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Abstract: - Embedding is of great importance in the applications of parallel computing. Every parallel application 
has its intrinsic communication pattern. The communication pattern graph is embedded in the topology of 
multiprocessor structures so that the corresponding application can be executed. This paper presents strategies for 
reconfiguring a complete binary tree in a faulty Incrementally Extensible Hypercube (IEH) with N-expansion. This 
embedding algorithm show a complete binary tree can be embedded in a faulty IEH with dilation 4, load 1, and 
congestion 1 such that O(n2-h2) faults can be tolerated, where n is the dimension of IEH and (h-1) is the height of a 
complete binary tree. Furthermore, the presented embedding methods are optimized mainly for balancing the 
processor loads, while minimizing dilation and congestion as far as possible. According to the result, we can embed 
the parallel algorithms developed by the structure of complete binary tree in an IEH. This methodology of 
embedding enables extremely high-speed parallel computation. 
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1 Introduction 
Hypercube, as one of the most popular structures, 
has been used as the interconnection network in a 
wide variety of commercial and experimental 
distributed memory multiprocessors such as the 
Cosmic Cube[12], the Intel “hypercube” systems 
(iPSC, iPSC/2), the Ametek/Symult S-series, the 
NCUBE and the Connection Machines (CM-1, 
CM-2). The popularity of the hypercube 
multiprocessor or multicomputer systems is due to 
their tempting properties such as logarithmic 
diameter and node degree, high bisection width, 
ease to embed other common structures[11], and 
many known efficient data communication schemes. 
Although hypercubes possess many advantages for 
parallel and distributed computing, there are some 
limitations for constructing hypercubes. However, 
due to the power-of-2 size and logarithmic degree, 
hypercubes suffer two major disadvantages, namely, 
high cost extensibility and large internal 
fragmentation in partitioning. Limitations of the 
hypercube include its nonplanarity (which 
complicates the layout of hypercubes implemented 
within VLSI chips), and its inability to grow 
incrementally. The incremental extensibility is a 
very essential and desirable property in real world 

applications for designing interconnection networks.  
Of late, a novel interconnection topology is 

proposed in [14, 15] called the Incrementally 
Extensible Hypercube or IEH graph, based on 
appropriate interconnection if different sized 
hypercubes of smaller dimensions. The IEH graph is 
showed to have the following desirable 
characteristics: (1) adding a new node to an existing 
network is easy and simple; in most cases no 
reorganization of existing edges is necessary, (2) the 
network is optimally fault-tolerant in the sense that 
the vertex connectivity is equal to the minimum 
degree of a node in the graph, (3) the number of 
edges is O(NlogN) where N is the number of nodes, 
and the diameter is logarithmic in the number of 
nodes, and (4) the network is near regular i.e., the 
difference between the maximum and the minimum 
degree of a node is at most 1. At the same time, 
since the IEH graph is constituted by several 
hypercubes, which are turned to be as subcubes with 
smaller dimensions in this case, all parallel 
algorithms run in the hypercube can be easily ported 
in IEH graphs. Therefore, we consider how to 
embed the complete binary tree in the IEH with 
N-expansion. 

The tree is a basic network topology. A 
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complete binary tree is special tree underlying 
divide-and-conquer algorithms. A complete binary 
tree arises in the solution of tridiagonal systems by 
even-odd cyclic reduction and solution of systems 
of equations that is noted in [6]. Suppose some 
process can be naturally decomposed into a 
collection of subprocesses that can be executed 
concurrently with certain communication between 
subprocesses by an edge between corresponding 
nodes. One obtains a complete binary tree by 
denoting each subprocess by a node and each 
communication between subprocesses by an edge 
between corresponding nodes. The problem of 
allocating those subprocesses, structured by a 
complete binary tree, to processors in a given 
interconnection networks will be reduced to the 
problem of embedding a complete binary tree. 

Load Balancing, communication locality, 
communication congestion, and node utility in 
process graphs can be abstractly studies as the 
problem of embedding[7]. In a process graph, the 
nodes represent processes comprising a distributed 
program or a parallel program and the edges 
represent communications between processes. 
Embedding one graph into another is important 
because an algorithm may have been designed for a 
specific interconnection network, and it may be 
necessary to adapt it to another network. The quality 
of an embedding of a guest graph G in a host graph 
H is measured by the maximum number of 
processes of G placed on any processes of H, the 
maximum distance between any pair of processes of 
H corresponding to a pair of neighbor processes of 
G, the maximum number of edges of G placed on 
any edge of H, and the ratio of the order of H to the 
order of G. These factors are called load, dilation, 
congestion, and expansion, respectively. The 
embedding problem is to find embeddings with 
balanced loads, small dilations, and small 
congestions. An efficient simulation of one network 
on another network requires that these four costs be 
as small as possible. However, for most embedding 
problems, it is impossible to obtain an embedding 
that minimizes these costs simultaneously. 
Therefore, some tradeoffs among these costs must 
be made. 

In a multiprocessor system, we follow two fault 
models defined in [5]. The first model assumes that, 
in a faulty node, the computational function of the 
node is lost while the communication function 
remains intact; this is the partial faulty model. The 

second model assumes that, in a faulty node, the 
communication function is lost too; this is the total 
faulty model. Conceptually, the network interface 
hardware operates independent of the computer’s 
processor. In this paper, our model is the partial 
faulty model. That is, when the computation nodes 
are faulty, the communication links are well and 
only the faulty nodes are remapped. 

The remainder of this paper is organized as 
follows. Section 2 defines the IEH structure. In 
section 3, we describe how to construct a complete 
binary tree in an IEH. In section 4, we describe how 
to embed a complete binary tree in a faulty IEH with 
N-expansion under partial faulty model. Finally, we 
conclude this paper. 
 
 
2 Preliminaries  
We briefly describe notations and definitions of the 
hypercube and the IEH graph.  

The hypercube is based on the properties of 
binary n-cube in graph theory. An n-dimensional 
hypercube, simply called n-cube, can be modeled as 
a graph Hn=(V,E) with node set V(Hn) and edge set 
E(Hn), where nV 2= , 12* −= nnE . For a Hn ,each 
node in V(Hn) can be distinctly labeled by a unique 
binary string of length n, then V(Hn)={ }12,,2,1,0 −nL  
and E(Hn)= { }nHvuvu ∈,|),( and .1),( =vuHD  
That is, each of the nodes corresponds to an n-bit 
binary string v=  as its label, and 
two nodes are connected by an edge if and only if 
their labels differ in precisely one bit.  

0121 XXXX nn L−−

The IEH graph is the composition of some m 
different hypercubes. Let Gn(N) be an IEH graph 
with N nodes, and N can be expressed by the binary 
string N= bnbn-1bn-2…b1b0, and bi ∈ {0,1}. An IEH 
graph Gn(N) is composed of some different 
hypercubes which have lower dimension than Gn(N) 
has. That is, Gn(N) contains a hypercube, denoted by 
Hi, if and only if the ith bit in the binary 
representation of N is 1. 

Accordingly, the IEH graph is composed of 
some hypercubes, so there is a new type of 
connections beside the usual connections in a 
hypercube. These edges (or links) are used for 
connecting two hypercubes are called Inter-Cube or 
IC edges. The basic philosophy in the design of the 
IEH graphs is to express N as a sum of several 
powers of 2, i.e., to write N as a binary number, 
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build the smaller hypercubes, and then to add 
appropriate inter-cube edges to connect those 
smaller hypercubes. For any given N, 2n≤ N<2n+1, 
the steps of finding IEH graphs are as follows. 
Step 1 Build subcube graphs. Express N as (n+1) 
bits a binary number as N= bnbn-1bn-2…b1b0, where 
bi ∈ {0,1} and bn=1 since N ≥ 2n. For each bi, bi≠0, 
construct a hypercube graph Qi with 2i nodes. 
Step 2 Label the nodes. Note that each node has a 
(n+1)-bit binary label. Each hypercube Qi is labeled 
as 11…10bi-1bi-2…b1b0. Obviously each hypercube 
of dimension i (having 2i nodes) has i number of 
dashed and the individual nodes of the hypercube 
can be obtained by filling the dashes with 0 or 1 in 
all possible ways. In other words, the binary 
representation of each node in Qi has the same 
prefix of (n-i)1's followed by a single zero. 
Step 3 Construct the incremental hypercube in steps 
by providing the inter-cube edges. Find the 
minimum i such that bi≠0. Set j=i and Gj=Qi.  

Set i=i+1.  
While i≤n do 
if bi≠0 then 
  if i-j=1 then 
each node x in Gj with label 11…bjbj-1…b0 is 

connected to the node 11…10bjbj-1…b0 of Qi. 
  else 
each node x in Gj with label 11…1bjbj-1…b0 is 

connected to (i-j) different nodes of Qi chosen in the 
following way: 
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Set j=i and set Gj to be the composite graph 
generated in the previous steps. Note that Gj has 

now  nodes and the binary label of each 

node in Gj has a prefix of (n-j) 1's. 

∑
=
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2

   i=i+1 
 Return Gn as the desired incremental 

hypercube graph of N vertices. � 

 
Fig. 1: The IEH graph contains 14 nodes 

Figure 1 shows the example of G3(14). G3(14) 
consists of three subcubes. The three subcubes are 
1-subcube(H1), 2-subcube(H2), and 3-subcube(H3). 
Nodes 12 and 13 are composed as a 1-subcube(H1), 
Nodes 8, 9, 10, and 11 are composed as a 
2-subcube(H2), and nodes 0, 1, 2, 3, 4, 5, 6 and 7 are 
the elements of a 3-subcube(H3). The edges (8, 12), 
(9,13) are IC edges connected between H1 and H2 
such that H1 and H2 are connected to be an IEH 
graph containing 6 nodes(G2(6)). In addition, the H3 
connects to G2(6) with these IC edges (0, 8), (1, 9), 
(2,10), (3,11), (4,12), and (5,13). 
Definition 1[7] Let x=xn-1…x0, y=yn-1…y0, then 
Dim(x, y)={i in (0…n-1)∣xi ≠ yi}. 
Definition 2[7] The Hamming distance between two 
nodes with labels x=xn-1xn-2...x0 and y= yn-1yn-2...y0 is 
defined as  

HD(x, y)=∑ , where hd(xi , yi)=   
−

=

1

0

),(
n

i

ii yxhd
⎩
⎨
⎧

≠
=

.yxif 1,
,yxif 0,

ii

ii

Definition 3[8] If a complete binary tree is a rooted 
binary tree and each internal nodes contains two 
offspring nodes, then a complete binary of height h 
denoted by Th, contains 2h-1 nodes.  
Definition 4[8] A double-rooted binary tree DTh, 
where h is the height of the tree, is a complete 
binary tree with the root replaced by a path of length 
two.  
Lemma 1[8] A double-rooted complete binary tree 
can be embedded in a hypercube with dilation 2 and 
load 1.  

We illustrate an example as in figure 2 to figure 
6. 
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Figure 2: A double-rooted with 4 nodes can be 
embedded into a 2-cube 

Figure 3: The transformation of mapping (1) 

 
Figure 4: The transformation of mapping (2) 

 
Figure 5: The transformation of mapping (3) 

 
Figure 6: A double-rooted tree with 8 nodes can 

be embedded into a 3-cube 
Definition 5[8] An IEH graph is called a full IEH 
graph, denoted by Fn, if and only if it has 2n+1-1 
nodes. Intuitively, a full IEH graph must contain 
hypercubes H0, H1,…, Hn as its subcubes. 
 
 
3 Mapping of Complete Binary Tree   
IEH graphs are provided with all properties of 
hypercubes because an IEH graph may contain 
some different-sized hypercubes as its subgraphs. 
Thus the IEH graphs are selected to be the host 
graph of our embedding. Complete binary tree are 
usually used in a lot of algorithms and 
communications, so we proposed the method of 
embedding complete binary trees in IEH graphs. 

We describe our approach that maps a complete 
binary tree in the full IEH or the IEH. 
Lemma 2 A complete binary tree with height n 
contains the same number of nodes as an 
(n-1)-dimensional full IEH graph. 
Proof. Suppose a tree Tn is said to be a complete 
binary tree with height n, then each node of Tn 
contains the same number of nodes in its right and 
left subtrees. Consequently, the number of nodes in 
a complete binary tree Tn has totally 2n-1 nodes. A 
(n-1)-dimensional full IEH graph must, by the 
definition, contain n hypercubes with different 
dimensions. Therefore, an (n-1)-dimension IEH 
graph, simply denoted by Fn-1, will consist of 
hypercube with dimension with 0, 1, 2, …, and (n-1). 
The kth-dimensional hypercube in a IEH is denoted 
by Hk. Obviously, an (n-1)-dimensional full IEH 
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contains 20+21+22+…+2n-1 = 2n-1 nodes because 
each kth-dimensional hypercube in the IEH graph 
contains 2k nodes. Hence, a complete binary tree 
with height n contains the same number of nodes as 
an (n-1)-dimensional full IEH graph. � 
Lemma 3 An (n-1)-dimensional full IEH graph is a 
subgraph of an n-dimensional full IEH graph. 
Proof. Let Fn be a full IEH graph, then two divided 
components Hn and F’n exist in Fn where Hn is an 
n-dimensional hypercube and F’n is an 
(n-1)-dimensional full IEH graph. According to the 
method of constructing an IEH graph, the vertex set 
of Fn-1 is a subset of the vertex set of Fn and the 
edge set of Fn-1 is a subset of the edge set Fn. 
Therefore, Fn-1 is said to be a subgraph of Fn.� 
Lemma 4 Assume that Hn is an n-dimensional 
hypercube and Fn-1 is and (n-1)-dimensional full 
IEH graph, Fn-1 is a subgraph of Hn. 
Proof. According to the method of constructing an 
IEH graph, H0, H1, …, Hn-1 construct Fn-1. These IC 
edges connecting between the n hypercubes are all 
of Hamming distance 1. Hence, these IC edges in 
Fn-1 are normal edges in Hn. Consequently, the 
vertex set of Fn-1 is a subset of the vertex set of Hn 
and the edge set of Fn-1 is a subset of the edge set Hn. 
Therefore, Fn-1 is said to be a subgraph of Fn.� 
Lemma 5 A full IEH graph contains a complete 
binary tree. 
Proof. In these trivial cases, complete binary trees 
with 1 and 3 nodes can be directly embedded into 
IEH graphs F0 and F1, respectively. The case of 
embedding a tree with a single node into F0 is 
straightforward. Embedding a complete binary tree 
T2 into an IEH F1 must select node labeled by binary 
string 00 to be the root of T2. The other two nodes of 
F1 are the right and left leave nodes of the tree 
respectively. The embedding of T3 into F2 is the 
base case (shown in figure 7) of our embedding 
method. According to the method of generating an 
IEH graph, F2 is constructed by connecting three 
hypercubes such as H0, H1 and H2. In F2, H0, H1 and 
H2 are connected by IC edges. Not all of the nodes 
in an IEH graph are connected by IC edge. Node 
011 is the only one that does not link to any node by 
an IC edge in F2. As a consequence, the node 011 
can not be the interior node of a binary tree because 
the node 011 belongs to H2 and the degree of 011 is 
two. Additionally, the number of nodes of H2 except 
for the node 011 is equal to the sum of number of 
nodes of H0 and H1 in the full IEH graph F2. 
Therefore, 011 must be the root of T3. The adjacent 

nodes of node 011 are the nodes 001 and 010, that 
can be the root of the left subtree and the root of the 
right subtree respectively in the complete binary tree 
T3. For the leave nodes of T3, two nodes, 000 and 
101, are connected by 001, then 000 and 101 can be 
the left and right leaves of 001 respectively. There is 
a problem to map the leave nodes of 010 in F2 
because the node 010 connects only one unused 
node 110. The solution of connecting the last free 
node 100 to the root node 010 of the right subtree 
must pass a used node, which is called midway node. 
As a result, the edge between 010 and 100 is 
mapped into the path from 010 to 100 through a 
midway node 000. Hence, the embedding of T3 into 
F2 is constructed. Assume a complete binary tree Tn 
can be embedded into a Fn-1. Let a complete binary 
tree Tn+1 Can be embedded into a Fn. There exist 
two divided components Hn and F’n in Fn where Hn 
is an n-dimensional hypercube and F’n is an 
(n-1)-dimensional full IEH graph. We select the 
node 021 1110 L−− nnn to be a root of Fn, because 

node 021 1110 L−− nnn  belongs to Hn and node 

021 111 L−− nn  does not exist in Fn-1. According to 

lemma 10, Fn-1 is a subgraph of Hn. In addition, the 
number of nodes of Hn except for the node 

021 1110 L−− nnn  is equal to the sum of number of 

nodes of H0, H1, …, and Hn-1 in the full IEH graph 
Fn-1. So, we can extend a bit with zero in the left of 
the most significant bit of these nodes in Fn-1 such 
that these nodes can map in Hn. Hence, we can 
construct the left subtree of Tn+1. According to 
Lemma 9, Fn-1 is a subgraph of Fn. In addition, the 
number of nodes of F’n is equal to the sum of 
number of nodes in the full IEH graph Fn-1. In other 
words, ( ) ( 1: −→ )′ nn FVFVδ  is the one-to-one 
mapping function. So, we can extend a bit with one 
in the left of the most significant bit of these nodes 
in Fn-1, such these nodes can map in F’n. Therefore, 
we can construct the right subtree of Tn+1. Without 
loss of generality, we know the root of the left 
subtree and the root of the right subtree in Fn is 

0211 11100 L−−+ nnnn and 0211 11101 L−−+ nnnn , 

respectively. Therefore, there is a problem of 
connecting the root node and the root of the right 
subtree because HD(root, the root of right subtree) 
is not equal to 1. The solution of connecting the root 
node 011…11 and the root node 101…1 of the right 
subtree to must pass a used node 001…1. As a result, 
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the edge between 011…1 and 101…1 is mapped into 
the path from 011…1 to 101…11 through a midway 
node 001…1. So the embedding of Tn+1 into Fn is 
constructed.� 

 
Figure 7: A complete binary tree T3 can be 

embedded into F2.  
We extend the process of the base case to embed 

Tn to Fn-1, where . The process can be divided 
into three steps: 

4≥n

1. Identify the root of Tn 
2. The left subtree and the right subtree is 

easily constructed by embedding Tn-1 into Fn-2. 
3. Combine the root, the left subtree and the 

right subtree. 
 The construction of right subtree is simply 
to extend one significant bit in the binary strings of 
nodes that are the embedding nodes of Tn-1 into Fn-2 
and label the bit with 1. Then, the construction of 
left subtree is simply to change the most significant 
bit of the right subtree from 1 to 0. Therefore, the 
algorithm needs a subprocess concatenate, to 
accomplish the embedding. The algorithm is 
described as follows: 
Algorithm Embedding (Tn) 
Input: T3, n /* T3 is the base case, n is the size of a 
complete binary tree */ 
Output: Tn /* The complete binary tree with height n 
*/ 
Begin 
1. If n = 3 then Return T3 
2. Else 
3. Begin 
4. Root = 01n-1 
5. /* 01n-1 is the binary string with MSB 0 
 following (n-1) 1’s. */ 
6. Right = concatenate (1, Embedding (Tn-1)) 
7. /* All nodes of Tn-1 extend their MSB and 
 set them to 1’s. */ 
8. Left = concatenate (0, Embedding (Tn-1)) 
9. /* All nodes of Tn-1 extend their MSB and 

 set them to 0’s. */ 
10. ( ) { } ( ) ( )LeftVRightVrootTV n ∪∪=  
11.  
( ) ( ) ( ) ( ) ( ){ }LRn rootrootrootrootLeftERightETE ,,,∪∪=

 
12.    /* rootR, and rootL are the roots of right and 
 left subtrees */ 
13.    End; 
End. 

There are two examples in this section. The first 
example is to embed the complete binary tree T4 into 
a full IEH graph F3, the root of T4 is the node 0111, 
which is selected by the above discussion. Certainly, 
the node 0111 is the only one node without linked 
IC edge. The construction of the right subtree of T4 
is based on the result of embedding T3 into F2. By 
extending one significant bit of the binary strings of 
all nodes in T3, the right subtree of T4 is constructed 
with setting the extended bit to 1’s and the left 
subtree of T4 is constructed with setting the 
extended bit to 0’s. After the right and left subtree 
are constructed, the embedding complete binary tree 
is accomplished by connecting the root node 0111 to 
the roots of left and right subtree. The midway 
nodes in the embedding complete binary tree are 
transformed as the same process as the nodes in 
trees. To embed the complete binary tree T4 into a 
full IEH graph F3 are shown in figure 8. 

Figure 8: T4 is embedded into F3 

 
Figure 9: T5 is embedded into F4 

For the detail description, the second example of 
embedding T5 into F4 is shown in figure 9 and listed 
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as follows:  
1.  Identify node 01111 is the root of T5. 
2.  T4 is constructed in the previous example. 

 We use T4 as the original tree of the right 
 subtree in T5. 

3.  We extend the significant bit of all nodes in 
 the original right subtree and set the bit to 1. 
 Then the formal right subtree of T5 is 
 constructed. 
4. Construction of left subtree is simply to 
 change the most significant bit of the right 
 subtree from 1 to 0. 
5.  We connect the roots of the left and right 

 binary tree to the selected root 01111, then 
 the embedded T5 in F4 is constructed. 

In consequence, our embedding algorithm can 
also be applied into hypercubes with one faulty node. 
Therefore, we develop an algorithm to embed a 
complete binary tree with height n into an 
n-dimensional hypercube. 
Lemma 6 A complete binary tree can be embedded 
in a hypercube with one faulty node. 
Proof. Because Fn-1 is a subgraph of Hn, a complete 
binary tree can also be embedded into a hypercube. 
Hn has more than one node than Fn-1 and Fn-1 which 
does not contain the node (1)n. As a reason, a 
complete binary tree can be embedded into a 
hypercube with one faulty node. As a result, these 
edges in a tree transformed by the right subtree that 
is produced by Fn-2 exist in the Fn-1. So, the 
embedding algorithm is correct for constructing the 
complete binary tree. The embedding algorithm is 
with dilation 2, expansion 1, congestion 1, and load 
1. The following theorems show the measurement of 
our embedding algorithm. � 
Lemma 7 Embedding the complete binary tree in a 
full IEH graph or a hypercube graph is dilation 2, 
expansion 1, load 1 and congestion 1. 
Proof. In the embedding of Tn into Fn-1, there are 
some midway node must be passed to connect two 
nodes That is, some edges in the tree Tn are mapped 
in a path of the length 2 in the IEH graph Fn. As the 
consequence, the dilation of the embedding is 2 and 
congestion is 1. The embedding of Tn into Fn-1 is 
one-to-one mapping for these nodes, so the 
expansion and load of our embedding is exactly 
equal to 1. Therefore, embedding the complete 
binary tree into a full IEH graph or a hypercube 
graph is dilation 2, expansion 1, load 1 and 
congestion 1.� 
Theorem 1 A complete binary tree Tn can be 

embedded in Gn(N) with expansion 2, dilation 2, 
congestion 1, and load 1. 
Proof. It is trivial by lemma 7. 
Theorem 2 A complete binary tree Th can be 
embedded in Gn(N) with N-expansion, dilation 2, 
congestion 1, and load 1. 
Proof. It is trivial by theorem 1. 

 
 

4 Load-Balancing and Fault-Tolerance 
Embedding with N-Expansion 
In section 3, Th can be embedded in IEH Gn(N) with 
N-expansion by theorem 2. In this section, we 
present how to embed a complete binary tree to a 
faulty IEH graph. Hence, we consider a complete 
binary tree can be embedded in an IEH with 
N-expansion graph which contains faulty node. 

By theorem 2, Tn can be embedded in Gn(N) 
with N-expansion. Furthermore, we propose an 
algorithm LB_Tree_Embedding( ) for embedding a 
complete tree in a faulty IEH as follows. 
 

Algorithm LB_Tree_UB_Embedding(x) 
 
Input: x /*the faulty node*/, Gn(N), Th 
Output: y /*the replace node*/ 
1. if the root r is faulty then 
2.   search the other root node r’ 
3. if the node r’ is faulty then backtrack the root r 
4. else 
5.   return(r’) /* node r is replaced by node r’/ 
6.   exit() 
7. if any node x is faulty then 
8.   j=0 
9.   construct a queue Q; Q=Φ  
10.   while )1( +−≤ hnj  do  
11.     we can search the node ϖ  
12.     /* 1),( =ϖxHD , jhxDim +=),( ϖ  */ 
13.     if nodeϖ is exist and it is free then 
14.       node x is replaced by node ϖ  
15.       remove all of the nodes in a queue 
16.       exit() 
17.     insert(ϖ , 1−+ jh ) in a queue 
18.        j=j+1; 
19.     while Q is not empty do   
20.       remove the first pair ( )βα ,  from Q 
21.       k=0 
22.     while β≤k  do 
23.       we can search the node λ  
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24.       /* 1),( =λαHD , kDim =),( λα  */ 
25.       if node λ is exist and it is free then 
26.         node x is replaced by node λ  
27.         exit() 
28.       k=k+1 
29. Declare the replaceable node is faulty� 
 
Finding the replace node as follow: 
node 0 = 0n 0n-1…0h+10hXh-1Xh-2…X1X0 

node 1 = 0n 0n-1…0h+11hXh-1Xh-2…X1X0 

node 2 = 0n 0n-1…1h+10hXh-1Xh-2…X1X0 
 … 
node n-h+1 = 1n 0n-1…0h+10hXh-1Xh-2…X1X0  
node n-h+2 = 0n 0n-1…0h+11hXh-1Xh-2…X1X’0 

 … 
node n+1 = 0n 0n-1…0h+11hX’h-1Xh-2…X1X0 
node n+2 = 0n 0n-1…1h+10hXh-1Xh-2…X1X’0  
 … 
node n+h+2 = 0n 0n-1…1h+11hXh-1Xh-2…X1X0 
node n+h+3 = 0n 0n-1…1h+20h+10hXh-1Xh-2…X1X0 
 … 
node n+2h+4 = 0n 0n-1…1h+21h+10h)Xh-1Xh-2…X1X0 
 … 
node (n-h+1)+(n+h+1)*(n+1-h+1)/2  
          = 1n-11n-1 0n-2…0h+10hXh-1Xh-2…X1X0 
    We also give a simple example in this section 
to explain the operations of the algorithm 
LB_Tree_UB_Embedding( ) when the faulty nodes 
exist. For the IEH G3(15) as figure 10. 
1. If the root 0000 is faulty, it visits the other root 

0001, to check whether it is free or not. If it is, it 
terminates.  

2. If not, backtrack to the root 0000 . 
3. If the node 0000 is faulty, it visits or signals the  

node 0100, to check whether it is free or not. If 
it is, it terminates.  

4. If not, insert the node 0100 to the queue, and 
search the node 1000, to check whether it is free 
or not. If it is, it terminates. 

5. If not, insert the node 1000 to the queue, and 
remove the node 0100 from the queue, search 
the node 0101, to check whether it is free or not. 
If it is, it terminates. 

6. If not, search the node 0110, to check whether it 
is free or not. If it is, it terminates. 

7. If not, remove the node 1000 from the queue, 
search the node 1001, to check whether it is free 
or not. If it is, it terminates. 

8. If not, search the node 1010, to check whether it 
is free or not. If it is, it terminates. 

9. If not, search the node 1100, to check whether it 
is free or not. If it is, it terminates. 

10. If not, return(“Failure”).  
Therefore, the whole searching path is listed as 
{(0001), (0100), (1000), (0101), (0110), (1001), 
(1010), 
(1100)}.

 
Figure 10: T2 can be embedded in faulty G3(15) 

Theorem 3 A complete binary tree (Th) can be 
embedded in faulty IEH Gn(N) graph with dilation 4, 
expansion n, congestion 1, and load 1. 
Proof. Every searching path is only one path 
according to the algorithm LB_Tree_UB_ 
Embedding( ), allowing us to obtain congestion 1 
and load 1. Herein, we allow N-expansion to obtain 
the replace node of the faulty node. Finding the 
replace node in that dilation become 2+2=4 in worst 
case by algorithm LB_Tree_UB_Embedding( ). And 
these nodes and links of searching paths are not 
replicated from algorithm LB_Tree_UB_ 
Embedding( ). These costs associated with graph 
embedding are dilation 4, congestion 1, and load 1. 
Theorem 4 A searching path of algorithm 
LB_Tree_UB_Embedding( ) is including 
[(n-h+1)+(n+h+1)*(n+1-h+1)/2] nodes. 
Proof. By theorem 2 we can embed complete binary 
tree(Th) in Gn(N) with N-expansion. If node is faulty, 
we can change a bit in the binary string sequence 
form bit h to bit n and insert its corresponding node 
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into the queue. In the worst case, we can get n-h+1 
different node. Then we remove the node from the 
queue. From the first node we can change a bit in 
the sequence from bit 0 to bit h-1, and we get h 
different nodes. Until the queue is empty, the sum of 
all searched node is (n-h+1)+[h+(h+1)+ … 
+(n+1)]= [(n-h+1)+(n+h+1)*(n+1-h+1)/2] nodes.  
Theorem 5 There are O(n2-h2) faults, which can be 
tolerated. 
Proof. It is trivial by theorem 4. 
Theorem 6 Our results for the embedding methods 
are optimized mainly for balancing the processor 
and communication link loads. 
Proof. Because these nodes and edges of searching 
paths are not replicated from the algorithm 
LB_Tree_UB_Embedding( ) and load 1, this 
observation implies that the primary optimization 
objective of embedding is minimize the inter 
processor communication cost and to balance the 
workload of processors having reached. 
 
 
5 Conclusions  
In this paper, we consider the algorithm 
LB_Tree_Embedding for a complete binary tree can 
be embedded in an IEH. Considering embedding of 
complete binary tree in a faulty IEH, allowing 
N-expansion shows that up to O(n2-h2) faults can be 
tolerated. The main result of this paper is that it is 
always possible to give solutions to the embedding 
of complete binary trees in a faulty IEH graph with 
N-expansion. The costs associated with graph 
embedding in our strategies of reconfiguration are 
dilation 4, congestion 1 and load 1. By the result, we 
can embed the parallel algorithms developed by the 
structure of complete binary tree in an IEH. These 
methods of reconfiguring enable extremely 
high-speed parallel computation. Therefore, we can 
easily port the parallel or distributed algorithms 
developed for these structures to the IEH graphs and 
hypercubes. 
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