
Load-Balance and Fault-Tolerance for embedding a Complete Binary
Tree in an IEH with N-expansion

Jen-Chih Lin

Department of Digital Content Design
National Taipei University of Education,

No.134, Sec. 2, Heping E. Rd., Da-an District,
Taipei City 106, Taiwan, R.O.C.
E-mail: *yachih@tea.ntue.edu.tw

Abstract: - Embedding is of great importance in the applications of parallel computing. Every parallel application
has its intrinsic communication pattern. The communication pattern graph is embedded in the topology of
multiprocessor structures so that the corresponding application can be executed. This paper presents strategies for
reconfiguring a complete binary tree in a faulty Incrementally Extensible Hypercube (IEH) with N-expansion. This
embedding algorithm show a complete binary tree can be embedded in a faulty IEH with dilation 4, load 1, and
congestion 1 such that O(n2-h2) faults can be tolerated, where n is the dimension of IEH and (h-1) is the height of a
complete binary tree. Furthermore, the presented embedding methods are optimized mainly for balancing the
processor loads, while minimizing dilation and congestion as far as possible. According to the result, we can embed
the parallel algorithms developed by the structure of complete binary tree in an IEH. This methodology of
embedding enables extremely high-speed parallel computation.

Key-Words: - Incrementally Extensible Hypercube, Binary tree, Load-Balance, Fault-Tolerance, Embedding

1 Introduction
Hypercube, as one of the most popular structures,
has been used as the interconnection network in a
wide variety of commercial and experimental
distributed memory multiprocessors such as the
Cosmic Cube[12], the Intel “hypercube” systems
(iPSC, iPSC/2), the Ametek/Symult S-series, the
NCUBE and the Connection Machines (CM-1,
CM-2). The popularity of the hypercube
multiprocessor or multicomputer systems is due to
their tempting properties such as logarithmic
diameter and node degree, high bisection width,
ease to embed other common structures[11], and
many known efficient data communication schemes.
Although hypercubes possess many advantages for
parallel and distributed computing, there are some
limitations for constructing hypercubes. However,
due to the power-of-2 size and logarithmic degree,
hypercubes suffer two major disadvantages, namely,
high cost extensibility and large internal
fragmentation in partitioning. Limitations of the
hypercube include its nonplanarity (which
complicates the layout of hypercubes implemented
within VLSI chips), and its inability to grow
incrementally. The incremental extensibility is a
very essential and desirable property in real world

applications for designing interconnection networks.
Of late, a novel interconnection topology is

proposed in [14, 15] called the Incrementally
Extensible Hypercube or IEH graph, based on
appropriate interconnection if different sized
hypercubes of smaller dimensions. The IEH graph is
showed to have the following desirable
characteristics: (1) adding a new node to an existing
network is easy and simple; in most cases no
reorganization of existing edges is necessary, (2) the
network is optimally fault-tolerant in the sense that
the vertex connectivity is equal to the minimum
degree of a node in the graph, (3) the number of
edges is O(NlogN) where N is the number of nodes,
and the diameter is logarithmic in the number of
nodes, and (4) the network is near regular i.e., the
difference between the maximum and the minimum
degree of a node is at most 1. At the same time,
since the IEH graph is constituted by several
hypercubes, which are turned to be as subcubes with
smaller dimensions in this case, all parallel
algorithms run in the hypercube can be easily ported
in IEH graphs. Therefore, we consider how to
embed the complete binary tree in the IEH with
N-expansion.

The tree is a basic network topology. A

WSEAS TRANSACTIONS on COMPUTERS
Manuscript received Jan. 4, 2008; revised June 20, 2008

Jen-Chih Lin

ISSN: 1109-2750 919 Issue 7, Volume 7, July 2008

complete binary tree is special tree underlying
divide-and-conquer algorithms. A complete binary
tree arises in the solution of tridiagonal systems by
even-odd cyclic reduction and solution of systems
of equations that is noted in [6]. Suppose some
process can be naturally decomposed into a
collection of subprocesses that can be executed
concurrently with certain communication between
subprocesses by an edge between corresponding
nodes. One obtains a complete binary tree by
denoting each subprocess by a node and each
communication between subprocesses by an edge
between corresponding nodes. The problem of
allocating those subprocesses, structured by a
complete binary tree, to processors in a given
interconnection networks will be reduced to the
problem of embedding a complete binary tree.

Load Balancing, communication locality,
communication congestion, and node utility in
process graphs can be abstractly studies as the
problem of embedding[7]. In a process graph, the
nodes represent processes comprising a distributed
program or a parallel program and the edges
represent communications between processes.
Embedding one graph into another is important
because an algorithm may have been designed for a
specific interconnection network, and it may be
necessary to adapt it to another network. The quality
of an embedding of a guest graph G in a host graph
H is measured by the maximum number of
processes of G placed on any processes of H, the
maximum distance between any pair of processes of
H corresponding to a pair of neighbor processes of
G, the maximum number of edges of G placed on
any edge of H, and the ratio of the order of H to the
order of G. These factors are called load, dilation,
congestion, and expansion, respectively. The
embedding problem is to find embeddings with
balanced loads, small dilations, and small
congestions. An efficient simulation of one network
on another network requires that these four costs be
as small as possible. However, for most embedding
problems, it is impossible to obtain an embedding
that minimizes these costs simultaneously.
Therefore, some tradeoffs among these costs must
be made.

In a multiprocessor system, we follow two fault
models defined in [5]. The first model assumes that,
in a faulty node, the computational function of the
node is lost while the communication function
remains intact; this is the partial faulty model. The

second model assumes that, in a faulty node, the
communication function is lost too; this is the total
faulty model. Conceptually, the network interface
hardware operates independent of the computer’s
processor. In this paper, our model is the partial
faulty model. That is, when the computation nodes
are faulty, the communication links are well and
only the faulty nodes are remapped.

The remainder of this paper is organized as
follows. Section 2 defines the IEH structure. In
section 3, we describe how to construct a complete
binary tree in an IEH. In section 4, we describe how
to embed a complete binary tree in a faulty IEH with
N-expansion under partial faulty model. Finally, we
conclude this paper.

2 Preliminaries
We briefly describe notations and definitions of the
hypercube and the IEH graph.

The hypercube is based on the properties of
binary n-cube in graph theory. An n-dimensional
hypercube, simply called n-cube, can be modeled as
a graph Hn=(V,E) with node set V(Hn) and edge set
E(Hn), where nV 2= , 12* −= nnE . For a Hn ,each
node in V(Hn) can be distinctly labeled by a unique
binary string of length n, then V(Hn)={ }12,,2,1,0 −nL
and E(Hn)= { }nHvuvu ∈,|),(and .1),(=vuHD
That is, each of the nodes corresponds to an n-bit
binary string v= as its label, and
two nodes are connected by an edge if and only if
their labels differ in precisely one bit.

0121 XXXX nn L−−

The IEH graph is the composition of some m
different hypercubes. Let Gn(N) be an IEH graph
with N nodes, and N can be expressed by the binary
string N= bnbn-1bn-2…b1b0, and bi ∈ {0,1}. An IEH
graph Gn(N) is composed of some different
hypercubes which have lower dimension than Gn(N)
has. That is, Gn(N) contains a hypercube, denoted by
Hi, if and only if the ith bit in the binary
representation of N is 1.

Accordingly, the IEH graph is composed of
some hypercubes, so there is a new type of
connections beside the usual connections in a
hypercube. These edges (or links) are used for
connecting two hypercubes are called Inter-Cube or
IC edges. The basic philosophy in the design of the
IEH graphs is to express N as a sum of several
powers of 2, i.e., to write N as a binary number,

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 920 Issue 7, Volume 7, July 2008

build the smaller hypercubes, and then to add
appropriate inter-cube edges to connect those
smaller hypercubes. For any given N, 2n≤ N<2n+1,
the steps of finding IEH graphs are as follows.
Step 1 Build subcube graphs. Express N as (n+1)
bits a binary number as N= bnbn-1bn-2…b1b0, where
bi ∈ {0,1} and bn=1 since N ≥ 2n. For each bi, bi≠0,
construct a hypercube graph Qi with 2i nodes.
Step 2 Label the nodes. Note that each node has a
(n+1)-bit binary label. Each hypercube Qi is labeled
as 11…10bi-1bi-2…b1b0. Obviously each hypercube
of dimension i (having 2i nodes) has i number of
dashed and the individual nodes of the hypercube
can be obtained by filling the dashes with 0 or 1 in
all possible ways. In other words, the binary
representation of each node in Qi has the same
prefix of (n-i)1's followed by a single zero.
Step 3 Construct the incremental hypercube in steps
by providing the inter-cube edges. Find the
minimum i such that bi≠0. Set j=i and Gj=Qi.

Set i=i+1.
While i≤n do
if bi≠0 then
 if i-j=1 then
each node x in Gj with label 11…bjbj-1…b0 is

connected to the node 11…10bjbj-1…b0 of Qi.
 else
each node x in Gj with label 11…1bjbj-1…b0 is

connected to (i-j) different nodes of Qi chosen in the
following way:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

−

−

−

−

01

01

01

01

01

......101101111

......011101111

......111101011

......111100111

......111101111

bbb

bbb

bbb

bbb

bbb

jj

jj

jj

jj

jj

KK

KK

M

KK

KK

KK

Set j=i and set Gj to be the composite graph
generated in the previous steps. Note that Gj has

now nodes and the binary label of each

node in Gj has a prefix of (n-j) 1's.

∑
=

j

k

k
kb

0
2

 i=i+1
 Return Gn as the desired incremental

hypercube graph of N vertices. �

Fig. 1: The IEH graph contains 14 nodes

Figure 1 shows the example of G3(14). G3(14)
consists of three subcubes. The three subcubes are
1-subcube(H1), 2-subcube(H2), and 3-subcube(H3).
Nodes 12 and 13 are composed as a 1-subcube(H1),
Nodes 8, 9, 10, and 11 are composed as a
2-subcube(H2), and nodes 0, 1, 2, 3, 4, 5, 6 and 7 are
the elements of a 3-subcube(H3). The edges (8, 12),
(9,13) are IC edges connected between H1 and H2
such that H1 and H2 are connected to be an IEH
graph containing 6 nodes(G2(6)). In addition, the H3
connects to G2(6) with these IC edges (0, 8), (1, 9),
(2,10), (3,11), (4,12), and (5,13).
Definition 1[7] Let x=xn-1…x0, y=yn-1…y0, then
Dim(x, y)={i in (0…n-1)∣xi ≠ yi}.
Definition 2[7] The Hamming distance between two
nodes with labels x=xn-1xn-2...x0 and y= yn-1yn-2...y0 is
defined as

HD(x, y)=∑ , where hd(xi , yi)=
−

=

1

0

),(
n

i

ii yxhd
⎩
⎨
⎧

≠
=

.yxif 1,
,yxif 0,

ii

ii

Definition 3[8] If a complete binary tree is a rooted
binary tree and each internal nodes contains two
offspring nodes, then a complete binary of height h
denoted by Th, contains 2h-1 nodes.
Definition 4[8] A double-rooted binary tree DTh,
where h is the height of the tree, is a complete
binary tree with the root replaced by a path of length
two.
Lemma 1[8] A double-rooted complete binary tree
can be embedded in a hypercube with dilation 2 and
load 1.

We illustrate an example as in figure 2 to figure
6.

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 921 Issue 7, Volume 7, July 2008

Figure 2: A double-rooted with 4 nodes can be
embedded into a 2-cube

Figure 3: The transformation of mapping (1)

Figure 4: The transformation of mapping (2)

Figure 5: The transformation of mapping (3)

Figure 6: A double-rooted tree with 8 nodes can

be embedded into a 3-cube
Definition 5[8] An IEH graph is called a full IEH
graph, denoted by Fn, if and only if it has 2n+1-1
nodes. Intuitively, a full IEH graph must contain
hypercubes H0, H1,…, Hn as its subcubes.

3 Mapping of Complete Binary Tree
IEH graphs are provided with all properties of
hypercubes because an IEH graph may contain
some different-sized hypercubes as its subgraphs.
Thus the IEH graphs are selected to be the host
graph of our embedding. Complete binary tree are
usually used in a lot of algorithms and
communications, so we proposed the method of
embedding complete binary trees in IEH graphs.

We describe our approach that maps a complete
binary tree in the full IEH or the IEH.
Lemma 2 A complete binary tree with height n
contains the same number of nodes as an
(n-1)-dimensional full IEH graph.
Proof. Suppose a tree Tn is said to be a complete
binary tree with height n, then each node of Tn
contains the same number of nodes in its right and
left subtrees. Consequently, the number of nodes in
a complete binary tree Tn has totally 2n-1 nodes. A
(n-1)-dimensional full IEH graph must, by the
definition, contain n hypercubes with different
dimensions. Therefore, an (n-1)-dimension IEH
graph, simply denoted by Fn-1, will consist of
hypercube with dimension with 0, 1, 2, …, and (n-1).
The kth-dimensional hypercube in a IEH is denoted
by Hk. Obviously, an (n-1)-dimensional full IEH

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 922 Issue 7, Volume 7, July 2008

contains 20+21+22+…+2n-1 = 2n-1 nodes because
each kth-dimensional hypercube in the IEH graph
contains 2k nodes. Hence, a complete binary tree
with height n contains the same number of nodes as
an (n-1)-dimensional full IEH graph. �
Lemma 3 An (n-1)-dimensional full IEH graph is a
subgraph of an n-dimensional full IEH graph.
Proof. Let Fn be a full IEH graph, then two divided
components Hn and F’n exist in Fn where Hn is an
n-dimensional hypercube and F’n is an
(n-1)-dimensional full IEH graph. According to the
method of constructing an IEH graph, the vertex set
of Fn-1 is a subset of the vertex set of Fn and the
edge set of Fn-1 is a subset of the edge set Fn.
Therefore, Fn-1 is said to be a subgraph of Fn.�
Lemma 4 Assume that Hn is an n-dimensional
hypercube and Fn-1 is and (n-1)-dimensional full
IEH graph, Fn-1 is a subgraph of Hn.
Proof. According to the method of constructing an
IEH graph, H0, H1, …, Hn-1 construct Fn-1. These IC
edges connecting between the n hypercubes are all
of Hamming distance 1. Hence, these IC edges in
Fn-1 are normal edges in Hn. Consequently, the
vertex set of Fn-1 is a subset of the vertex set of Hn
and the edge set of Fn-1 is a subset of the edge set Hn.
Therefore, Fn-1 is said to be a subgraph of Fn.�
Lemma 5 A full IEH graph contains a complete
binary tree.
Proof. In these trivial cases, complete binary trees
with 1 and 3 nodes can be directly embedded into
IEH graphs F0 and F1, respectively. The case of
embedding a tree with a single node into F0 is
straightforward. Embedding a complete binary tree
T2 into an IEH F1 must select node labeled by binary
string 00 to be the root of T2. The other two nodes of
F1 are the right and left leave nodes of the tree
respectively. The embedding of T3 into F2 is the
base case (shown in figure 7) of our embedding
method. According to the method of generating an
IEH graph, F2 is constructed by connecting three
hypercubes such as H0, H1 and H2. In F2, H0, H1 and
H2 are connected by IC edges. Not all of the nodes
in an IEH graph are connected by IC edge. Node
011 is the only one that does not link to any node by
an IC edge in F2. As a consequence, the node 011
can not be the interior node of a binary tree because
the node 011 belongs to H2 and the degree of 011 is
two. Additionally, the number of nodes of H2 except
for the node 011 is equal to the sum of number of
nodes of H0 and H1 in the full IEH graph F2.
Therefore, 011 must be the root of T3. The adjacent

nodes of node 011 are the nodes 001 and 010, that
can be the root of the left subtree and the root of the
right subtree respectively in the complete binary tree
T3. For the leave nodes of T3, two nodes, 000 and
101, are connected by 001, then 000 and 101 can be
the left and right leaves of 001 respectively. There is
a problem to map the leave nodes of 010 in F2
because the node 010 connects only one unused
node 110. The solution of connecting the last free
node 100 to the root node 010 of the right subtree
must pass a used node, which is called midway node.
As a result, the edge between 010 and 100 is
mapped into the path from 010 to 100 through a
midway node 000. Hence, the embedding of T3 into
F2 is constructed. Assume a complete binary tree Tn
can be embedded into a Fn-1. Let a complete binary
tree Tn+1 Can be embedded into a Fn. There exist
two divided components Hn and F’n in Fn where Hn
is an n-dimensional hypercube and F’n is an
(n-1)-dimensional full IEH graph. We select the
node 021 1110 L−− nnn to be a root of Fn, because

node 021 1110 L−− nnn belongs to Hn and node

021 111 L−− nn does not exist in Fn-1. According to

lemma 10, Fn-1 is a subgraph of Hn. In addition, the
number of nodes of Hn except for the node

021 1110 L−− nnn is equal to the sum of number of

nodes of H0, H1, …, and Hn-1 in the full IEH graph
Fn-1. So, we can extend a bit with zero in the left of
the most significant bit of these nodes in Fn-1 such
that these nodes can map in Hn. Hence, we can
construct the left subtree of Tn+1. According to
Lemma 9, Fn-1 is a subgraph of Fn. In addition, the
number of nodes of F’n is equal to the sum of
number of nodes in the full IEH graph Fn-1. In other
words, () (1: −→)′ nn FVFVδ is the one-to-one
mapping function. So, we can extend a bit with one
in the left of the most significant bit of these nodes
in Fn-1, such these nodes can map in F’n. Therefore,
we can construct the right subtree of Tn+1. Without
loss of generality, we know the root of the left
subtree and the root of the right subtree in Fn is

0211 11100 L−−+ nnnn and 0211 11101 L−−+ nnnn ,

respectively. Therefore, there is a problem of
connecting the root node and the root of the right
subtree because HD(root, the root of right subtree)
is not equal to 1. The solution of connecting the root
node 011…11 and the root node 101…1 of the right
subtree to must pass a used node 001…1. As a result,

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 923 Issue 7, Volume 7, July 2008

the edge between 011…1 and 101…1 is mapped into
the path from 011…1 to 101…11 through a midway
node 001…1. So the embedding of Tn+1 into Fn is
constructed.�

Figure 7: A complete binary tree T3 can be

embedded into F2.
We extend the process of the base case to embed

Tn to Fn-1, where . The process can be divided
into three steps:

4≥n

1. Identify the root of Tn
2. The left subtree and the right subtree is

easily constructed by embedding Tn-1 into Fn-2.
3. Combine the root, the left subtree and the

right subtree.
 The construction of right subtree is simply
to extend one significant bit in the binary strings of
nodes that are the embedding nodes of Tn-1 into Fn-2
and label the bit with 1. Then, the construction of
left subtree is simply to change the most significant
bit of the right subtree from 1 to 0. Therefore, the
algorithm needs a subprocess concatenate, to
accomplish the embedding. The algorithm is
described as follows:
Algorithm Embedding (Tn)
Input: T3, n /* T3 is the base case, n is the size of a
complete binary tree */
Output: Tn /* The complete binary tree with height n
*/
Begin
1. If n = 3 then Return T3
2. Else
3. Begin
4. Root = 01n-1
5. /* 01n-1 is the binary string with MSB 0
 following (n-1) 1’s. */
6. Right = concatenate (1, Embedding (Tn-1))
7. /* All nodes of Tn-1 extend their MSB and
 set them to 1’s. */
8. Left = concatenate (0, Embedding (Tn-1))
9. /* All nodes of Tn-1 extend their MSB and

 set them to 0’s. */
10. () { } () ()LeftVRightVrootTV n ∪∪=
11.
() () () () (){ }LRn rootrootrootrootLeftERightETE ,,,∪∪=

12. /* rootR, and rootL are the roots of right and
 left subtrees */
13. End;
End.

There are two examples in this section. The first
example is to embed the complete binary tree T4 into
a full IEH graph F3, the root of T4 is the node 0111,
which is selected by the above discussion. Certainly,
the node 0111 is the only one node without linked
IC edge. The construction of the right subtree of T4
is based on the result of embedding T3 into F2. By
extending one significant bit of the binary strings of
all nodes in T3, the right subtree of T4 is constructed
with setting the extended bit to 1’s and the left
subtree of T4 is constructed with setting the
extended bit to 0’s. After the right and left subtree
are constructed, the embedding complete binary tree
is accomplished by connecting the root node 0111 to
the roots of left and right subtree. The midway
nodes in the embedding complete binary tree are
transformed as the same process as the nodes in
trees. To embed the complete binary tree T4 into a
full IEH graph F3 are shown in figure 8.

Figure 8: T4 is embedded into F3

Figure 9: T5 is embedded into F4

For the detail description, the second example of
embedding T5 into F4 is shown in figure 9 and listed

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 924 Issue 7, Volume 7, July 2008

as follows:
1. Identify node 01111 is the root of T5.
2. T4 is constructed in the previous example.

 We use T4 as the original tree of the right
 subtree in T5.

3. We extend the significant bit of all nodes in
 the original right subtree and set the bit to 1.
 Then the formal right subtree of T5 is
 constructed.
4. Construction of left subtree is simply to
 change the most significant bit of the right
 subtree from 1 to 0.
5. We connect the roots of the left and right

 binary tree to the selected root 01111, then
 the embedded T5 in F4 is constructed.

In consequence, our embedding algorithm can
also be applied into hypercubes with one faulty node.
Therefore, we develop an algorithm to embed a
complete binary tree with height n into an
n-dimensional hypercube.
Lemma 6 A complete binary tree can be embedded
in a hypercube with one faulty node.
Proof. Because Fn-1 is a subgraph of Hn, a complete
binary tree can also be embedded into a hypercube.
Hn has more than one node than Fn-1 and Fn-1 which
does not contain the node (1)n. As a reason, a
complete binary tree can be embedded into a
hypercube with one faulty node. As a result, these
edges in a tree transformed by the right subtree that
is produced by Fn-2 exist in the Fn-1. So, the
embedding algorithm is correct for constructing the
complete binary tree. The embedding algorithm is
with dilation 2, expansion 1, congestion 1, and load
1. The following theorems show the measurement of
our embedding algorithm. �
Lemma 7 Embedding the complete binary tree in a
full IEH graph or a hypercube graph is dilation 2,
expansion 1, load 1 and congestion 1.
Proof. In the embedding of Tn into Fn-1, there are
some midway node must be passed to connect two
nodes That is, some edges in the tree Tn are mapped
in a path of the length 2 in the IEH graph Fn. As the
consequence, the dilation of the embedding is 2 and
congestion is 1. The embedding of Tn into Fn-1 is
one-to-one mapping for these nodes, so the
expansion and load of our embedding is exactly
equal to 1. Therefore, embedding the complete
binary tree into a full IEH graph or a hypercube
graph is dilation 2, expansion 1, load 1 and
congestion 1.�
Theorem 1 A complete binary tree Tn can be

embedded in Gn(N) with expansion 2, dilation 2,
congestion 1, and load 1.
Proof. It is trivial by lemma 7.
Theorem 2 A complete binary tree Th can be
embedded in Gn(N) with N-expansion, dilation 2,
congestion 1, and load 1.
Proof. It is trivial by theorem 1.

4 Load-Balancing and Fault-Tolerance
Embedding with N-Expansion
In section 3, Th can be embedded in IEH Gn(N) with
N-expansion by theorem 2. In this section, we
present how to embed a complete binary tree to a
faulty IEH graph. Hence, we consider a complete
binary tree can be embedded in an IEH with
N-expansion graph which contains faulty node.

By theorem 2, Tn can be embedded in Gn(N)
with N-expansion. Furthermore, we propose an
algorithm LB_Tree_Embedding() for embedding a
complete tree in a faulty IEH as follows.

Algorithm LB_Tree_UB_Embedding(x)

Input: x /*the faulty node*/, Gn(N), Th
Output: y /*the replace node*/
1. if the root r is faulty then
2. search the other root node r’
3. if the node r’ is faulty then backtrack the root r
4. else
5. return(r’) /* node r is replaced by node r’/
6. exit()
7. if any node x is faulty then
8. j=0
9. construct a queue Q; Q=Φ
10. while)1(+−≤ hnj do
11. we can search the node ϖ
12. /* 1),(=ϖxHD , jhxDim +=),(ϖ */
13. if nodeϖ is exist and it is free then
14. node x is replaced by node ϖ
15. remove all of the nodes in a queue
16. exit()
17. insert(ϖ , 1−+ jh) in a queue
18. j=j+1;
19. while Q is not empty do
20. remove the first pair ()βα , from Q
21. k=0
22. while β≤k do
23. we can search the node λ

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 925 Issue 7, Volume 7, July 2008

24. /* 1),(=λαHD , kDim =),(λα */
25. if node λ is exist and it is free then
26. node x is replaced by node λ
27. exit()
28. k=k+1
29. Declare the replaceable node is faulty�

Finding the replace node as follow:
node 0 = 0n 0n-1…0h+10hXh-1Xh-2…X1X0

node 1 = 0n 0n-1…0h+11hXh-1Xh-2…X1X0

node 2 = 0n 0n-1…1h+10hXh-1Xh-2…X1X0
 …
node n-h+1 = 1n 0n-1…0h+10hXh-1Xh-2…X1X0
node n-h+2 = 0n 0n-1…0h+11hXh-1Xh-2…X1X’0

 …
node n+1 = 0n 0n-1…0h+11hX’h-1Xh-2…X1X0
node n+2 = 0n 0n-1…1h+10hXh-1Xh-2…X1X’0
 …
node n+h+2 = 0n 0n-1…1h+11hXh-1Xh-2…X1X0
node n+h+3 = 0n 0n-1…1h+20h+10hXh-1Xh-2…X1X0
 …
node n+2h+4 = 0n 0n-1…1h+21h+10h)Xh-1Xh-2…X1X0
 …
node (n-h+1)+(n+h+1)*(n+1-h+1)/2
 = 1n-11n-1 0n-2…0h+10hXh-1Xh-2…X1X0
 We also give a simple example in this section
to explain the operations of the algorithm
LB_Tree_UB_Embedding() when the faulty nodes
exist. For the IEH G3(15) as figure 10.
1. If the root 0000 is faulty, it visits the other root

0001, to check whether it is free or not. If it is, it
terminates.

2. If not, backtrack to the root 0000 .
3. If the node 0000 is faulty, it visits or signals the

node 0100, to check whether it is free or not. If
it is, it terminates.

4. If not, insert the node 0100 to the queue, and
search the node 1000, to check whether it is free
or not. If it is, it terminates.

5. If not, insert the node 1000 to the queue, and
remove the node 0100 from the queue, search
the node 0101, to check whether it is free or not.
If it is, it terminates.

6. If not, search the node 0110, to check whether it
is free or not. If it is, it terminates.

7. If not, remove the node 1000 from the queue,
search the node 1001, to check whether it is free
or not. If it is, it terminates.

8. If not, search the node 1010, to check whether it
is free or not. If it is, it terminates.

9. If not, search the node 1100, to check whether it
is free or not. If it is, it terminates.

10. If not, return(“Failure”).
Therefore, the whole searching path is listed as
{(0001), (0100), (1000), (0101), (0110), (1001),
(1010),
(1100)}.

Figure 10: T2 can be embedded in faulty G3(15)

Theorem 3 A complete binary tree (Th) can be
embedded in faulty IEH Gn(N) graph with dilation 4,
expansion n, congestion 1, and load 1.
Proof. Every searching path is only one path
according to the algorithm LB_Tree_UB_
Embedding(), allowing us to obtain congestion 1
and load 1. Herein, we allow N-expansion to obtain
the replace node of the faulty node. Finding the
replace node in that dilation become 2+2=4 in worst
case by algorithm LB_Tree_UB_Embedding(). And
these nodes and links of searching paths are not
replicated from algorithm LB_Tree_UB_
Embedding(). These costs associated with graph
embedding are dilation 4, congestion 1, and load 1.
Theorem 4 A searching path of algorithm
LB_Tree_UB_Embedding() is including
[(n-h+1)+(n+h+1)*(n+1-h+1)/2] nodes.
Proof. By theorem 2 we can embed complete binary
tree(Th) in Gn(N) with N-expansion. If node is faulty,
we can change a bit in the binary string sequence
form bit h to bit n and insert its corresponding node

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 926 Issue 7, Volume 7, July 2008

into the queue. In the worst case, we can get n-h+1
different node. Then we remove the node from the
queue. From the first node we can change a bit in
the sequence from bit 0 to bit h-1, and we get h
different nodes. Until the queue is empty, the sum of
all searched node is (n-h+1)+[h+(h+1)+ …
+(n+1)]= [(n-h+1)+(n+h+1)*(n+1-h+1)/2] nodes.
Theorem 5 There are O(n2-h2) faults, which can be
tolerated.
Proof. It is trivial by theorem 4.
Theorem 6 Our results for the embedding methods
are optimized mainly for balancing the processor
and communication link loads.
Proof. Because these nodes and edges of searching
paths are not replicated from the algorithm
LB_Tree_UB_Embedding() and load 1, this
observation implies that the primary optimization
objective of embedding is minimize the inter
processor communication cost and to balance the
workload of processors having reached.

5 Conclusions
In this paper, we consider the algorithm
LB_Tree_Embedding for a complete binary tree can
be embedded in an IEH. Considering embedding of
complete binary tree in a faulty IEH, allowing
N-expansion shows that up to O(n2-h2) faults can be
tolerated. The main result of this paper is that it is
always possible to give solutions to the embedding
of complete binary trees in a faulty IEH graph with
N-expansion. The costs associated with graph
embedding in our strategies of reconfiguration are
dilation 4, congestion 1 and load 1. By the result, we
can embed the parallel algorithms developed by the
structure of complete binary tree in an IEH. These
methods of reconfiguring enable extremely
high-speed parallel computation. Therefore, we can
easily port the parallel or distributed algorithms
developed for these structures to the IEH graphs and
hypercubes.

Reference
[1] S. B. Akers, and B. Krishnamurthy, A

Group-Theoretic Model for Symmetric
Interconnection Networks, IEEE Trans. on
Computers, Vol. 38, 1989, pp. 555-565.

[2] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel
and Distributed Computation: numerical
methods,” Prentice Hall, Englewood Ciffs,

New Jersey, 1989.
[3] C.-C. Chen, Dynamic Reconfiguration of

Complete Binary Trees in Faulty Hypercubes,
Journal of Information Science and
Engineering, Vol. 21, No. 1, 2005, pp.
195-207.

[4] K. Efe, “Embedding large Complete Binary
Trees in Hypercubes with load balancing,”
Journal of Parallel and Distributed Computing,
Vol. 35, 1996, pp. 104-109.

[5] J. Hastad, T. Leighton, and M. Newman,
“Reconfiguring a Hypercube in the Presence of
Faults,” ACM Theory of Computing, 1987, pp.
274-284.

[6] F. T. Leighton, Introduction to parallel
algorithms and architectures: Arrays, Trees,
Hypercubes, MORGAN KAUFMANN
PUBLISHERS, Inc., 1992.

[7] J.-C. Lin, Load Balancing and Embedding
Rings in Faulty Incrementally Extensible
Hypercubes, WSEAS Transactions on
Computers, Vol. 5, 2006, pp. 1867-1872.

[8] J.-C. Lin and H.-C. Keh, Reconfiguration of
Complete Binary Trees in Full IEH Graphs
and Faulty Hypercubes,” International Journal
of High Performance Computing Applications,
Vol. 15, No.1, 2001, pp. 47-55.

[9] J.-C. Lin, S. K.C. Lo, S.-J. Wu, and H.-C. Keh,
Distributed Fault-Tolerant embeddings of rings
in Incrementally Extensible Hypercubes with
Unbounded Expansion, Tamkang Journal of
Science and Engineering, Vol. 9, No. 2, 2006,
pp. 121-128.

[10] J.-C. Lin, Faulty-Avoiding Methods for
Mapping Meshes in an IEH, WSEAS
Transactions on Computers, Vol. 6, No.6,
2007, pp. 888-893.

[11] Y. Saad, and M. Schultz, Topological
properties of Hypercube, IEEE Trans. on
Computers, Vol. 37, 1988, pp. 867-871.

[12] C. Seitz, “The Cosmic Cube,” Commun. ACM,
Vol. 28, pp. 22-33, 1985.

[13] H. Sullivan, T. Bashkow, “A large scale,
homogeneous, fully distributed parallel
machine, I,” Proc. 4th Symp. Computer
Architecture, ACM, pp. 105-177, March 1977.

[14] S. Sur, and P. K. Srimani, Incrementally
Extensible Hypercube Networks and Their
Fault Tolerance, Mathematical and Computer
Modeling, Vol. 23, 1996, pp. 1-15.

[15] S. Sur, and P. K. Srimani, IEH graphs: A

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 927 Issue 7, Volume 7, July 2008

novel generalization of hypercube graphs,
Acta Informatica, Vol. 32, 1995, pp.
597-609.

[16] S.-H. Wang, Y.-R. Leu and S.-Y. Kuo,
“Distributed Fault-Tolerant Embedding of
Several Topologies in Hypercubes,” Journal of
Information Science and Engineering, Vol. 20,
No. 4, pp. 707-732, 2004.

[17] A.Y. Wu, “Embedding of tree networks into
Hypercubes,” Journal of Parallel and
Distributed Computing, Vol. 2, pp. 238-249,
1985.

[18] P.-J. Yang, S.-B. Tien, and C.S. Raghavendra,
“Embedding of Rings and Meshes onto Faulty
Hypercube Using Free Dimensions,” IEEE
Trans. on Computers, Vol. 43, No. 5, pp.
608-618, 1994.

[19] I. Zelina, P. Pop, C. P. Sitar, and I. Tascu,
A parallel algorithm for interpolation in
Pancake graph, Proceedings of the 6th
WSEAS International Conference on
SOFTWARE ENGINEERING, PARALLEL and
DISTRIBUTED SYSTEMS (SEPADS '07),
2007, pp.98-101.

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 928 Issue 7, Volume 7, July 2008

