
 PPaarraalllleell CCrraawwlleerr AArrcchhiitteeccttuurree aanndd WWeebb PPaaggee CChhaannggee DDeetteeccttiioonn

DIVAKAR YADAV
AK SHARMA

J.P.GUPTA
 CCoommppuutteerr SScciieennccee && IInnffoorrmmaattiioonn TTeecchhnnoollooggyy

Jaypee Institute of Information Technology University
A-10, Sector -62, Noida

INDIA
dsy99@rediffmail.comdsy99@rediffmail.com, ashokkale2@rediffmail.comashokkale2@rediffmail.com, jp.gupta@jiit.ac.injp.gupta@jiit.ac.in

Abstract: In this paper, we put forward a technique for parallel crawling of the web. The World Wide Web today
is growing at a phenomenal rate. It has enabled a publishing explosion of useful online information, which has
produced the unfortunate side effect of information overload. The size of the web as on February 2007 stands at
around 29 billion pages. One of the most important uses of crawling the web is for indexing purposes and keeping
web pages up-to-date, later used by search engine to serve the end user queries. The paper puts forward an
architecture built on the lines of client server architecture. It discuses a fresh approach for parallel crawling the web
using multiple machines and integrates the trivial issues of crawling also. A major part of the web is dynamic and
hence, a need arises to constantly update the changed web pages. We have used a three-step algorithm for page
refreshment. This checks for whether the structure of a web page has been changed or not, the text content has been
altered or whether an image is changed. For The server we have discussed a unique method for distribution of
URLs to client machines after determination of their priority index. Also a minor variation to the method of
prioritizing URLs on the basis of forward link count has been discussed to accommodate the purpose of frequency
of update.

Keywords: Parallel crawler, Change detection, Multi-threaded server, Structural and content changes, Client
crawlers.

1. Introduction

1.1 Definition
 A crawler is an automated script, which
independently browses the World Wide Web. It starts
with a seed URL and then follows the links on each
page in a Breadth First or a Depth First method [1].
But as the size of web is exponentially increasing, a
more optimal scheme where multiple processes are
running in parallel, downloading web pages
independently by browsing the web [2]. These
processes need to be coordinated in order to ensure
that there is an optimal usage of resources such as
bandwidth, memory etc. Many search engines do use
some sort of parallelization in their architectures, but a
lot of options still remain to be explored. The whole
work is divided as follows. In current section we have
discussed about the introduction of crawlers and

related work done for parallel crawlers and page
refreshment techniques. Section 2 discusses the
proposed architecture for the parallel crawler. In
section 3 we discuss algorithms used for detecting
changes in web pages and finally in section 4 we
concluded our work along with future directions.

1.2 Overview
In this paper, we propose a new design architecture
for building a parallel crawler. The main challenge
while making such a design is to maximize the
performance of such a crawler and keeping the
overheads of memory, bandwidth, etc. which result
due to parallelization, to minimum. Each process also
needs to work in the most efficient manner to ensure
its smooth functioning. For that we need to tackle
some common issues faced by the crawling processes.
The following issues should be kept in mind while
designing a parallel crawler:

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 929 Issue 7, Volume 7, July 2008

mailto:dsy99@rediffmail.com
mailto:ashokkale2@rediffmail.com
mailto:jp.gupta@jiit.ac.in

If all processes in a parallel crawler are independent
of each other, they start from their seed URLs and
extract URLs from them and add them to their queues.
It is quite possible that different processes download
the same pages since two different pages can point to
that same page [2]. This leads to wastage of memory
and bandwidth. The database cannot have multiple
copies of same web page. These copies may be
different, as they may have been downloaded at
different time instants. Therefore, the quality of the
web repository of the search engine suffers.
To combat the dynamic nature of the web, we need to
propose a suitable approach which decides when to re-
download an existing page based on whether a page is
changed or not [3-5, 18-20, 27-28].
The client crawler machines need to crawl URLs
decided according to some function or rule. This is
done to clearly demarcate each process’s area of
operation.
Indexing of web pages for search purposes is a major
issue. We need to identify the keywords associated
with each page [6]. This index is used to locate the
exact location of the page and the relevance of that
page.
Also other important issues include frequency of page
updating, page revisit policies [7-8, 16-17], and
prioritizing pages on basis of certain parameters.

1.3 Related Work
Web crawlers have always been an intriguing area of
interest since the advent of web. With the growing
size of web, a lot of work has also been done before to
optimize the performances of web crawlers. Issues
addressed by them include the following:
• Crawler Architecture: Work done describes

various architectures under which crawlers of
certain current search engines are working. [9]
Describes the architecture of the crawling
technique used by Google whereas [10] studies
the Compaq SRC crawler. Although these papers
describe the macro view of the crawler
architecture used by them, but little insight or
detail has been provided by them regarding the
issues related to parallel crawlers that have been
discussed above. [2] describes a parallel crawler
with multiple architectures along with metrics for
evaluation.

• Page Update policies: Each crawler needs to
update the pages on a periodic basis to improve
the quality of its databases. [8] discusses
scheduling algorithms for crawlers to index the

web on a regular basis. [7] describes the various
freshness metrics used for gauging the freshness
and quality of a local copy of a web page.

• Page priority method: To prioritize a page over
another, certain methods and parameters have
been proposed that are also used by modern day
search engines [12-14]. These methods take into
account various parameters such as link count for
a certain page or the keyword occurrence
frequency to provide a suitable parameter for page
relevance.

• Other techniques for crawling: Apart from
parallel crawling, other techniques to crawl the
web have been proposed which include
distributed, incremental, focused etc. [11-13]. All
these techniques have their own distinct and
significant advantages under different
circumstances or constraints. But they may return
better results for crawling if used in collaboration
with parallel crawlers.

N. Sato et all [29] discussed the problems faced by
conventional search engines regarding update
intervals. They described that it is difficult for
conventional search engines to make their interval
short because they are based on centralized
architecture. They proposed cooperative search
engine, which is based on distributed architecture. In
cooperative search engine, a large search engine is
constructed with multiple local Meta search engines
that cooperate with each other to shorten the update
interval.
O. Papapetrau & G. Samaras [26] proposed a location
aware method, called IPMicra that utilizes an IP
address hierarchy, and allows crawling of links in near
optimal location aware manner.
Ntoulas [21] collected a historical database for the
web by downloading 154 popular Web sites (e.g.,
acm.org, hp.com and oreilly.com) every week from
October 2002 until October 2003, for a total of 51
weeks. The average number of web pages downloaded
weekly was 4.4 million. The experiments show that a
significant fraction (around 50%) of web pages
remain completely unchanged during the entire period
they they studied. To measure the degree of change,
they compute the shingles of each document and
measure the difference of shingles between different
versions of web documents. They show that many of
the pages that do change undergo only minor changes
in their content: even after a whole year, 50% of the
changed pages are less than 5% different from their
initial version.

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 930 Issue 7, Volume 7, July 2008

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(sato%20%20n.%3cIN%3eau)&valnm=Sato%2C+N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(sato%20%20n.%3cIN%3eau)&valnm=Sato%2C+N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(sato%20%20n.%3cIN%3eau)&valnm=Sato%2C+N.&reqloc%20=others&history=yes

Fretterly [22] performed a large crawl that
downloaded 151 million HTML pages. They then
attempted to fetch each of these 151 million HTML
pages ten more times over a span of ten weeks during
Dec. 2002 to Mar. 2003. For each version of each
document, they compute the checksum and shingles to
measure the degree of change. The degree of change
is categorized into 6 groups: complete change (no
common singles), large change (less than 30%
common shingles), medium change (30%-70%
common shingles), small change (70%-99% common
shingles), no text change (100% common shingles),
and no change (same checksum). Experiments show
that about 76% of all pages fall into the groups of no
text change and no change. The percentage for the
group of small change is around 16% while the
percentage for groups of complete change and large
change is only 3%. The above results are very
supportive to our studies. They suggest that
incremental method may be very effective in updating
web indexes, and that searching for new information
appearing on the web by retrieving the changes will
require a small amount of data processing as
compared to the huge size of the Web.
[23] Discuss detecting changes in XML documents.
The algorithms discussed in the paper uses signature
to match (large) sub trees that were left unchanged
between the old and new versions.
L. Francisco-Revilla [24] describe the Walden’s Path
Path manager, which assists a maintainer in
discovering when relevant changes occur to linked
resources. They also have emphasized that structural
changes are key in determining the overall change and
that presentation changes are considered irrelevant.
The evolution of change is based on document
signatures of the paragraphs, headings, links and
keywords. The path manager keep track of original,
last valid, and last collected signatures so user can
determine both long term and short term changes
depending on their particular condition. The author
has discovered that the path manager has been
designed to work in a distributed environment where
connectivity to documents is unpredictable. Its
architecture and installation provides users with
control over system resources consumed.
Y Wang [25] proposed X-Diff, an effective algorithm
that integrates key XML structure characteristics with
standard tree to tree correction techniques. Further in
the paper they argue that using the unordered tree
model is more suitable for most database and web
application than using the ordered tree model.

2. Proposed Architecture of The
Crawler

The architecture is mainly comprised of 2 main
proposed components:
• Multi-threaded Server (MT-Server)
• Client Crawlers
The MT-Server is the main coordinating entity that
manages a connection pool with the client machines
involved in the actual process of downloading the
pages. The server itself does not download any pages.
The client crawlers collectively refer to all the
different client machines interacting with the server.
The number of clients supported by the design is not
fixed. It may vary according to available resources
and the scale of actual implementation. Also, there is
no inter client communication and all interaction is
done between the server and an individual client.

2.1. MT-SERVER
The MT server is the main component of the
architecture, involved in interaction with client
processes that ensures that there is no need for inter
client communication.

2.1.1 URL Redistribution:
The main feature of server is to redistribute the URLs
received from different clients to appropriate client
machines for their actual download. The server needs
to ensure that:
• There is no copy of the URL in the database

already. This is important to avoid wasting
resources required for crawling and storing web
pages.

• Also, at the time of updating a web page, the
server should reassign the URL to maintain
consistency and avoid overlap overheads caused
by parallelization of the crawling process.

For this, the server should use such a method or a
function, which returns a consistent value for a given
input URL. The URLs may be distributed according
to their IP addresses. This is done in order to assign
proximate web pages to a client crawler in case of
geographically distant crawlers. This reduces network
load and download time and saves significant amount
of system resources.
Other methods that could be used to aide the server’s
decision-making processes are conversion of IP
addresses to a single value or reducing the URL to a
single word/string using a function or method so that

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 931 Issue 7, Volume 7, July 2008

the obtained value can be used for determining the
target client machine. eg. IP Number.

Fig 1. MT server Architecture

2.1.2 Establishing 2-way Communication with
Client:
One of the most important tasks performed by the
server in the architecture is the establishment and
maintenance of 2-way communication with the
clients. Following issues should be kept in mind while
implementing the server:
• If a client loses connection with the server, the

server process should not be disrupted as it will
then disrupt the overall crawling process.

• It should be possible to add a new client machine
to an ongoing crawling scenario without any
temporary halt of the overall system. The server
should automatically start the allocation of URLs
to that client without any inherent effects on the
other client processes or the overall system.

• After the communication channel has been
established by the server with each client, the
server should send its seed URL to the client
which gives the earliest request and then wait for
its response. The client’s response would be in the
form of a list of URLs crawled by it. The server
will then be required to redistribute each URL of
that list to the suitable clients to carry forward the
download process.

• In order to achieve parallelization, the server has
to maintain independent threads with each client
and carry out the tasks of receiving and sending
URLs. The server should ensure that it does not
lose the connection with any client and should
automatically stop sending the URLs for crawling
to clients who have lost connection, as not doing
so will result in data loss.

• Once a normal crawling routine has been
established, the server should routinely receive
lists from clients, sort them by priority and resend
each URL to the suitable client.

2.1.3 Relevance Check and Priority
 Assignment:
After receiving URLs from clients, the server before
determining the client machine for assignment of
download process must check the URLs received for
the following:
• In case the crawler to be built, is a topic specific or a

focused crawler, where the quality of the pages to
be downloaded is very important, to save on
memory and to avoid the downloading of irrelevant
web pages, the server should predetermine the
relevance by parsing the page contents without
downloading and check for the keywords of the
page and compare them with the relevant keywords
of the main topic or context for which crawling has
to be done.

• If a URL is found to be relevant for downloading
purpose or in case of full web crawling systems, it
has to be sent to the client for actual download. But
to maintain the quality of crawling, it is desirable
that there should be a method to determine the
importance of a page. The following points should
be considered while redistributing the URLs.

a) The parameter used to classify URLs in the above
categories is the difference of the backward link
count (BkLK) and the forward link count
(FwdLK) as discussed in [14].

Pvalue = af*FwdLK – af*BkLK

 Where af = aging factor

b) This difference will be known as the pvalue
(priority value) of that page. A URL having the
difference between FwdLK and BkLK as the
highest would be given the highest pvalue.

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 932 Issue 7, Volume 7, July 2008

c) To calculate the values of FwdLK, the server
would parse the page without downloading it for
just to return the number of links in it.

d) To estimate the number of BkLK, the server
would refer to the existing database built by client
crawler machines to calculate how many pages
refer to this page from the point of view of current
database.

e) Initially, the FwdLK will hold higher weight age
as there will be no or very few URLs pointing to
the current URL as the database would be still in a
nascent or a growing stage. But as the database of
indexed pages will grow, the weight age of BkLK
will gradually increase.

f) Obviously this will result in lower pvalue and that
page will hold lower priority. This is important
since we do not want to assign high priority to
download a page already downloaded and updated
very frequently as indicated by the high BkLK
value. But we do want to prioritize addition of
new pages to our repository of indexed pages,
which has a nil BkLK, but high FwdLK as it leads
to a higher number of pages.

The server will sort the list of URLs received from the
client according to descending order of pvalue. It will
then send this sorted list of URLs to the clients in
order to maintain quality of crawling. This method is
particularly useful as it gives weight age to current
database and builds a quality database of indexed web
pages even when the focus is to crawl the whole of
web. It works well if the database is in growing or in
the maturity stage. Also, the method would work well
for broken links as such a URL will have a 0 value for
FwdLK. Even if it is referenced from pages in the
database, pvalue will always be negative resulting in
low page priority.
For example:
Unsorted list for sending to clients

URL FwdLK BkLK Pvalue
A 13 8 5
B 22 10 12
C 17 9 8
D 10 11 -1
E 5 3 2

Sorted List for sending to clients:

URL List No.
A 2
B 1
C 1
D 3
E 3

As the different clients will keep sending their lists to
the server, the server will first add them to its list of
unsorted URLs, calculate their different parameters
and then add them to the sorted list of URLs.
It may be the case that a low FwdLK count but a
highly referenced URL may always find itself at the
bottom of the sorted queue. One method to get rid of
this situation is to break the sorted list into three equal
sized lists on the basis of pvalue, i.e. top one-third of
the URLs will be sent to list1, middle one-third will
be sent to List2 and bottom one-third will be sent to
list3. Then redistribute them with a frequency such
that for every 4 URLs of list1, 2 URLs of list2 and 1
URL of list3 are sent. This will ensure that no URL is
completely ignored. URLs further added to the main
sorted list will then be redirected to their respective
lists on the basis of pvalue.

2.2 Client Crawlers
The client crawler collectively refers to all the client
machines, which are involved in the actual process of
crawling. These clients are dependent on the server
for receiving the URLs they are supposed to crawl.
These clients perform lot of operations other than
downloading and storing of web pages. The basic
architecture of client crawlers is given in fig 2.

Fig 2. Client Crawlers Architecture

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 933 Issue 7, Volume 7, July 2008

2.2.1 Actual Downloading of Pages:
The client crawler machines are part of the
architecture which is mainly concerned with the actual
downloading of the web pages. The data repository
maintained by our crawling architecture is a central
one where all the clients have the right to add pages
during their crawling routines.

2.2.2 Parsing Page Content:
Each crawler machine parses the page contents for the
following purposes:
• Each page has a certain number of links in it. To

maintain the index of BkLK, each link on that page
must be stored along with the URL it is appearing
in. The client will send to the database the pair of
values (link, URL). When the same link reappears
on some other page, only the name of URL will be
added to the link indexer to the already existing
value of link.

For Example: LINK INDEXER

Link R_URL1
Google.com Programmingpages.com

• The client also needs to extract the list of all links to

be sent to server for their redistribution. The server
will give the client machines URLs to be crawled
based on the methods discussed in 2.1.1.

• The main motive behind parsing all the contents in
the page is to extract the page updating parameters
that will be used to check whether a page has been
changed or not. These parameters are discussed in
detail later.

The client crawler machine should be robust enough
to be able to handle all types of web pages appearing
on the web. With growing technology, the web is no
longer limited to simple HTML pages, but it consists
of a whole variety of pages used to display dynamic
content and ever changing layouts. The client should
be implemented in such a manner that is able to
accurately parse the web page content and handle each
type of page in an efficient manner. The client should
be robust enough to handle the pages, which do not
allow themselves to be crawled [15]. Also it should
automatically discard URLs that are referenced but do
not exist any more on the net.
Therefore, a client machine before starting the actual
download of a page should check for its actual
existence on the web using the remote server
response. If there is no response from the server or the
page is forbidden to be visited from certain networks,

it should immediately discard it without waiting for
further responses in order to conserve resources for
faster crawling.

3. Proposed Page Update Algorithms
About 60% of the content on the web is dynamic [16].
It is quiet possible that after downloading a particular
web page, the local copy of the page residing in the
repository of the web pages becomes obsolete
compared to the copy on the web. Therefore a need
arises to update the database of web pages. Once a
decision has been taken to update the pages, it should
be ensured that minimal resources are used in the
process. Updating only those elements of the
database, which have actually undergone a change,
can do this. Importance of web pages to be
downloaded has been discussed in the above section.
It also checks whether the page is already there in the
database or not and lowers its priority value if it is
referred rather frequently.
In this section, we discuss some algorithms to derive
certain parameters, which can help in deriving the fact
whether the page has changed, or not.
These parameters will be calculated at the time of
page parsing. When the client again counters the same
URL, it just calculates the code by parsing the page
without downloading the page and compares it to the
current parameters.
 If changes in parameters are detected, it is concluded
that the page has changed and needs to be downloaded
again. Otherwise the URL is discarded immediately
without further processing.
The following changes are of importance when
considering changes in a web page:
• Change in page structure.
• Change in text contents.
• Change in image (Hyperlinked or as a part of the

page).
All the above steps are not necessary to be taken care
of. A parameter is compared only if the preceding
parameter returns no change.

3.1 Changes in Page Structure.
Here we propose two algorithms for detecting changes
at structural level. Each have its own advantage but
first is better in respect to memory required for
maintaining the data which we get after performing
the algorithm on web pages.

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 934 Issue 7, Volume 7, July 2008

3.1.1 I-Method
This method tries to capture the changes in the
structure of pages. Here by structure we mean how are
the different texts and images and other objects
displayed on that page. All these objects are designed
using HTML or other formatting tools. These tools
use tags to define their characteristics and actual
appearance on the page. Any change in structure will
lead to rearrangement of tags.
The algorithm creates two strings using the tags of
that page.
• The first string will store the characters appearing

at first position in the tag for all tags in the order
they appear in web page.

• The second string stores the character at the last
position in a tag for all tags in the order they
appear in web page.

• In case the tag contains only one letter, it will be
repeated as it is, in the second string too.

For example consider the following page:

For above web page following strings are formed.

String1: [hhtbhppp]
String2: [ldey1ppp]

The proposed method offers the following advantages:
• The traditional approaches of storing the pages as a

tree structure uses a lot of storage space as well as
causes a lot of inconvenience at time of refresh, as
the tree structure has to be compared. Here only a
string has to be compared to perform the desired
operation.

• Even if any tag is added or deleted from the page,
the new string will record the change and the
difference will show in the comparison.

• At the time of page updating, the client crawler only
needs to check these two strings to determine
changes.

• If the String1 itself returns a changed value, there is
no need for comparison with the second string or
with other change parameters for that matter.

• This method will work for different pages with
different and varied formatting styles accurately
capturing their structures at a given point of time.

• For most cases, a check with the first string should
suffice. The second string check is included just to
add surety to the method as the check for String1
may fail in the unlikely case of a tag starting with
some letter replacing another tag starting with the
same letter.

3.1.2 II-Method
The change extractor based on this algorithm includes
two phases: document tree construction and level
order child enumeration (tree traversal/parsing by
level order).
The structure of every node of the tree representing
the web page shall contain the following
information’s
• ID: this index stores the unique id for each node

of the tree.
• CHILD: This index stores the information about

children of each node.
• LEVEL: This index stores the levels, where the

node exists in the tree.
• CONTENT VALUE: this index stores the Root

Mean Square (RMS) of sum of ASCII values of
characters.

For example if we get tree structure of a particular
web page as is shown in Fig. 3a and latter on some
change occur in web page so that we get tree structure
as is shown in Fig.3b following tables using BFS are
created.

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 935 Issue 7, Volume 7, July 2008

 Fig. 3a Initial Structure (before addition)

Fig. 3b Modified Structure (after addition of nodes

Table-I Level structure using BFS for above initial and
 modified tree structure of the web page

LEVEL INITIALLY LATTER
Level-1 1 1
Level-2 1 1
Level-3 2 2
Level-4 2 2
Level-5 1 1
Level-6 2 2
Level-7 1 2
Level-8 4 5
Level-9 1 3

 Before changes occur (Fig. 3a)
Level = {1 2 3 3 4 4 5 6 6 7 8 8 8
 8 9}
ID = {1 2 3 4 5 6 7 8 9 10 11 12 13 14
 15}
CHILD ={1 2 1 1 null 1 2 null 1 4 null 1
 null null null}
Level_array ={1 1 2 2 2 2 1 2 2 1 4 4 4
 4 }

After changes have occured (Fig. 3b)
Level = {1 2 3 3 4 4 5 6 6 7 7 8 8 8 8 8
 9 9 9}
ID = {1 2 3 4 5 6 7 8 9 16 10 17 11 12 13
 14 18 19 15}
CHILD ={1 2 1 1 null 1 2 1 1 1 4 1
 nul 1 null null null null null }
Level_array={1 1 2 2 2 2 1 2 2 2 2 5
 5 5 5 5 3 3 3 }

Now, by comparing the two sets we get the idea that
the modification has been done at LEVEL 7, 8 and 9.
In order to find the modification at a given level, we
use the level order traversal. The algorithm for level
order traversal with breadth first search will give us
the location where the change has taken place.

3.2 Changes in Text Content
This is the next step to be carried out if the first level
discussed above for determining changes does not
find any changes. It may be the case that the structure
of the page remains intact but there are some definite
changes in the actual text content of the page. These
changes won’t be captured by the above method.
Here also we are proposing two techniques to identify
the changes at content level

3.2.1 I-Method
In this method, we assign a code to all text content
appearing in a web page. At the time of page
updating, only comparison will be made to the text
code of that page and if any change in that value is
detected for the actual copy on the web as compared
to the local copy, the page will be refreshed or re-
crawled.
The formula for text coding is as follows:

symbolASCIIfrequency∑ *)(

Distinct symbol count

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 936 Issue 7, Volume 7, July 2008

For example, consider the following partial text
content from
www.msnbc.msn.com/id/17662246/site/newsw
eek

March 26, 2007 issue - The stereotype of the "dumb
jock" has never sounded right to Charles Hillman. A
jock himself, he plays hockey four times a week, but
when he isn't body-checking his opponents on the ice,
he's giving his mind a comparable workout in his
neuroscience and kinesiology lab at the University of
Illinois. Nearly every semester in his classroom, he
says, students on the women's cross-country team set
the curve on his exams. So recently he started
wondering if there was a vital and overlooked link
between brawn and brains—if long hours at the gym
could somehow build up not just muscles, but minds.

For above webpage’s text contents following
calculations are made:
The ASCII sum of characters: 56652
Total character count: 619
Distinct character count: 43
Therefore, the code for the text will be: 1317.488403

Even minute changes in above text, results in
significant changes in parameters as given below.
Words in bold are changed one.

March 26, 2007 issue - The stereotype of the "dumb
jock" has never sounded right to Charles Hillman. A
jock himself, he used to play hockey five times a week,
but when he isn't body-checking his opponents on the
ice, he's giving his mind a comparable workout in his
neuroscience and kinesiology lab at the University of
Florida. Nearly every semester in his classroom, he
says, students on the women's cross-country team set
the curve on his exams. So recently he started
wondering if there was a vital and overlooked link
between brawn and brains—if long hours at the gym
could somehow build up not just muscles, but minds.

Again we perform parameter calculations as below for
above changed webpage’s contents.
The parameters are as follows:
The ASCII sum of characters: 57113
Total character count: 625
Distinct character count: 43
Therefore, the code for the text will be: 1328.209351

3.2.2 II-Method
This is similar to I-method except that here we use
different formula to calculate the code (RMS) for
webpage’s content. The formula for text code
calculation is as follows:

Where ai is ASSCII code of ith character.

Example:
Initial Content
Nearly every semester in his classroom, he says,
students on the women's cross-country team set the
curve on his exams. So recently he started wondering
if there was a vital and overlooked link between
brawn and brains—if long hours at the gym could
somehow build up not just muscles, but minds.

For above webpage’s text contents following
calculations are made:
Sum of square of ASCII codes of char = 2830106
Total Char = 296
Code for texts = 5.683418

Changed Content
Nearly every semester in her classroom, she says,
students on the women's cross-country team set the
curve on her exams. So recently she started
speculating if there was a vital and overlooked link
between brawn and brains, if long hours at the gym
could somehow build up not just muscles, but minds.
Again we perform parameter calculations as below for
above changed webpage’s contents.
Sum of square of ASCII codes of char = 2876660
Total Char = 300
Code for texts = 5.653573

The proposed methods offer the following advantages:
• It gives a unique code for all text contents on a

particular page.
• The formulae are designed to be such that even a

minute change of addition or deletion of a single
blank space is recorded significantly and with pin
point accuracy by this code.

• The use of coding of text system eliminates the need
for word by word parsing and comparison of each
word at the time of page updating.

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 937 Issue 7, Volume 7, July 2008

• Only the code of that page is compared, there is no
issue of storing the whole page as an indexed
structure, hence saving on large amount of storage.

• ASCII values have been used in the formula
because each symbol has a distinct representation in
ASCII table leading to no ambiguity.

3.3. Change in Image
While the above two methods may suffice while
dealing with normal pages which uses tags for
formatting their structure and text contents, they will
fail for image links. In this section we propose a
method to derive a code for images to determine
whether they have undergone a change or not. Ideally
a change in a link to an image hyperlink will be
reflected in the label of the hyperlink for that image
and the same will be depicted by the formula
proposed above. But in case the text does not change
but the image is replaced, it will still be left
undetected. We propose the following method for
image change detection:
• The first step requires the image to be scaled to a

standard size of n*n. Here n is of the form 2x, where
value of x may vary from 4 to 6.

• Convert the image to two tone and read as an n*n
array with each value being either 0 or 1.

• For each row of n elements, we will take 24
elements at a time and convert it to a 4 digit
hexadecimal number. This will result in each row
being converted to n/24 elements from n elements
with each element being a 4 digit hexadecimal
number.

• After doing the same operation on all the rows, we
obtain an n/24* n/24 array.

• Simply, by computing the determinant of such an
array, we can reduce the image to as single value
(ival).

• For each image, an ival will be stored and at time of
page updating, the client machines without actual
download of image will calculate this ival.

4. Conclusion and Future Work
The architecture that has been proposed by us in this
paper has the following distinct advantages:
• The issue of overlap of downloads by client

crawlers are addressed, as the main server does not
give the same URL to different clients who
themselves check whether it is already existing or
not.

• The centralized database of downloaded URLs
reduces the dependency of the system on a single
client.

• The architecture is easily scalable. This is unlike the
scenario discussed in [2], where adding more
machines to the crawling process would add to
overlap overheads.

• The algorithm for checking page update parameters
is designed to show even the smallest of change in a
web page and leaves no ambiguity as the values
stored for the parameters are distinct for small
details as well. This helps the client crawler to
clearly determine whether or not a page has changed
and saves memory and bandwidth overheads.

Potential work related to the parallel crawler that may
be added on, is the adaptation of this model for
building a full fledged search engine. The algorithms
suggested for detecting web page changes, if
incorporated in search engines along with parallel
crawler model will help keeping the web pages
refreshed.

References:
[1] David Eichmann, “The RBSE Spider – Balancing

effective search against web load”, Repository
Based Software Engineering Program , Research
Institute for Computing and Information Systems,
University of Houston – Clear Lake.

[2] Junghoo Cho & Hector Garcia-Molina, “Parallel
Crawlers”. Proceedings of the 11th international
conference on World Wide Web WWW '02,
Honolulu, Hawaii, USA. ACM Press. Page(s):
124 – 135. .

[3] Ling Liu Carlton Pu, Wei Tang, “WebCQ –
Detecting and Delivering Information Changes on
the Web”. Proceedings of the ninth international
conference on Information and knowledge
management McLean, Virginia, United States
2000. Page(s): 512 – 519.

[4] Daniel Rocco, David Buttler, Ling Liu, “Page
Digest for Large-Scale Web Services”, E-
Commerce2003. (CEC‘03), IEEE International
Conference on. 24-27 June 2003 Page(s):381 -
390.

[5] David Buttler, Daniel Rocco, Ling Liu, “Efficient
Web Change Monitoring with Page Digest”,
Proceedings of the 13th international World Wide
Web conference on Alternate track papers &
posters, New York. Page(s): 476 – 477.

[6] Monica Peshave, Kamyar Dezhgosha, “How
Search Engines Work and a Web Crawler

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 938 Issue 7, Volume 7, July 2008

Application”. Department of Computer Science,
University of Illinois, Springfield USA.

[7] Junghoo Cho and Hector Garcia-Molina,
“Synchronizing a database to improve freshness,
submitted for publication”. Proceedings of the
2000 ACM SIGMOD international conference on
Management of data. Volume 29 Issue 2. Page(s):
117 – 128.

 [8] E. Co.man, Jr., Z. Liu, and R. R. Weber, “Optimal
robot scheduling for web search engines”.
Proceedings of the 11th international conference
on World Wide Web WWW '02 Honolulu,
Hawaii, USA. ACM Press. Page(s): 136 – 147.

[9] Sergey Brin and Lawrence Page, “The Anatomy
of a Large-Scale Hypertextual Web Search
Engine”, In Proceedings of the Seventh World-
Wide Web Conference, 1998.

[10] A. Heydon and M. Najork, “Mercator: A
scalable, extensible web crawler. Word Wide
Web”, December 1999. Page(s):219–229.

[11] Dustin Boswell, “Distributed High-performance
Web Crawlers:A Survey of the State of the
Art”.

[12] M. Diligenti, F. M. Coetzee, S. Lawrence, C. L.
Giles, and M. Gori, “Focused crawling using
context graphs”, In Proceedings of the Twenty-
sixth International Conference on Very Large
Databases, 2000.

[13] S. Chakrabarti, M. van den Berg, and B. Dom,
“Focused crawling: A new approach to topic-
specific web resource discovery”, In The 8th
International World Wide Web Conference,
1999.

[14] Junghoo Cho, Hector Garcia-Molina, and
Lawrence, “Efficient crawling through URL
ordering Page”, In Proceedings of the 7th
World-Wide Web Conference, 1998,
page(s):161-171.

[15] Robots exclusion protocol. ttp://info.webcrawler.
 com/mak/projects/robots/exclusion.html.
[16] Junghoo Cho, Los Angeles, Hector Garcia-

Molina, “ Effective Page Refresh Policies for
Web Crawlers”, ACM Transactions on
Database Systems (TODS). Volume 28, Issue 4
 (December 2003). Page(s): 390 – 426.

[17] Junghoo Cho, Los Angeles and Hector Garcia-
Molina, “Estimating Frequency of Change”,
ACM Transaction on Internet Technology, Vol
9, No3 , Aug 2003, page(s): 256-290.

[18] Luis Francisco-Revilla, Frank M. Shipman III,
Richard Furuta, Unmil Karadkar, Avital Arora,

“Perception of Content, Structure, and
Presentation Changes in Web-based Hypertext”,
Proceedings of the twelfth ACM conference on
Hypertext and Hypermedia 2001. Pages: 205 –
214

[19] Latifur Khan, Lei Wang and Yan Rao, “Change
Detection of XML Documents Using
Signatures”, Proceedings of the 2005
ACM/IEEE conference on Supercomputing SC
'05. Page: 69.

[20] Shuohao Zhang, Curtis Dyreson, and Richard T.
Snodgrass Schema- Less, “Semantics-Based
Change Detection for XML Detection”,
Washington State University, Pullman,
Washington, U.S.A. WISE 2004, Springer-
Verlag Berlin Heidelberg 2004 , page(s): 279–
290.

[21] A. Ntoulas, J. Cho, and C. Olston. “What’s new
on the web? The evolution of the web from a
search engine perspective”, In Proc. 13th
International World Wide Web Conference,
2004. Page(s): 1 – 12.

[22] D. Fretterly, M. Manasse, M. Najork, and J.
Wiener, “A large-scale study of the evolution of
web pages”, In Proc. 12th International World
Wide Web Conference, Budapest, Hungary
2003. Page(s): 669 - 678.

[23] G.Cobena, S. Abiteboul, A. Marian, “Detecting
Changes in XML Documents”, Data
Engineering 2002 Proceeding 18th International
Conference on, San Jose USA. Page(s): 41-52.

[24] L. Francisco-Revilla, F. Shipman, R.Furuta, U.
Karadkar, A. Arora, “Managing Change on the
Web”, Proceedings of the 1st ACM/IEEE-CS
joint conference on Digital libraries 2001.
Page(s) 67 - 76

[25] Y. Wang, D.J. DeWitt, J-Y Cai, “X-Diff: An
Effective Change Detection Algorithm for XML
Documents”, Data Engineering, 2003.
Proceedings. 19th International Conference on.
Page(s):519-530

[26] Odysseas Papapetrou, George Samaras
“Distributed Location Aware Web Crawling”,
Proceedings of the 13th international World
Wide Web conference on Alternate track papers
& posters,NY USA 2004. Page(s):468-470.

[27] D.Yadav, A.K. Sharma and J.P.Gupta, “Change
Detection in Web pages”, IEEE Proceeding of
10th International Conference on IT, Dec 17-20,
07, Rourkela (India). ISBN: 0-7695-3068-0,
Page(s) 265-270

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 939 Issue 7, Volume 7, July 2008

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(cobena%20%20g.%3cIN%3eau)&valnm=Cobena%2C+G.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20abiteboul%20%20s.%3cIN%3eau)&valnm=+Abiteboul%2C+S.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(wang%20%20y.%3cIN%3eau)&valnm=Wang%2C+Y.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20dewitt%20%20d.%20j.%3cIN%3eau)&valnm=+DeWitt%2C+D.J.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20cai%20%20j.%20%20y.%3cIN%3eau)&valnm=+Cai%2C+J.-Y.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8910
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8910

[28] D.Yadav, A.K.Sharma and J.P.Gupta,
“Architecture for parallel crawler and algorithm
for web page change detection”, IEEE
Proceeding of 10th International Conference on
IT, Dec 17-20, 07, Rourkela (India). ISBN: 0-
7695-3068-0 Page(s) 258-264

[29] N. Sato, M. Uehara, Y.Sakai, H. Mori,
 “Distributed Information Retrieval by Using
Cooperative Meta Search Engines”, Distributed
Computing Systems Workshop, 2001
International Conference on. Page(s) :345:350.

WSEAS TRANSACTIONS on COMPUTERS Divakar Yadav, Ak Sharma and J.P.Gupta

ISSN: 1109-2750 940 Issue 7, Volume 7, July 2008

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(sato%20%20n.%3cIN%3eau)&valnm=Sato%2C+N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20uehara%20%20m.%3cIN%3eau)&valnm=+Uehara%2C+M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20sakai%20%20y.%3cIN%3eau)&valnm=+Sakai%2C+Y.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20mori%20%20h.%3cIN%3eau)&valnm=+Mori%2C+H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7338
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7338
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7338

	Abstract: In this paper, we put forward a technique for parallel crawling of the web. The World Wide Web today is growing at a phenomenal rate. It has enabled a publishing explosion of useful online information, which has produced the unfortunate side effect of information overload. The size of the web as on February 2007 stands at around 29 billion pages. One of the most important uses of crawling the web is for indexing purposes and keeping web pages up-to-date, later used by search engine to serve the end user queries. The paper puts forward an architecture built on the lines of client server architecture. It discuses a fresh approach for parallel crawling the web using multiple machines and integrates the trivial issues of crawling also. A major part of the web is dynamic and hence, a need arises to constantly update the changed web pages. We have used a three-step algorithm for page refreshment. This checks for whether the structure of a web page has been changed or not, the text content has been altered or whether an image is changed. For The server we have discussed a unique method for distribution of URLs to client machines after determination of their priority index. Also a minor variation to the method of prioritizing URLs on the basis of forward link count has been discussed to accommodate the purpose of frequency of update.

