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Abstract- A multiuser detector for direct-sequence code-division multiple-access systems based on 
particle swarm optimization (PSO) algorithm is proposed. To work around potentially computational 
intractability, the proposed scheme exploits heuristics in consideration of both global and local 
exploration maximum likelihood (ML). Computer simulation demonstrates that the proposed detector 
offers near-optimal performance with considerably reduced computation complexity compared with 
that of existing sub-optimum detectors are presented.  
 
Key Words-- Code-division multiple access, particle swarm optimization, evolutionary algorithm, 
multiuser detection. 
 
 
1 Introduction 
Recently, direct-sequence code division multiple 
access (DS-CDMA) systems has become very popular 
in various applications such as wireless 
communications [1-2]. However, Multiple-access 
interference (MAI) and near-far are a major limiting 
factor conventional direct-sequence code division 
multiple access systems. As an efficient way to 
mitigate the effect of MAI, various multiuser 
detection methods have been proposed [2-9].The 
optimum multiuser detector (OMD) was developed by 
Verdú [3] for asynchronous CDMA system. Also, 
Verdú has shown that optimum, near-far resistant 
multiuser demodulation can be achieved via the 
maximization of an integer quadratic objective 
function.  Unfortunately, the computation complexity 
of OMD increases exponentially with the number of 
users that causes the implementation of OMD of 
impractical [2]. Therefore, researchers have devoted 
themselves to finding suboptimum detectors that can 
achieve better performance with less computation 
complexity. Hence, the implementation complexity of 
even suboptimal multi-user detectors such as the 

decorrelator [4-5] and multistage interference 
cancellation [6-9] has so far prevented their 
widespread acceptance in industry.  

Due to the computational complexity of the 
problem, heuristics have been proposed recently, 
including genetic algorithm (GA) [10-13], local 
search algorithm [14], evolutionary programming (EP) 
[15] based optimal multiuser detector have been 
utilized to solve the multiuser detection (MUD) 
problem. Other Evolution methods such Hybrid 
artificial Neural Network for wafer lot output time 
prediction [25], immune algorithm for 
satellite-derived land-cover classification [26] and 
evolution method for mobile networks [27] problem. 
GA has been highly successful and widely 
implemented within the CDMA Systems. For instance, 
Ergün et al. [10] utilized the GA as the first stage of a 
multistage multiuser detector, in order to provide 
good initial guesses for the subsequent stages.  K. Yen 
et al. [11] a hybrid detector employs GA based 
scheme in conjunction with a local search in order to 
improve the initial guesses. Abediet et al. [13] 
developed a hybrid detector for a CDMA system. The 
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aim is to improve the structure of detector, which 
results to better estimation of the data bits. As GA 
required the process of initialization, the first 
estimation of the tap coefficients performance that 
forms the first generation of GA. Unfortunately, the 
flaws of GAs are slow convergence to a good 
near-optimum and high computational complexity. 
Driven by the demand for the algorithms with 
significantly lower computational complexity than the 
optimum algorithm but slightly worse performance, 
this work proposes a novel approach to solve the 
problem of multiuser detection in asynchronous 
CDMA systems.  

A new evolutionary computation technique, call 
particle swarm optimization (PSO) [17-19], has 
recently been proposed, and has proven to be a 
powerful optimization approach.  We have found that 
using a conventional detector (CD) to produce initial 
values for the proposed PSO works very well. This 
choice retains the advantage of linear computational 
complexity. Further, in each case tested, this 
initialization method produced a final solution with 
performance very close to optimum. Since each 
iteration will always improve performance, 
convergence of our algorithm is guaranteed. This 
property ensures PSO to be less susceptible to getting 
trapped on local minima. Moreover, the PSO 
requiring only velocity calculation clearly has 
advantages of algorithmic simplicity and lower 
computation load owing to that the three major 
operations of select, crossover, and mutation used in a 
GA are not necessary for the PSO. These operations 
always result in complexity and difficulty of program 
implementation. Furthermore, to overcome the 
problem of premature convergence, instead of using 
the mutation operator in a GA, the PSO applies the 
method of the controlling the balance of particle’s 
velocity between local and global best positions in the 
problem space. Hung et al. [20-21] [25], Soo et al. [22] 
and Liu et al. [23] demonstrate that a PSO-based 
MUD for synchronous and Asynchronous CDMA 
(ACDMA) provides optimal BER performance with a 
lower computation complexity than a GA-based 
MUD.  

This paper is organized as follows. In Section 2 we 
will describe the ACDMA system along with the 
multipath channel.  Section 3 describes the PSO used 
to implement our proposed detector. In Section 4, we 
will present some simulation results, which 
demonstrate the potential of the proposed joint 
detector scheme. Finally, Section 5 is the concluding 
section.  

 

2 System Model 
Consider an asynchronous CDMA system 
accommodating K users. Let ( )r t , the signal at the 
receiver, is the superposition of K transmitted signals 
in addition to channel noise when there are K active 
transmitters in asynchronous Gaussian channel in 
given time interval, as shown by  

  1
( )     ( )  ( ) (  - )  ( ),   R

P K

k k k k
i P k

r t A i b i s t iT n t tτ
=− =

= − + ∈∑ ∑     

(1) 
where ( )kA i  is the power of the kth user at time iT, 
1/T is the data rate, { }( ) 1,1kb i ∈ −  is the ith transmitted 
bit of the kth user, ( )ks t  represent the kth user’s 
transmitted waveform which is the time-limited 
wide-band signal derived from the signature sequence, 
the length of which is N  and / cN T T=  , where T and  

cT ,  represent the symbol duration and the chip of 
signatures sequence, assigned to that packet in the 
spread spectrum CDMA system, respectively, 

[0, )k Tτ ∈  is  the transmission delay of the kth user 
relative time  and 2 P +1 is the packet size and n(t) 
represents the additive white Gaussian noise with 
two-sided power spectral density 0 / 2N . Without 
loss of generality, we can assume 
that bK T<≤≤≤≤ τττ 210 . The received signal 
amplitude and the transmission delays kτ  are 
assumed to be known at the receiver.  

In ACDMA systems, the CD consists of a bank of 
filters matched to the signature waveforms of each 
user, and a simple thresholding device that produces 
an estimate îkb  for the i th information bit of the k th 
user based on the sign of the i th output of the k th 
matched filter 

( 1)
( ) ( )k

k

i Ti
k k kiT

y r t s t iT dt
τ

τ
τ

+ −

−
= − −∫              

)( ii
CD sign yb =                                               (2) 

where [ ]Ti
K

i  ii  y   yy 1-21=y . The sufficient 
statistics for demodulation of the transmitted bits b 
given by the NK matched outputs.  The matrix form of 
the outputs of matched filters can be expressed as        

nRAbY += ,                                       (3) 
where 

[ ]TT T
1[ ( ), , ( )] , ( )= Y ( ), Y ( )T

kP P i i i= −Y Y Y Y , 
  )),( , ),(-( PPdiag AAA =  

))(  ,)(()( 1 iAiAdiagi k=A  is a diagonal 
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matrix whose diagonal elements are the signal power 
of the corresponding users; 

[ ]TT T
1(- ), ( ) , (i)= ( ), ( )

T

kP P b i b i⎡ ⎤= ⎣ ⎦b b b b  , 

and n is a Gaussian noise vector with covariance 
matrix power spectral density 0N R . The matrix R 
can be written as [10-11], [24] 

                                
 0   0

                           
   0                                0 
                            

=

T

T

R(0)      R (1)                                   
R(1)       R(0)       R (1)
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   0                      0               

⎡ ⎤
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⎢ ⎥
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where R(0) is a K K× matrix whose elements are 
given by  

          (0)

1,       if    
,   if    

,   if   
jk jk

kj

j k
R j k

j k

α

α

⎧ ⎫=
⎪ ⎪

= <⎨ ⎬
⎪ ⎪>⎩ ⎭

                               (5) 

and R(1)  is a K K×  matrix whose elements are 
given by  

           (1)

0,       if   
,    if  jk

kj

j k
R

j kα
≥⎧ ⎫

= ⎨ ⎬<⎩ ⎭
                        (6) 

jkα  denotes the partial crosscorrelation function for 
the jth and kth user . 

For asynchronous CDMA the optimum multiuser 
detection [2-3] can be expressed as 

(2 1)
max

{ 1, 1}
ˆ arg{ 2  }P K

T T
OMD +∈ + −

= −
b

b y Ab b ARAb .    (7) 

Let H=ARA, the OMD problem is equivalent to 
maximizing an objection  

( ) 2 TL = Tb y Ab - b Hb                                 (8) 
with the information bits vector b constrained to the 
set { }(2 1)1, 1 P K+− . The optimal multiuser detection is 
an NP-complete combinatorial optimization problem 
is inefficient for its solution. When the frequency 
selective fading occurs, the discrete received signal 
for the kth user at the conventional receiver is given 
by  

,
  1

( ) ( )  ( ) (  - ) ( )  ( ),  
P K

k k k k l k
i P k

r t A i b i s t iT h t n tτ
=− =

= − ∗ +∑ ∑

                                                                          (9) 
where the symbol ∗  denotes convolution, 

)()(
1

k,l

L

l

-jφ
k,lk t-αecth k,l τ∑

=

=  is the baseband impulse 

response of channel for user k. k,lc  is the amplitude of 
the lth path of the kth user channel which has Rayleigh 

distribution , k,lφ  and k,lτ  are the analogous phase 
and delay that have uniform distributions in the 
intervals [ 0, 2π ] and [0, T], respectively. The output 
of the filter matched to the lth path of user k at time iT 
is obtained as  

                                                             

    
,

,

( 1)

, ,+
( ) ( )k l

k l

i Ti
k l k k liT

y r t s t iT dt
τ

τ
τ

+ +
= − −∫            (10) 

The output of matched filter can be expressed in the 
matrix form as  
                nRAWbY +=                                 (11) 
where  
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1

1
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k
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                            (12)  

)(iY  is the output all K users matched filters, )(Y ik  
is the outputs of the kth users mathched filters at time 
iT,  and W  is the matrix of received signal coefficients 
for all K users definded as  
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where I is an L × L identity matrix, k,l-jφ
k,lk,l ec=β , 

and  R is the correlation matrix as  
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The conventional single user detector is Rake receiver 
that combines the outputs of matched filter using the 
maximum ratio combining method. 

                          
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

∗
L

l
k,lk,lrake YβY

k
1

Re            (15) 

3 Particle swarm optimization based 
multiuser detector 

PSO is an evolutionary computation technique 
through individual improvement plus population 
cooperation and competition, which is based on the 
simulation of simplified social models, such as bird 
flocking, fish schooling, and the swarming theory [18]. 
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One advantage of PSO over the GA is its algorithmic 
simplicity. A GA comprises parameters of its major 
operators which are crossover, mutation, and elitism. 
The parameters are population size, probability of 
mutation, probability of crossover and selection. 
However, there PSO has one simple operator, velocity 
calculation. The benefit of a small number of 
operators is the reduction of computation and the 
elimination of the need to select the best operator for a 
given optimization. Another difference between the 
PSO and GA is the ability to control convergence.  
Mutation and crossover rates can subtly affect the 
convergence of the GA, but not an effectively as the 
inertial weight.  D .B. Fogle [16] indicated that the 
decrease of inertial weight significantly increases the 
swarm’s convergence. This type of control allows the 
use to determine the rate of convergence, and the final 
level of stagnation ultimately achieved. Stagnation 
occurs in the GA when eventually all the individuals 
possess primarily the same genetic code. In that case, 
the gene pool is so homogeneous that crossover has 
little or no effect, and each successive generation is 
the same as the first. However, this effect can be 
controlled or prevented in the PSO. With a large 
inertial weight the particles continue to fly back and 
forth over the global best, and new locations of higher 
fitness can be identified.  Form the above and the 
NP-complete nature of the problem of MUD, applying 
PSO to the problem of MUD can be justified.  
 

 
Fig. 1 PSO based multiuser detection scheme with the 
discrete-time equivalent models.  
 

   A novel low-complexity multiuser detector for 
ACDMA systems by applying the PSO technique is 
presented in this section. Basically, the PSO based 
multiuser detector is shown in Fig. 1.  In this context, 
the population is called a swarm and the individuals 
are called particles.  Resembling the social behavior 
of a swarm of bees to search the location with the most 
flowers in a field, the optimization procedure of PSO 

is based on a population of particles which fly in the 
solution space with velocity dynamically adjusted 
according to its own flying experience and the flying 
experience of the best among the swarm. Fig. 2 shows 
the flow chart of a PSO algorithm. During the PSO 
process, each potential solution is represented as a 
particle with a position vector and a moving velocity 
represented as x and v, respectively. 

Thus for a K-dimensional optimization, the position 
and velocity of the ith particle is represented as 

,1 ,2 ,( , ,..., )i i i i Kx x x=x  (i.e., the output data of CD 

receiver ]ˆ,,ˆ,ˆ[ˆ
,2,1, Kiiii bbbb = ) and 

,1 ,2 ,( , ,..., )i i i i Kv v v=v . The randomness enables the 
exploration of a broad population of possible 
solutions in the entire search space. At every time step, 
an associated value for each particle is evaluated 
according to with a function called the cost function, 
which is critically defined and configured by 
considering the search objective with  ix  as input. 
The value normally called the cost indicates the 
goodness of the solution. However, a practical 
implementation has not only one possible fitness 
function that can reflect the design objective. A 
function that can best represent the relative 
importance of each goal can often be obtained through 
trial and error. 

The position of the individual best fitness 
achieved by particle i has achieved so far. Meanwhile, 
that of the highest fitness which has been obtained 
among all the particles in the population so far, are 
called the personal best ( pbest  denoted as best

ix ) and 

the global best ( gbest denoted as bestx ), respectively, 
and both are stored to generate the new velocity of 
particle i. Each particle adjusts its velocity during the 
process according to its own experience and the 
position of the best of all particles to move toward the 
best solution. Meanwhile, a condition is also set 
during the following step, controlling the algorithm 
when it stops by either setting it to obtain an 
acceptable target solution or to run for a set maximum 
number of search iterations. If the algorithm does not 
step, after a time step, t∆ , then the new velocity 

( )i t t+ ∆v  for particle i is updated by  
   

1 1

2 2

( ) ( ) * *( ( ) ( ))

                  * *( ( ) ( ))

best
i i i i

best
i

t t w v t c r t t

c r t t

+ ∆ = ⋅ + −

+ −

v x x

x x
(16) 

where iv (t) is the old velocity of the particle i at time t. 
Apparent from this equation, the new velocity is 
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related to the old velocity weighted by w and also 
associated to the position of the particle itself and that 
of the global best one by factors 1c  and 2c .The 1c and 

2c  are therefore referred to as the cognitive and social 
rates, respectively, because they represent the 
weighting of the acceleration terms that pull the 
individual particle toward the personal best and global 
best positions. The inertia weight w  in (16) is 
employed to manipulate the impact of the previous 
history of velocities on the current velocity. Therefore, 
w  resolves the tradeoff between the global and local 
exploration ability of the swarm. Large inertia weights 
encourage global exploration, while a small one 
promotes local exploration, i.e., fine-tuning the 
current search area. For the purpose of intending to 
simulate the slight unpredictable component of 
natural swarm behavior, two random functions 1r  and 

2r  are applied to independently provide uniform 
distributed numbers in the rang [0,1] to stochastically 
vary the relative pull of the personal and global best 
particles. The new position for particle i is determined 
from the updated velocities the following equation: 

  
( ) ( ) * ( )i i it t t t t t+ ∆ = + ∆ + ∆x x v              (17) 

 
The populations of particles are then moved 

according to the new velocities and locations obtained 
with (16) and (17), and tend to cluster together from 
different directions. The evaluation of each associate 
fitness of the new population of particles is thus 
repeated. The algorithm runs iteratively through these 
processes until it stops. Each particle is an 
m-dimensional real-valued vector, where m is the 
number of optimized parameters. Therefore, each 
optimized parameter represents a dimension of the 
problem space. For this paper, a population size of 30 
particles is selected and randomly generated initially. 
This number is suggested for most engineering 
problem and has also been shown to be sufficient for 
our problems [17]. 

As shown in Equation (16), the second term 

1 1 ( ( ) ( ))best
i ic r t t⋅ ⋅ −x x  in the velocity updating rule 

approaches zero if particle )(tix  lies close to the 

local best )(tbest
ix . Similarly, the third term 

2 2 ( ( ) ( ))best
ic r t t⋅ ⋅ −x x  in the velocity updating rule 

approaches zero for particles )(tix  lying close to 

their global best )(tbestx . It suffices to say that 

particles close to their local best )(tbest
ix  or global 

best )(tbestx  evolve in a much refined way in 
comparison to those far away from their best ones. 
There is no guarantee, however, that these particles 
close to their best positions so far will converge to the 
desired optima. That is, these particles might 
unfortunately converge to local optimum, which is 
called a premature phenomenon. To solve this 
problem, conventional techniques generally randomly 
initialized a portion of particles in the swarm after 
generating the global best )(tbestx  to improve the 
convergence rate. Alternatively, velocities of factors 
within each particle are slightly adjusted at random 
during each iteration. This technique, however, 
required that empirically derived parameters be used, 
which does not apply well to every objective 
functions under consideration. To maintain the simple 
structure of conventional PSO while avoiding 
evolution of all particles toward a unilateral direction, 
a preferential velocity-updating mechanism is 
proposed and incorporated into the PSO to avoid 
premature of evolution in this paper. The evolution is 
directed in such a way that particles with coarse 
evolutionary resolution (i.e., particles far away from 

)(tbestx ) are provided with more spontaneity to 
search by imposing heavier preference on the second 
term and lighter preference on the third term of the 
velocity-updating rule in Equation (16). On the other 
hand, particles with finer evolutionary resolution (i.e., 
particles close to )(tbestx ) are provided with better 

exploitation capability to search toward )(tbestx  by 
imposing lighter preference on the second term and 
heavier preference on the third term of the 
velocity-updating rule. 

To achieve the above-mentioned objective, a 
preference function denoted as )(tPFi  is 
incorporated into Equation (16) for particle i, forming 
the proposed velocity-updating rule as follows:  

 

[ ]
1 1

2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) 1 ( )

best
i i i i

best
i i i

t t w t c r t t

PF t c r t t PF t

⎡ ⎤+ ∆ = ⋅ + ⋅ ⋅ −⎣ ⎦
⎡ ⎤⋅ + ⋅ ⋅ − ⋅ −⎣ ⎦

v v x x

x x
   (18).

    
For clarity, the steps to calculate the preference 
function )(tPFi   are summarized below: 

Step 1: Calculate distance deviated from )(tbestx  for 
every particle i in the swarm:  

2

2
)()( ttd i

best
i xx −= ,         (19) 
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Step2: Sort { }, 1, 2, ,id i Q=  in ascending order to 
obtain the index of the results:  

{ }1 2 (20)ascending i Q
i

Arg sort d d d d=k

 where 1 2 i Qk k k k⎡ ⎤= ⎣ ⎦k . 

Step 3: Calculate )(tPFi  for every particle i in the 
swarm of Q particles:  

( ) i
i

kPF t
Q

= ,        (21) 

To better understand the derivation of )(tPFi , a 
swarm of 5 particles each comprising 2 factors is 
illustrated below: 
 
Example:  Assume a swarm 
{ } ( ) ( ) ( ) ( ) ( ){ }5,54,43,32,21,15,,2,1),( ==itix
, where the global best position ( )3.2,2.2)( =tbestx  is 

know as a priori. We calculate )(tPFi  via the steps 
mentioned earlier. 
Step 1: 

13.3)1,1()3.2,2.2()()( 2

2

2

211 =−=−= ttd best xx  

13.0)2,2()3.2,2.2()()( 2

2

2

222 =−=−= ttd best xx

13.1)3,3()3.2,2.2()()( 2

2

2

233 =−=−= ttd best xx

13.6)4,4()3.2,2.2()()( 2

2

2

244 =−=−= ttd best xx

13.15)5,5()3.2,2.2()()( 2

2

2

255 =−=−= ttd best xx
 
Step 2: 
Sort 

{ }
{ }
1 2 3 4 5

3.13 0.13 1.13 6.13 15.13

d d d d d

=
 

in ascending order into 
{ }
{ }2 3 1 4 5

0.13 1.13 3.13 6.13 15.13

d d d d d=
,  

where the indices associated with the sorted results 
becomes 
{ } { }5421354321 ==kkkkk . 
Step 3: 

6.0
5
3

5
)( 1

1 ===
ktPF  ; 

2.0
5
1

5
)( 2

2 ===
ktPF  

4.0
5
2

5
)( 3

3 ===
ktPF  ; 

8.0
5
4

5
)( 4

4 ===
ktPF  

0.1
5
5

5
)( 5

5 ===
ktPF . 

As demonstrated in this example, particle )(2 tx  
lies most close to the global best position )(tbestx . No 
emphasis on spontaneity is required in this case. As a 
result, a lighter weighting of 2.0)(2 =tPF  is 
multiplied with the second term and a heavier 
weighting of 8.0)(1 2 =− tPF  is multiplied with the 
third term of the velocity-updating rule in Equation 
(18) to provide a finer tuning of evolution toward the 
trajectory of )(tbestx . On the contrary, )(5 tx  far 

away from the global best )(tbestx  should focus on 
more spontaneous evolution irrelevant to the global 
best )(tbestx  to provide better exploration capability 
in searching for the solutions. As a result, a heavier 
weighting of 0.1)(5 =tPF  is multiplied with the 
second term and a zero weighting of 0)(1 5 =− tPF  
is multiplied with the third term of the 
velocity-updating rule in Equation (18), in an attempt 
to avoid premature convergence of the swarm toward 
a local optimum.  

The above-mentioned technique where the 
preference function )(tPFi  for the swarm of Q 
particles has discrete values uniformly distributed 
between 1/ Q  and 1 , i.e., { }1 ,2 , ,1Q Q  as 
shown in Equation (21), is called discrete preferential 
velocity-updating PSO. In addition to this technique, 
we have also developed another variant called 
continuous preferential velocity-updating PSO, in 
which the preferential function )(tPFi  is defined as: 

1

( )( )
( )

i
i Q

i
i

d tPF t
d t

=

=

∑
.        (22) 

Note that )(tPFi  functioning in a continuous mode in 
Equation (22) has arbitrary values anywhere between 
0  and1 .  
 The PSO technique based multiuser detection can be 
described in the following steps. 
Step 1. Solution Representation: The multiuser 
detection can be regarded as an optimization problem 
that finds the most likely combination of binary 
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transmitted bits OMP,
ˆ

pb . The configuration of the trial 

solution ]ˆ,,ˆ,ˆ[ ,2,1, pKpp bbb  is already an antipodal 
binary string of length K; therefore, the encoding 
process is unnecessary. 
Step 2:  Initialization: A particle set with pP  
members named the swarms population is created 
each time when the PSO is performed and used to 
improve solutions generated with PSO operations. pP  
is known as the population size. A larger the 
population size leads to a faster the convergence rate 
but companying a higher computational complexity. 
In this study, the CD creates the seed swarm in the 
initial population.   
Step 3:  Evaluate the fitness values of all particles. Let 
pbest of each particle and its objective value equal to 
its current position and objective value, and gbest and 
its objective value equal to the position and objective 
value of the best initial particle. 
Step 4: Update the velocity and position of each 
particle according to Equations (17) and (18). 
Step 5: Evaluate the objective values of all particles 
according to Equation (7).The system aims to find the 
b̂  with the minimum cost. Consequently, the cost 
function of a swarm for the duration of bit i is defined 
Equation (7) 
Step 6: For each particle, compare its current 
objective value with the object value of its pbest. If 
current value is better, then update pest and its object 
value with the current position and objective value. 
Furthermore, determine the best particle of current 
warm with the best objective values. If the objective 
value is better than the object value of gbest, then 
update gbest and its objective value with the position 
and objective value of the current best particle. 
Step 7: Termination criteria: If a predefined stopping 
criterion is met, then output gbest and its objective 
value; otherwise go back to Step 4. 
 

 
Fig. 2 MPSO algorithms Flowchart.  

 
4 Numerical Results and Discussions 
 
This section presents some sample numerical 
results which illustrate the potential of using the 
proposed method as an effective tool for 
improving the performance of ACDMA 
communications over multipath fading channel. 
In the computer simulation, the performance of 
proposed the PSO detector was compared with the CD 
and GA-based MUDs. The first 10 user examples use 
randomly generated gold codes with length 31 as the 
signature sequences and perfect channel knowledge at 
the receiver. 

 Fig. 3 depicts the BER performance and the 
effects of evolution in terms of number of generations 
for various population sizes P for K=10. The optimum 
performance of the multiuser detector utilizing an 
exhaustive search for K=10 is also shown. In this case, 
the optimum multiuser detector has to compute the 
cost function of Equation (7) 102 1024=  times, which 
corresponds to every possible combination of b. 
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Fig. 3 The BER of the PSO based multiuser detectors 
in the perfect power control system with 7SNR dB= , 
K=10 users. 
 

Upon observing Fig. 3, we notice that the 
PSO-assisted multiuser detector is capable of reaching 
a near-optimum BER performance with G=30 
generations with the aid a population size of P=30 for 
K=10 users over an AWGN channel at an SNR of 10 
dB. This constitutes a total of P × G=900 number of 
correlation metric evaluations according to Equation 
(7). In fact, this number was derived based on the fact 
that cost value is calculated for every individual in the 
population at every generation. However, in reality, 
certain individuals will reappear over the course of the 
evolution. Hence, the cost values of these individuals 
need not be recalculated, because they are stored in 
the memory. Furthermore, the implementation of our 
proposed PSO-assisted multiuser detector is feasible 
in practical terms and offers an alternative to the 
implementation of the optimum multiuser detector.    

Fig. 4 illustrates the performance of the proposed 
PSO based detector over a flat Rayleigh fading 
channel with K=20 users. For comparison, the figure 
reveals that the proposed detector can achieve near 
single-user performance. The performances of the CD, 
GA-based MUDs [10] are included to show the gap in 
performance.  Fig. 4  illustrates the case in  [10] where 
the GA is invoked only for bit estimation and 
coefficients are assumed to be known at the receiver,  
and the  population size and the number of generations 
are P=50 and G=50, respectively. The PSO need 
P=30 and G=50 for the same performance, thus 
2500/1500 saving in the computational complexity.  
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Fig. 4  BER versus SNR performance comparison 
between CD, GA, GA-ML and PSO-ML for 
asynchronous system over a Flat fading channel with 
K=20. 
 

 One major reason for using PSO based on MUD 
is to overcome the detrimental effects of the near-far 
problem and relax the stringent power control 
requirement. To investigate the near-far immunity of 
the proposed detector, we consider an ACDMA 
system over a flat fading channel with the desired user 
being interfered by other equal power users.  We can 
see that the conventional receiver is quite sensitive to 
the near-far problem, and its performance degrades 
significantly when the interfering signal strength 
increases. For our proposed detector, however, its 
performance actually can become better when the 
interfering signal strength increases. Fig. 5 illustrates 
the near-far immunity of PSO based MUD.  
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Fig. 5 Near-far immunity of PSO based MUD.  

WSEAS TRANSACTIONS on COMPUTERS Jyh-Horng Wen, Chuan-Wang Chang and Ho-Lung Hung

ISSN: 1109-2750 916 Issue 7, Volume 7, July 2008



 
 

 

 

 

Users [K]

2 4 6 8 10 12

BE
R

10-5

10-4

10-3

10-2

10-1

100

PSO-ML
GA-ML
GA

 
Fig. 6 BER of PSO-ML, GA and GA-ML in a 
multiuser system over a two-path Rayleigh fading 
channel (perfect channel estimation, SNR=20) 

 
Fig. 6 depicts the BER performance of the 

different schemes in a multiuser system with 
SNR=20dB over a two-path Rayleigh fading channel 
versus the number of users. It shows that in the 
presence of multiple users, the PSO-ML detector still 
outperforms the detector GA and GA-ML detector. It 
is clear from the figures that a possible explanation for 
this is that when K becomes large, the MAI also 
increases and thus conventional detector provides 
poor performance in the present of large number of 
active users. However, the proposed detectors can 
achieved an acceptable BER in spite of the increasing 
number of active users.  

 
Fig. 7 BER versus SNR performance comparison 
between Rake Receiver, GA, GA-ML and PSO-based 
ML for asynchronous system over a two path fading 
channel with K=10 

In this case, we have found that using a MRC 
receiver to produce initial values for the proposed 
PSO algorithm works very well.  In Fig. 7, we plot the 
analytical and simulation results on the BER of the 
Rake receiver and GA in a multiuser system over a 
two-path Rayleigh fading channel [12],[23] We 
observe that the performance of our algorithm is better 

than of all existing suboptimum schemes with same 
level of complexity. Since the proposed detector can 
efficiently cancel the MAI and ISI in multipath fading 
channel, the transmission capability of the ACDMA 
will be considerably increased. 
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5 Conclusions 
This paper presents a particle swarm scheme to decide 
the transmitted bits of a multiuser detector in 
asynchronous CDMA communication system. To 
work around potentially computational intractability, 
the proposed scheme exploits heuristics in 
consideration of both global and local exploration 
likelihoods. Finally, it has been shown that the 
proposed can alleviate the effects of the near-far 
problem and significant system capacity improvement 
can be achieved using the proposed detector instead of 
the conventional DS/CDMA receiver.  
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