WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

Height, Size Performance of Complete and Nearly Complete Binary
Search Trees in Dictionary Applications

AHMED TAREK
Department of Math and Computer Science
California University of Pennsylvania
Eberly College of Science and Technology
250 University Avenue, California, PA5419
UNITED STATES OF AMERICA
tarek@cup.edu http://workforce.cup.edu/tarek/

Abstract: Trees are frequently used data structures for fast access to the stored data. Data structures like arrays
vectors and linked lists are limited by the trade-off between the ability to perform a fast search and the ability to
resize easily. Binary Search Trees are an alternative data structure that is both dynamic in size and easily searchabl
Now-a-days, more and more people are getting interested in using electronic organizers and telephone dictionarie
avoiding the hard copy counter parts. In this paper, performance of complete and nearly complete binary searct
trees are analyzed in terms of the number of tree nodes and the tree heights. Analytical results are used togeth
with an electronic telephone dictionary for a medium sized organization. It's performance is evaluated in lieu of
the real-world applications. The concept of multiple keys in data structure literature is relatively new, and was first
introduced by the author. To determine the dictionary performance, another algorithm for determining the internal
and the external path lengths is also discussed. New results on performance analysis are presented. Using tree-sc
individual records inside the dictionary may be displayed in ascending order.

Key—WordsComplete Binary Search Tree, Nearly Complete Binary Search Tree, Electronic Telephone Dictionary,
Performance Analysis, Performance Measurement, Logarithmic Time Complexity

1 Introduction and C++ works well for a mid-sized organization.

_ _ Several performance metrics are considered for fu-
Binary Search Trees (BSTs) and the related applica- e improvements. Three different operating system
tions are studied extensively in literature. AMONG patforms with separate processor architectures were
_the most notable recent contrlbl_Jtlons, [2] has stud- |;seq during the performance estimation. An algo-
ied the BST-based implementation of the Cerebellar jinm for multi-key search has been introduced for ef-
Model Articulation Controllers (CMACs), which are fiient BST pruning. Numerical examples supporting
biologically-inspiredneural network systensuitable the theoretical results are considered for clarification.
for trajectory control. Implementing CMACs using The remainder of this paper is structured as fol-
BSTs with the dynamic memory allocation, allows 45 |n Sectiore, terminology and notations used in

for lower memory usage without compromising the his naner are introduced. Sectidis based on perfor-
functionality of the CMAC [2]. An electronic tele- 5006 in terms of the BST height and the node count.
phone dictionary (ETD) encounters frequent inser- ggctigng introduces the multiple key BST search al-

tions a_nd deletions of entries and is suitable for the gorithm. Sectiors incorporates performance analysis
dynamic memory usage. Internal structures of the ¢, ihe Multi-key BST search algorithm. Section

Electronic Dictionaries (EDs) have frequently been yoq5 ith the ETD performance measurement issues.
studied in Computer Science literature [1]. HOw- gqction7 outlines future research.

ever, the computer-based implementation issues re-

mained neglected. In this paper, an ETD employing

the BST architecture with the dynamic memory allo- 2 Terminology and Notations

cation scheme is considered for computer implemen-

tation, and the related performance issues are consid- Following notations are used all throughout this paper.

ered. n. Total number of nodes or records. In this paper,
The results in this paper are both theoretical and a node is always considered as a record in lieu of the

applied in nature. The dictionary constructed in Java application.

ISSN: 1109-2750 89 Issue 3, Volume 7, March 2008

WSEAS TRANSACTIONS on COMPUTERS

m: Total number of the keys.

T,: A binary search tree (BST). From now and on, it
will be abbreviated as BST.

I: Number of leaves.

n;. Total internal (interior) node count.

ne. Number of the external nodes.

h: The height of the BST.

Cy,: Cost for a successful search inside a BST.
C,,: Cost for an unsuccessful search.

I: Internal path length.

E: External path length.

sf: Sparsity factor.

df . Density Factor.

L: Loss in capacity factor.

Some useful definitions are presented next.

Definition 1 Internal Path Length, I: This is a per-
formance metric for BST applications. The average
internal path length of a BST is the average depth of a
record inside the tree. The total internal path length,
1I; is the sum of depths of all the nodes within the tree.

_ "I
Stated symbolically; = & = %

depth of the record.

. Here,I; is the

Definition 2 External Path Length, E: The total ex-

ternal path length7;. is the sum of the depths of all of

its failure nodes. Stated mathematically, the average
() g,

external path lengthpy = £t = % Here, E

is the external path length up to the empty recqid,

Also, total number of external records = ¢+ 1).

Ey
n

Definition 3 Deviation in Height, h4.,: The devia-
tion in height, 4., is defined as the deviation of the
actual height,h from the optimal heighth,. This is
expressed in %. It is expressed as follows:

haeo = 1522 X 100%.

3 Performance

3.1 Performance with Internal and External
Path Lengths

Internal and External path lengths relate to the major
metrics in the performance evaluation of a BST ap-
plication. Following analysis concerns internal and
external path lengths.

Lemma 4 Let T, be a maximal complete BST of
height h. Then foff}.

(1) n = (2"*! — 1) = total number of nodes.

(2) I = 2" = total number of leaves.

(3) n; = (2" — 1) = total number of internal nodes.

ISSN: 1109-2750 90

Ahmed Tarek

Proof: (1)At level 0, there i2” = 1 node. At the next
level (levell), there will be2! node. In the following
level, there will be2? nodes, and so. Proceeding in
this way, there ar@’ nodes at levej. As the height
of the maximal complete BST is there ar@” leaves
atlevelh (since all leaves in a maximal complete BST
of height h are at levet). Hence, the total number of

nodesp = 20+ 21 +... 42" = (2?;_11—)1)

(2) Number of nodes at level h 2" = number of
leaves].

(3) The number of internal nodes; =n -1 =21 -1
-2k =2 x2h-1-2h = (2" —1). O

- 2h+1 1.

Lemma 5 Searching for an item in a balanced tele-
phone dictionary withn records requiresO(logan)
comparisons.

Proof: From Lemma4, the heighth of a BST sat-
isfies: (2" — 1) < n < (2! — 1). Therefore,
2" < (n+1) < (2" — 14 1), which is: 2" <
(n+1) < 21 Henceh < loga(n+1) < (h+1). As
loga(n+1) < (h+1), thereforelogs(n+1)—1 < h.
But b < loga2(n + 1). Thus, following holds true:
loga(n +1) — 1 < h < loga(n + 1). Now, logan <
loga(n+1) <loga(n+mn) =loga2n = (loga2+logan)
= (1+logan). Sologan < loga(n+1) < (1+4logan),
which implies,logan < loga(n+1) andloga(n+1)—
1 <logan. Butloga(n + 1) — 1 < h < loga(n + 1),
which providesloga(n+1) —1 < h < (1 + logan).
Sincelogs(n+1)—1 > (logan—1). Therefore, finally,
(logan—1) < h < (1+logan). Henceh € O(logan).
In a balanced BST, the search path is bounded by the
height of the treel. Therefore, search is i@(logan).
0

Following result establishes the relationship be-
tween the cost of a successful search with that for an
unsuccessful search.

Theorem 6 If the search for a record in the ETD is
equally likely, then the average cost,,, for a suc-
cessful search is related to the average aOgf for
an unsuccessful search by the following equation:
1
:[(14_7) XCne_iﬂ

: 1)
ni

Here,n; = number of internal nodes, and, = num-
ber of external nodes.

Ch,

Proof: Let us denote the Internal path length by
and the External path length by. The relationship
betweenn; andn. is given by,n. = (n; + 1). From

the data structure literatur€, = I + 2n;. If successful
search for the nodes is equally likely for all of the

internal nodes, then the average c6%, is:

(I+1+mn;) (21 +n;)
n;

Cp, =

(2)

ng

Issue 3, Volume 7, March 2008

WSEAS TRANSACTIONS on COMPUTERS

Onel accounts for visiting all internal nodes starting
from the root, and the othdrtakes care of the return-
ing path distances to the root node from the internal
nodes. Similarly, if the search is unsuccessful, then
the average cost/,,, is:

(2E)
(ni + 1)

Ne —

®3)

Using the above two equation§,,, = %

Hence?2l = (n;+1)Cy, —4n;. Also,n; xCy,
nl) Therefore2l = niCni —n; (nl + 1)Cne —
Upon manipulationC,,, = [(1 + 1)C,,, — 3]

Corollary 7 The cost difference between an average
unsuccessful search and a successful search is given

2_ .
by: Cairs = % Here,n; = total number of

internal nodes.

O

Proof: Using Theoren®, C,,, = (2E)/(n + 1) and
Cn, = (2I + n)/n. Therefore,Cyiry = (Cp, —
_ (2I+4n;) _(2I4n;) _ 2Ini+4n?—(214ni)(ni+1) _

Cn;) T (1) n; ni(n;+1) B
3n;—2I-n;
3.2 Internal and External Path Length Met-

rics

Following algorithm computes the internal and the ex-
ternal path lengths of the ETD as shown in Figlire

Algorithm getinternal
Purpose: This algorithm recursively returns the in-
ternal path length of the telephone dictionary BST
for a given number of records,
Input: Current roainode from where the internal
path length is to be measured.
if root.node is not NULLthen
if root.node.getLeftChild() is not NULIthen
root_node.internal_length
(root_node.internal length + 1+
getInternal(root_node.getLe ftChild()))
end if
if root.node.getRightChild() is not NULkhen
root_node.internal_length
(root_node.internal length + 1+
getInternal(root_node.get RightChild()))
end if
end if
return root.node.internalength

For external path lengths,2 x n has been
added tol, as: root_node.external_length <
root_node.internal _length + 2 X n.

Consider the curves fak,,iimq and Eqgpiimar I
Figurel. Each of these forms a straight line with dif-
ferent slopes, passing through the oridit, () point).

«—

«—

ISSN: 1109-2750 91

Ahmed Tarek

12000

10000

8000

6000

internal path length, |

4000

2000

L L L
400 600 800
number of records, n

1
200 1000

14000

12000 [

10000

8000

6000

external path length, E

4000

2000

L L L
400 600 800
number of records, n

L
200 1000

Figure 1: Internal and external optimal and actual
path lengths. The upper curve in the upper figure
represents variations in the actual internal path length
with the increasing number of nodes,and the lower
curve being obtained for the optimal path length val-
ues. The lower plot represents variations in the actual
external path lengths. Again, the lower curve repre-
sents the optimal external path length values.

Atfirst, Iopima = n(logan—2). For a particular value
of n, logon is fixed. The minimum value of, con-
sidered in this plot isp = 10 > 8 = 23. Hence,
logan > 3 and the quantity lpgen - 2) is always
positive. With the variations im, the variations in
(logan — 2) is negligible, and forms the slope of the
straight line for thel,,,.;mq plotting. For clarity, the
minimum value ofn considered is]0. At n = 10,
(logan — 2) = 1.32. Again, with the maximum value
of n, which is,n = 1000, (logan — 2) =7.97. Hence,
for A, 41 = the maximum variations for the possible
values ofn = (1000 — 10), the variation in(logan — 2)

iS, Apaz(logan — 2) = (7.97 — 1.32) = 6.65, which

is only 0.67% of 990. Hence,(logan — 2) may prac-
tically be considered as a constant, which forms the
slope,m of the straight line. Practically, the straight
line equation,/,ptimar = n(logan — 2) is in the form

Issue 3, Volume 7, March 2008

WSEAS TRANSACTIONS on COMPUTERS

of: y = Mx + c. Here,y = Iptima, M = slope =
(logan — 2), x = n, and the constant interceptvith

the y-axis needs to be determined. As the line passes
through the origin,, 0), this is a point on the straight
line. Hencep = M x 0 + ¢. Therefore¢ = 0. Hence,
the experimental curves for the internal and the exter-
nal path lengths fit the corresponding theoretical mod-
els. Next considerf,piimar = Loptimar + 2n. There-
fore, Egptimal = n(logan —2) + 2n =n(logan —2+2)
=nlogan. For variations im, the variations idogon

is almost negligible, antbgon forms the slope)M of

the straight line curve foE,,q.. For clarity, when

n = 10, logan = 3.32, and whem = 1000, logon =
9.97. Hence for(1000 — 10) = 990 variations inn,

the variations inogon is only 6.65, which is0.67%

of 990. From the practical standpointpgon may

be considered constant, which forms the sldpeof
Eoptimal- This curve passes through the origin. There-
fore, the intercept; = 0. Again, forl, ;e aNdEycruai
curves,F,cival = Lactuar + 2n. Consider two different
pOintS @1, Eactuah) and @21 Eactualg) on theEactual
curve. Using Coordinate Geometry, the slope of the
straight line joining these two points 0f,ciuar 1S,

— Iactual2+2n2_lactuall_2n1 -
nz2—mni

M — Eactualg_Eactuall

na—ni
Iactualg I,

"2 n‘““”l +2 = Slope of thel,.iuq, curve +2
= M; + 9. Hence, the difference in slopes of the
FEyciuar @and thel .., CUrves varies by a constant fac-
tor, which is2. As a result, the curve fof, ., has
the exact similar pattern to that fé.;,,q;-

3.3 Height Based Performance

Lemma 8 If r is the root of an ETD withn different
records, then the tree-sort algorithm for the ascend-
ing order dictionary take$(n) time to display the
entries.

Proof: LetT,(n) denotes the time taken by the tree-
sort algorithm when it is called on the root of an
node BST. The tree-sort algorithm consumes a small
constant amount of time on an empty subtree for per-
forming the test that ## NULL. Therefore,I'(0) =

C.

Forn > 0, let the tree-sort is applied on an ar-
bitrary rootr whose left subtree contairisrecords.
Therefore, it's right subtree containa k£ — 1)
records. Hence, the recursive relationshiglign) =
T(k)+T(n—k—1)+d; here,d > 0. Here,d is
the time to execute the tree-sort on the root node,
which is exclusive of the time spent in recursive calls.
Following is the complete set of recurrence relation:
T(0) = ¢,andT’(n) = T'(k)+T(n—k—1)+d. When-
ever,k =0,T(n) =T(0)+T(n—0—1)+d, whichis
T(n) = (c+d)+T(n—1) = (c+d)+(c+d)+T(n—2)

ISSN: 1109-2750 92

Ahmed Tarek

=2(c+d)+T(n—2)=3(c+d)+T(n—-3)=
n(c+d)+T(0) = c+n(c+d). This relationship satis-
fies for any positive integer constait, Following is
the verification of the correctness for this relationship:
T(n)=(c+d)k+c+(c+d)(n—k—-1)+c+d=
(c+d)(n—k—14k)+(c+d)+c = (c+d)(n—1+1)+c
=n(c+d)+c, as expected. A8 (n) = n(c+d) +c,
therefore,T'(n) > n(c+ d), andT'(n) < 2nc + dn.
Hence,T'(n) € O(n). 0

Theorem 9 The required number of comparisoné,
in constructing the ETD,I;. with a height,h =
(Hogg(nJr 1)] —1) satisfies the following constraints:

SV ks 2k < T, < S0k x 2k,

Proof: Placing the root record does not require any
comparison. Placing items at levell will require 1
comparison each. Placir®f = 4 records at leve®
will each require2 comparisons. Similarly2? = 8
items at leveB, each require8 comparisons. In gen-
eral, 2% records that will become the data for level
each requireg comparisons to determine it's proper
position in the evolving tree.

This process ends when th¢h record is placed.
Thenth record appears at levie) wheren is bounded
by the following:

S ok =2k~ 1 <n < T2k = BTN =
2+l _ 1. Therefore2" — 1 < n < 20D _ 1,

By addingl all over,2" < (n + 1) < 20+, This
provides:h < loga(n + 1) < (h+ 1). Hence,(h +
1) = [loga(n+1)], whichis:h = ([loga(n+1)]—1).

Each record at levek requiresk comparisons.
Therefore, fork < h, 2¥ records at levek needs a
total of k x 2¥ comparisons. The last levelmay not
be full. In constructingdl’., following relationship is
being satisfied:

Sk x 2k < T < SRk x 2K, 0

Corollary 10 The maximum number of comparisons
required to construct a BST of heighfor the ETD is,

(h —1)2(h+1) 4+ 2, and the minimum possible number
of comparisons is(h — 2)2" + 2.

Proof: From Theoren®, Z,E’L:_Ol) Ex2ok < T <
SRk x 2k, Suppose thaf = S0 k x 2%, There-
fore, 25 = S0 ok x 2 x 28 = Y0k x 2kl =

Yhoo(k+1) x 20D - 570 okl = 5oLk 5 2k
-QXZk:O2 Zkzokx2k+(h+1) X2(h+1)-
2X(2h+1—1)=S+(h+1)><2(h+1)-2><2h+1+2.

Hence,S = (h+1—2)x 20+ 4.2 = (h—1)20h+1) 9,
Replacingh by (h — 1) in the expression for maxi-
mum number of comparisons, the expression for min-
imum number of comparisons is obtained @s;- 1 —
120140 192 = (h — 2)2" 4 2. O

Issue 3, Volume 7, March 2008

WSEAS TRANSACTIONS on COMPUTERS

Corollary 11 Time complexity of the number of com-
parisons, N, required to construct the ETD is,
O(nlogan).

Proof: From Corollaryl0, N, < (h — 1)2(++1 4 2,
Again from Lemmal, (logan—1) < h < (1+logan).
Therefore ez = (14 logan), andh,:, = (logan —
1). Hence,N,, = Upper bound on the required number
of comparisons 2 + [(Ayin — 1)20min + 1] =2 +
[loga(n+1)—1—1] x 2legz(n+D=141] = 9 4 (Jogy (n+
1) = 2)(n+ 1)=(n + 1)log2(n 4+ 1) — 2n. The other
extreme case is when the final levekontains only
1 node. The lower boundy; on N, becomes:N; =
(h—2)2" +2. Inthis later case, the firsh(- 1) levels
are full and complete, and there is orilynode at the
last levelh. O

Corollary 12 The average levely,,, for a complete
BST iS/iang = (h — 1) + Sl

Proof: At level k, there ar@* nodes. The sum of the
comparisons required for all levels Eﬁzok x 2k,
From Corollary10, 0 _ k x 28 = (h — 1) x 2"+1 ¢

2. A complete BST has = (20 + 21 + ... + 27)

= (2"*! — 1) records. Hence, the average number of

. . _ h+1
comparison for each record i8/,,, = (h;ﬁ#
— h+1
- (h - 1) + 2Sz+1,)1' U

3.4 Cost of Computation in Complete and
Nearly Complete BSTs

It is always desired that the BST for the ETD be com-
plete or nearly complete. A complete BST has the
maximum number of entries for its height, Hence,
Nmaz = (2" — 1), whereh = height of the BST. ABST

is nearly complete if it has the minimum height for its
nodes (herehi, = ([logan] + 1), and all nodes in
the last level are found on the left.

Lemma 13 The Internal Path Length]. for a com-
plete BST with the height,is, I, = h2h+1 —2h+1 49,
and the External Path Lengttf.. is, (h + 1)2"+1.

Proof: Foracomplete BST,. = Z;'l:o (level number,

j)x2level number, j = 521 jx 23 From Corollaryl0,
B_0dx 20 = (h—1)20D) 42 = pahtl _ohtly o,

Since the BST is complete, total number of nodes,

h+1

=90+21 4224, +oh= Gl = b+ 1), The

external path length i, = I+ 2n = h2h*T1 —2h+1

242 x (2" —1) =2 4 20 = (b 1)20 L O

Lemma 14 The Internal Path Length,,. for a nearly
complete binary search tree with heightjs: I,,. =

ISSN: 1109-2750 93

Ahmed Tarek

(2 + (14 n)h — 2"*1), and the External Path Length,
Eneis, (2 + h)(1 +n) — 21 Here,n is the total
number of nodes in the nearly complete BST.

Proof: Suppose that the height of the BST /s, and
the total number of records is, Therefore, the tree is
complete and full up to thex(— 1) level, and suppose
that there aré: nodes at the last leveh. Here,k <
2" andk > 1. The internal path length up to the
(h—1)levelis: I, = Z?;& j x 27, Using Corollary
10, Iy = (h —1—1)2" + 2 = (h — 2)2" + 2.
Therefore, the internal path length,. = (h — 2)2" +
2 4+ h x k. The total number of nodes in the BST is,
n=0Q0 42 4 ... 420 L) =@ 1) +
k= (2" - 1)+ k. Hencek = (n — 2" +1). Now,
Lie=(h—=2)2"+2+hx(n—-2"+1)=24+(1+
n)h — 2"*1, Hence, the external path length I8, =
2+ (14+n)h—2"M1 420 =2+ h+nh—2"M1 £ 2n
=Q2+h)+n(24+h)-2"M1=(n+1)(2+h) — 2",
O

Next results concern path length deviations from
a complete BST with height to a nearly complete
BST with heighth.

Theorem 15 Maximum possible deviations in the in-

ternal and the external path lengths from a complete
to a nearly complete BST with heightis, I,
h(2"—1),andE,, . =

max

(h+2)(2" — 1), respectively.

Proof: From Lemmal3, the internal path length for
a complete BST with the height, is, I, = h2"*! —
2M+1 4 2, and the External Path Length,, is, (h +
1)2"*1, From Lemmal4, the internal path length for
a nearly complete BST with height, is, I,,. = (2 +

(1 +n)h — 2"*1), and the external path length,,..

is, (2+h)(1+n) — 2"+, For a nearly complete BST
with the minimumI,,. and F,,. and a fixed heighth,

k = 1. From Lemmal4, k = (n — 2" + 1), which
yields, (@ — 2" + 1) =1 or,n = 2". Therefore .., ..
=2+ (1+n)h -2 =2+ (1 +2M)h -2/ =
(2+h+ h x 20 — 201 Similarly, E,, ... = Inc,...
+2n=(2+h+hx2V -2 +2 x 2= (2 +

h 4 h x 2"). The maximum possible difference in the
internal path length/,, . = (h2"*! — 2h+1 4 92) -
(2+h+hx2h =21 = (h x 2 — h) = (2" - 1).
The maximum possible difference in the external path
length, By . = (h+ 1)2"1 - (2 + h 4+ h x 2) =
hx2h 149l H 9 p_hxoh=pxohpaxoh—2-p
=2"(h+2) 12+ h)=(2" —1)(h +2). O

Corollary 16 The minimum possible deviation in the
internal and the external path lengths from a complete
to a nearly complete BST with heightis, I; . = h,
andFEy, , = (h+2), respectively.

min

Issue 3, Volume 7, March 2008

WSEAS TRANSACTIONS on COMPUTERS

Proof: For the minimum deviations, there Isless
record than the maximum possible at the highest level
h to make the BST complete. Using Theoré k =
(n — 2" + 1), and hereg = (2" — 1). Thereforen =

(2" —1)+k=2(2" —1). Hence l,..,,.. =2+ h(1 +
n)—2x2"=24+n(142(2"-1))—2x2"=2+h+
h x 2+l —2p — 2"+ Therefore B, = Incm

2n=2+h+hx2"l —2p 201 42220 —1)=

21+ h) — (2+h). Hencedy, ., =1I.- Inc,,.. =
(h2M 1 — 2" 4 9) - (24 h+ h x 201 — 2p — 2P+
= h. Similarly, E;, . = E. - Ene,... = ((h + 1)2"1)
-2 14+ k) — (2+h) = (h+2). O

Corollary 17 Maximum possible deviations for the
internal and the external path lengths from a com-
plete to a nearly complete BST with a heighis, 1,

=2hr(21 — 1), andEy = 2(h + 2)(2"1 — 1), re-
spectively.

Proof: From Theoremi5, I, .. = h(2" — 1), and
Ey,... = (h+2)(2" — 1). From Corollary16, I, ..
= h,andEy . = (h+ 2). Therefore,l; = 1,4, -
Ig.. =h(2" — 1) - h = h2" — 2h = 2h(2"1 — 1).
Similarly, E; = Eg,,,, - Ea,,., = (h +2)(2" — 1) -
(h+2)=(h+2)(2" —1—1)= (h+2)(2h —2) =
2(h +2)(21 —1). O

Example 18 Consider a BST with height, = 5. If it
is complete]. = (h — 1)2"1 +2=2(4 x 2° + 1)
= 258. The external path length,. = (h +1)2"*! =
6 x 26 = 384. Nextl,, . = (2+h)+ (h—2) x 2"
= (2+5)+ (5 —2) x 2°=103. Again, E,.,,,, =
(2+h)(1+2M) =20+ = (24+5)(142%) — 26 = 167.
NowlI,e, ., = 2" (h—1)+(2—h)=32x8—-3=
253. Once againk,,,,,, = 2" ' (1+h) — (2+h) =

26(1+5) — (2+5) = 352425 = 377. HenceEmm
- Ene,,.. = (377 —167) = 210, and L., - Inc,,., =
(253 —103) = 150. HoweverE, = 2(h+2) (2! —1)
= 2(5 + 2)(2* — 1) = 210, as expected. Alsdy =
2h(2=1 — 1) = 2 x 5(2* — 1) = 150, as expected.

Lemma 19 For a complete BST with heiglit, the
average internal path length isl,,,. = (h — 1) +
(2%1)1), and the average external path length

(h + 1). Also, the difference betwed),,,

Eavgc
and I, is given bydayg,, = (2 — zgﬁl_)l)-

S,

Proof: For a complete BST with height, I. =
2/ (h — 1) +2, andE, = (h+1)2"*1. For the com-
plete BST, the number of nodesz= (20+21+. . .4+2")
= (2! — 1). Average internal path lengtt,,,, =

Q:w:(h_mjL%. Number

n 2h+1_1
of the terminating external nodes,, = (n + 1) =

ISSN: 1109-2750 94

Ahmed Tarek

2"1. The average external path lengff,,, = 2=
— (pf1)2M T

siar— = (h + 1). Therefore,Euyg, - lavg, =
(h+1)— (h—1) — gt =2 (Q(ﬁﬂ)l) <2. O

Theorem 20 The minimum average internal and ex-
ternal path lengths for a nearly complete BST with

heighth are given by'ngM = 2 4 (h-2), and
Eovgne,. = (2+h) — a +2h) respectlvely The max-
imum average internal and external path lengths for
a nearly complete BST with heightare: I,

V9ncmax
_ h(2M1-1) h(2ht1-1) —
= @ LT e — b andBa,,,,, =
(h+1)— ﬁ respectively.

Proof: From Theorem5, I,,.. . =(2+h)+(h—2)2"
and B, . = (2+ h)(1+2") — 21 Forl,, .,
n=2" andn., = (2" +1). Now, Iog,, = "min
= (2+h)+(h_2)2h = (2+h) + (h_2) AISO, Eavgncmin =
Encmzn - (2+h)(1+2h) 2h+1 — 2h+1

Nex 2R 41 =(2+h) - (1427) " From
Corollary 16, I,,,,.. =21 (h — 1)+ (2 — h). For

Cmax

Ine,..,n=2(2" —1). Thereforep., =n+1=(2 x
2h —241) = (21 —1). Hencelu.g,,, . = momes =
2h+1(h71)+(27h) _ h(2h+171) _
2(2h—1) T o2(2h-1) L. AISO’Eavgncmaz -
E":anig;wc_ AS Encmaac = 2h(1 +2h) (2+h) therefore,
_ 2M(142h)—(24+h) _ (h4+1)(2"1—-1
Eavgncmax - (;—h+2 (1 +) (+ ()2(h+1 1)) (h"‘
1) — sy O

Corollary 21 Differences between the maximum and
the minimum averages aré, = (1_(h;4))+

2(2}171
(h+2) - 2 3
2h(2h_1)>! andEavgncdiff - (1+2h) (1 - 2h+1_1)'

YOneqipf

From Theorem20, I, = (2+h) +

AVIncmax
and lavg,, = & 4 (h - 2). There—
_ (z;h) +

AVGneyin

Upon simplifications,

Proof:
(h —2),

fOI'e Ilwgmd £ = IaUgncmaz
(h —

2) — ZH o (h - 2).
=(1- 2%121::1)1) + Qh((';z)l)) Using Theorem
= (h+1) = gy

Therefore Eyyg,... . =F

aVgnemax -
2h+1
(1+27)). Us-
oh
(1+2h)(1

aT)- u

Lavgney, it

20, E,

avg’ﬂCmaz

(2 + h) (1+2h)
Eavgne,,, = ((h+1)_m) ((2+h)—
ing algebraic manipulationsk]avgmdiff =

and Em,gnc =

3.5 Cost Factor Considerations with Con-
stant Heights

Lemma22 finds the optimal heighi of a nearly com-
plete BST in terms ofi andk. Here,k is the num-

Issue 3, Volume 7, March 2008

WSEAS TRANSACTIONS on COMPUTERS

ber of records at the last levklfor a nearly complete
BST.

Lemma 22 The optimal height. for a nearly com-
plete BST iShop: = |loga(n — k + 1)|. Here,n =
the total number of records inside the BST, and
number of records at the last leviel,;.

Proof: From the structure of a nearly complete BST,
(20421 4. 4 2h 1y k) =n. But(20421+.. .42 1)
= (2" —1). Therefore, 2" — 1+ k) = n. This provides,
2" = (n—k+1). Henceh =loga(n—k+1). Therefore,
for a nearly complete BSTy,,; = |loga(n —k+1)].
0

For the data used in this paper, with =
40,50, 60, the heighth remained the same. Also,
for n = 600, 700, 800, 900, 1, 000, the height,h re-
mained unchanged. If the BST is nearly complete,
then it shows linear behavior over range of values for
n, where the height; is a constant.

Theorem 23 If the height,h for a nearly complete
BST remains constant over a range of valuesrfor
then the internal and the external path lengths of the
nearly complete BST varies linearly with the changing
n within that range.

Proof: For a nearly complete BST, the internal path
length is,I,,. = 2+ h(1+n)—2"*1, and the external
path length isE,,. = (2 + h)(1 +n) — 2"+, If the
height, h is kept constant, theh = ¢. Here,cis a
constant. Thereford,,. = 2 + ¢(1 +n) — 2¢71, and
Ene = (2 +¢)(1 +n) —2¢71. As c is a constant,
2¢t1 js also a constant. L&t = 4. Hence,l,,. =
24c(l4+n)—a=cn+ (2+c—a). Also, E,. =
2+e)1+n)—2t=2+c+2n+cn—a=
n(c 4+ 2) + (2 + ¢ — a). The final expressions for
I,.andE,. are,I,. =cn+ (2+ c—a) andE,, =
n(c+2) + (24 ¢ — a), respectively. Both of these
expressions are in the form of a straight line equation
y = Mz + k. Here,M = slope, andk is the intercept
with they-axis. Forl,., y = I., x =n, M = ¢, andk
=(2+c—a). ForE,,y=Ep,z=n,M=(c+2)
(another constant), arid= (2 + ¢ — a).

Corollary 24 For a complete BST, with a constant
heighth, the internal path length]. and the external
path length,E. are constants.

Proof: Using Lemmal 3, and for a constant height
the internal path lengthl, = h2"+1 — 2"+1 1 2 and
the External Path Lengt. is, (h + 1)2"+1. Since
the heighth is fixed, using Theorer3, let h2htl =
constant =¢;, and2"t! = constant =c». Therefore,
I. = ¢y - co +2 = another constant];. Similarly, £,
= (h 4 1)2M1 = p2htl 4 2h+1 = ¢} + ¢y = another
constants. O

ISSN: 1109-2750 95

Ahmed Tarek

4 Multiple Key BST Search Algo-

rithm

Algorithm find _record
Purpose: This algorithm finds a record in the gen-
erated BST.

Require: namesupplied and thisode as inputs.

if namesupplied.compareTo(thisode.name}=
0 then
return this.node
else if namesupplied.compareTo(thisode.name)
< 0then
if this_.node.getLeftChild() is not NULIthen
return find_record (namesupplied,
this_node.getLeftChild()) {recursive call
to find_record
else
return NULL
end if
else
if this_.node.getRightChild() is not NULLkhen
return find_record (namesupplied,
this_node.getRightChild())
else
return NULL
end if
end if

The 2-key BST Search algorithm makes use of the
classicall-key version.

Algorithm find _record_2key
Purpose: This algorithm perform2-key binary
search tree search.

The supplied parameters are: array names][], current

node verified thinode.

find_record2key finds out two matching nodes if
available for the array names[] and return those as
array searck(].

' Require: nameg)].compareTo(names]) < 0
Ensure: an array of correct records or NULLSs are re-

turned
if names[].compareTo(thimmode.nameX 0 then
if this_.node.getLeftChild() is not NULIthen

searcB[0]« find_record (name$],
this_node.getLeftChild())
search[1]«< find_record (named],

this_node.getLeftChild()) {Make 2 calls
to find_record on the left subtrée
else
searcB[0]< NULL
searcB[1]< NULL
end if
return searcB[]
else if names)].compareTo(thismode.name)> 0
then

Issue 3, Volume 7, March 2008

WSEAS TRANSACTIONS on COMPUTERS

if this_node.getRightChild() is not NULLthen

searcB[0]«< find_record (name$],
this_node.getRightChild())
searcB[1]« find_record (named],

this_node.getRightChild()) {Make 2 calls
to find_record on the right subtrée
else
searcB[0] < NULL
searcB[1] < NULL
end if
return search[]
else if names{)].compareTo(thismode.namek 0
and named[l.compareTo(thismode.name)> 0
then
if this_node.getRightChild() is not NULL and
this_.node.getLeftChild() is not NULIthen

searcB[0] <« find_record (names§],
this_node.getLeftChild())
searcR[1] <« find_record (nameg],

this_node.getRightChild()) {Make 2 calls
to find_.record on two subtreés
else if this.node.getRightChild() is not NULL
then
searcR[0] < NULL
searcB[1] <« find_record
this_node.getRightChild())
else if this.node.getLeftChild() is not NULL
then
searcB[0] <« find_record
this_node.getLeftChild())
searc[1] <« NULL
else
searcR[0] < NULL
searcB[1] < NULL
end if
return search[]
else ifnamed)].compareTo(thisxode.name}x= 0
then
if this_node.getRightChild() is not NULLkhen
searcB[0] < this.node
searcB[1] <« find_record
this_node.getRightChild())
else
searcB[0] < this.node
searcB[1] « NULL
end if
return search[]
else ifnames[].compareTo(thisnode.name}x= 0
then
if this_.node.getLeftChild() is not NULIthen
search[1] < this.node
searcB[0] <« find_record
this_node.getLeftChild())
else
searcB[1] < this.node

(named],

(name$],

(namedq],

(named],

ISSN: 1109-2750 96

Ahmed Tarek

searcB[0] <« NULL
end if
return searcB[]
end if
return searcB[]

5 Multi-key BST Search Perfor-
mance

Lemma 25 Anm-key BST Search Algorithm may be
applied to a BST containing records, where, >=
m.

Proof: A proof by contradiction is adopted. Suppose
thatn < m. Therefore, the total number of keys to
search for within the BST becomes greater than the
number of records. In the best possible caselif-
ferent keys may be identified at the positions of the
n records, leavingr-n) keys undecided during the
computation, for which, no records to look for may
be available. This violates the objective of thekey
BST search, which is to identify the BST records cor-
responding tan-keys within the entire BST. Hence,
at most,n = n. O

Theorem 26 An m-key BST search requires consid-
ering 2m+1) different cases in identifying the records
corresponding to then keys within the BST. Here,
m > 1.

Proof: Following is a proof by mathematical induc-
tion.

Base Case:For the base casep=1. With P(1), it

is the classical, single key BST search. It consid-
ers 3-different cases. These arel) (key_element

= root value, 2) key_element> root value, and3)
key_element< root value. Hence,2(x 1 +1) =3
different cases are being considered.

Induction: Suppose that thé-key search algorithm
requires considerin@g + 1) different cases. Heré,

> 1. Itis required to show that: [R] A V P(k)]—
P(+1), which is showing that for {+1) different
keys, @(k + 1) + 1) = 2k + 3 different cases are re-
quired to be considered. For the { 1)th key, two
more cases are required in addition to tBé ¢ 1)
cases for the firgt keys. For the sorted keyg;+1)th
key is the largest and the last key within the list.
Therefore, it is required to consider orlyadditional
cases. Firstly, verify whether the root value is equal
to the & + 1)th key value. If so, thek(+ 1)th key is
found at the root, and it is necessary to use the steps
in the k-key version of the BST search to locate the
first k-keys on the left subtree. Secondly, it may be
required to verify whether thg: + 1)th key is larger,

Issue 3, Volume 7, March 2008

WSEAS TRANSACTIONS on COMPUTERS

and thekth key is smaller than the root node. In that
event, confine the search for tfile + 1)th key to the
right subtree of the BST using a classical BST search,
and use the steps inside théey version of the multi-
key BST search for the firét keys on the left subtree.
Rest of the cases are identical to #&ey version ex-
cept that it is required to considet«1) keys instead

of only k keys. Altogether, for thek{+1) key version,

it is required to consideR¢ + 1 +2) =2k + 1) + 1
different cases.

Conclusion: The theorem is true fom = 1. If the
theorem is true forn = k keys, it also holds true for
m = (k+1). As itis true form = 1, it holds true
form = 2. Asitis true form = 2, it is also true for

m = 3, and so on. Hence, the theorem holds true for
anym with m > 1. a

6 Performance Measurement Issues

350

300

250

200

number of leaves, |

150

100

50 [

. .
400 600
number of nodes, n

1000

Figure 2: Variation in the number of leaves with the
increasing number of nodes,

Figure2 shows the variation in the leaf coutityith
the number of records. For continued consistency,
with n = 10, a data file with10 records is created.
Next for n = 20, an additionall0 records are im-
posed over the existintp) nodes. Forn = 30, an ad-
ditional 10 records are added to the existi2Z@nodes,
and so on. Finally, fon = 1,000, an additionall 00
records are added to the previaus= 900 node ver-
sion. Hence, with the increasing additional records
are added to the existing ones to get the next higher
As aresult] in the BST varies almost linearly with

in the generated BST. The line curve for thes. n
plot passes through the origif, 0). Hence, the curve
almost satisfies the straight line equatign= Mx.
Here,y = [, x = n, andM=slope of the curve denot-
ing the number of leaves per record count as a frac-

ISSN: 1109-2750 97

Ahmed Tarek

tion. From the plot)M =312 = 0.312 (approx) leaves
per record. Therefore, it is possible to manipulate
for other values ofi within the range fromm = 10 to

n = 1,000. Forinstance, ih = 450,1 = M x 450 =
0.312 x 450 = 140 (approx).

7 Conclusion

In this paper, some new results on complete and nearly
complete BSTs are introduced for ETD applications.
A recursive algorithm for computing and £/ values
in such a dictionary is described, and the related per-
formance data are used during the analysis. Another
algorithm to identify multiple records in an ETD is
proposed for the computational cost reduction. Dy-
namic allocation of memory for an ETD is a highly
desirable property, which may be easily attained for
the currently loaded BST using the tree-sort and writ-
ing the sorted records back to the ETD file through the
software. Dynamic memory allocation speeds up the
computation bypassing the wastage due to the alloca-
tion of unused memory space. On average, a search in
an ETD built fromn random keys require®og.(n)
comparisons [2]. Using tree-sort, if perfectly bal-
anced, the maximum number of nodes to be traversed
will be no more tharj log2(n)+1 | comparisons [2].

Now-a-days, the Personal Digital Assistants
(PDAs), GPS Navigator systems, etc. come with
the built-in ETDs. But these devices have internal
memory constraints. Therefore, a BST-based dynamic
memory allocation scheme for a dictionary designed
for a mid-sized organization would be quite useful in
such a device. If hardware implemented, the compu-
tational techniques rendered by the ETD may be ex-
pected to be extremely fast and efficient.

Performance metric of a BST largely depends on
the I and theFE values. In future, a framework will
be considered for generating an optimal BST with the
minimal values ofl and F using a popular and cur-
rent optimization technique. Dynamic programming
(DP) techniques are still popular and useful with their
backward directional computational abilities. A DP
algorithm may be used to generate optimal BSTs with
the minimal values of andE.

References:

[1] F. Aoughlis and E. METAIS, An Electronic Dic-
tionary of Computer Science Terminolodsfo-
ceedings of the0th WSEAS International Con-
ference on COMPUTERS006, pp.458-462.

P. Scarfe and E. Lindsay, Dynamic Memory Al-
location for CMAC using Binary Search Trees,
Proceedings of the8th WSEAS International
Conference on Neural Network3)07, pp. 61-
66.

2]

Issue 3, Volume 7, March 2008

