as

supporting workflows. Continuously verifying

quality includes extensive testing. Besides

internal testing, external acceptance tests with

the customer are needed too in order to verify

that the product fulfils the needs and

requirements of the customer. A software

development process must therefore include a

testing workflow throughout the complete

process, including external tests with the end

users to ensure high software quality.

4.4 Customer requirements

A software development process builds on

clear structure and methodology to elicit and

document customer requirements. It also has to

integrate these requirements into the complete

process. The elicitation of requirements is one

of the most complex software engineering

disciplines. The needs and wishes of the

customer, who normally does not have a deep

technical knowledge, have to be documented

so that developers are able tobuild an

application based on that information. Thus, it

is necessary that the project team understands

the customer and his business. Otherwise it is

not possible to correctly implement the

customer needs. A software development

process has to focus on the requirements

throughout the entire project. Eliciting and

documenting the requirements at the beginning

is not sufficient. The implementation of the

requirements has to be traced during

development. Furthermore, the software

development process has to ensure thatnot only

the customer, but also the end users are

involved in the requirements process. Success

of the project strongly depends on these two

groups: the first buying the product and the

second using it. A software development

process has to define procedures to train the

end users to use the final product.

4.5 Architecture driven

In modern software development, the

architecture of a system has a major impact on

the overall quality of the product. One reason

for this is the integration into existing systems

and environments as a major part of today’s

software development. Re-use has become

increasingly important due to increasing time

and cost pressure. Using a well-designed

architecture allows easy integration and re-use,

so a software development process has to be

architecture driven.

4.6 Focus on teams

A team has to be seen as a set of equal persons,

who together are responsible for the quality

and success of a project. When responsibility

for failure can be assigned to a single person,

the project success is not guaranteed anymore.

Focusing on teamwork also improves

motivation of the project members, as

everyone is seen as an equally important part

of the project. This finally leads to a high

identification of team members with the

product. It is obvious that motivated team

members contribute to high quality, as they

work more concentrated and conscientious. A

software development process has to include a

well-defined team structure, including an

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1973 Issue 12, Volume 7, December 2008

efficient task assignment and clear

communication guidelines.

4.7 Pair programming

Pair programming is closely linked to the focus

on teams, but was picked as another

assessment criterion since it has been

underrated for its contribution to high quality

in the past. XP demonstrates how two

developers can complement each other rather

than inhibiting each other. One developer

implements the current method while the other

is working on integration issues. This approach

saves time, and minimizes the number of

errors. Better solutions are more likely since

two persons most likely have different

perspectives of the same problem and

therefore, complement each other in solving it.

5. Evaluation of the quality

support in Waterfall model and

XP.

Sometimes static techniques are used to

support dynamic techniques and vice versa.

The waterfall model uses both static and

dynamic techniques. However, agile methods

mostly use dynamic techniques [3]. The

development activities in the Waterfall model

include: 1) requirements definition 2) system

and software design 3) implementation and

unit testing 3) integration and system testing 4)

operation and maintenance [6]. Each activity

produces well-defined deliverables. Since the

deliverables of one activity are input for a

subsequent activity, from the theory point of

view, no subsequent phase can begin until the

predecessor phase finishes and all of its

deliverables are signed off as satisfactory. The

output from each phase is input to the

corresponding supporting phase and will be

verified or validated by its supporting process;

this output is then sent to the next stage as

input.

In the waterfall model, customers are typically

involved in requirements definition and

possibly system and software design but are

not involved as much and do not contribute as

much as they are expected to in XP. In

practice, in a waterfall development, some

milestone reviews might be set up and

customers will participate, but this kind of

customer involvement is less intense than it is

in XP. Waterfall model development

integration is done much later and its

frequency is much lower than in an agile

method development.

5.2 Agile Methods: quality techniques

Agile methods include many practices that

have QA potential. By identifying these

practices and comparing them with QA

techniques used in the waterfall model, we can

analyze agile methods QA practices.

System metaphor is used instead of a formal

architecture. It presents a simple shared story

of how the system works; this story typically

involves a handful of classes and patterns that

shape the core flow of the system being built.

There are two main purposes for the metaphor.

The first is communication. It bridges the gap

between developers and users to ensure an

easier time in discussion and in providing

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1974 Issue 12, Volume 7, December 2008

examples. The second purpose is that the

metaphor contributes to the team’s

development of a software architecture [5].

This practice helps the team in architecture

evaluation by increasing communication

between team members and users.

Having an On-site customer is a general

practice in most agile methods. Customers help

developers refine and correct requirements.

The customer should support the development

team throughout the whole development

process. Consequently customer involvement

in agile methods is much heavier than in

waterfall development.

Pair programming means two programmers

continuously working on the same code. Pair

programming can improve design quality and

reduce defects [3]. This shoulder-to-shoulder

technique serves as a continual design and

code review process, and as a result defect

rates are reduced. This action has been widely

recognized as continuous code inspection [3].

Refactoring can reduce the chances that a

system can get seriously broken during the

restructuring [5]. During refactoring

developers reconstruct the code and this action

provides code inspection functionality. This

activity reduces the probability of generating

errors during development. Continuous

integration, a popular practice among agile

methods means the team does not integrate the

code once or twice. Instead the team needs to

keep the system fully integrated at all times.

Integration may occur several times a day.

Continuous integration catches enough bugs

and reduces time that people spend on

searching for bugs and allows detection of

compatibility problems early. This practice is

an example of a dynamic QA technique.

Acceptance testing is carried out after all unit

test cases have passed. This activity is a

dynamic QA technique [8]. A Waterfall

approach includes acceptance testing but the

difference between agile acceptance testing

and traditional acceptance testing is that

acceptance testing occurs much earlier and

more frequently in an agile development; it is

not only done once. Early Customer feedback

is one of the most valuable characteristics of

agile methods. The short release and moving

quickly to a development phase enables a team

to get customer feedback as early as possible,

which provides very valuable information for

the development team. Although this kind of

development style renders most separate static

techniques on early phase artifact unsuitable,

code makes dynamic techniques useful and

available very early. Also developers are more

responsible for quality assurance compared

with having a separate QA team and process.

This allows more integration of QA into the

development phase. Small releases also bring

customer feedback for product validation

frequently and requirements verification. The

QA techniques for agile methods are based on:

Applying dynamic QA techniques as early as

possible (e.g. TDD, acceptance testing)

.Moving more QA responsibility on to the

developer (e.g. code inspection in peer/pair

programming, refactoring, collective code

ownership, coding standards).Early product

validation [7] (e.g. customer on site,

acceptance testing, small release, continuous

integration).

6. Conclusion

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1975 Issue 12, Volume 7, December 2008

To sum up, there is an important need for

developers to know more about the quality of

the software produced. Developers also need to

know how to revise or tailor their agile

methods in order to attain the level of quality

they require. In this paper we have analyzed

and compared the differences between the

SQA from three aspects:

1) many of the XP activities occur much earlier

than they do in waterfall development, 2) the

frequency of these activities is much greater

than in the waterfall model; most of these

activities will be included in each iteration and

the iterations are frequently repeated during

development, 3) XP have fewer static quality

assurance techniques, move into the

development phase very quickly. The

approach that the customer is on site and

involved in the iteration planning process

strengthens quality control from the customer

site. The short iterations force the project team

to develop functional releases at the end of

each iteration to pass acceptance testing.

Requirements in XP uses so-called “user

stories” to capture the requirements but defines

no ongoing process for requirements

management.

 References :

[1] W.H.Morkel Theunissen, Derrick G.

 Kourie and Bruce W, Standards and

 Agile Software Development,Watson,

 SAICSIT 2003, Pages 178–188.

[2] Sven Heiberg, ,Methods for Improving

 Software Quality:a Case Study, Master’s

 Thesis, University of Tartu,2002.

[3] J. E. Gaffney, Metrics In Software Quality

 Assurance, ACM Journal, November 9-11-

 1981.

[4] Scott Ambler, Quality in an Agile World ,

 SQP vol. 7, 2005.

[5]Jim Highsmith, Retiring Lifecycle

 Dinosaurs, Software Testing & Quality

 Engineering(STQE)magazine, July/August

 2000.

[6] Pressman, Roger S.,Product Metrics for

 Software Engineering, McGraw Hill;

 6/e, 2005, ch.15.

[7] Ambler, S. W. Agile Modeling, John Wiley

 and Sons, (2002).

[8]Cockburn,A.,AgileSoftware Development,

 Massachusetts, Addison Wesley Longman,

 2001.

[9] Highsmith, J, Adaptive

SoftwareDevelopment”, Dorset House.,

(1999):

[10] Highsmith, J., Agile Software

 Development Ecosystems, Boston, MA,

 Addison- Wesley.2002.

[11]A.Cockburn,L.Williams, TheCosts and

 Benefits of Pair

 programming,.International

 Conference .

WSEAS TRANSACTIONS on COMPUTERS Sana'a Jawdat Khalaf, Mohamed Noor Al-Jedaiah

ISSN: 1109-2750 1976 Issue 12, Volume 7, December 2008

