
Height, Size Performance of Complete and Nearly Complete Binary
Search Trees in Dictionary Applications

AHMED TAREK
Department of Math and Computer Science

California University of Pennsylvania
Eberly College of Science and Technology

250 University Avenue, California, PA15419
UNITED STATES OF AMERICA

tarek@cup.edu http://workforce.cup.edu/tarek/

Abstract: Trees are frequently used data structures for fast access to the stored data. Data structures like arrays,
vectors and linked lists are limited by the trade-off between the ability to perform a fast search and the ability to
resize easily. Binary Search Trees are an alternative data structure that is both dynamic in size and easily searchable.
Now-a-days, more and more people are getting interested in using electronic organizers and telephone dictionaries
avoiding the hard copy counter parts. In this paper, performance of complete and nearly complete binary search
trees are analyzed in terms of the number of tree nodes and the tree heights. Analytical results are used together
with an electronic telephone dictionary for a medium sized organization. It’s performance is evaluated in lieu of
the real-world applications. The concept of multiple keys in data structure literature is relatively new, and was first
introduced by the author. To determine the dictionary performance, another algorithm for determining the internal
and the external path lengths is also discussed. New results on performance analysis are presented. Using tree-sort,
individual records inside the dictionary may be displayed in ascending order.

Key–Words:Complete Binary Search Tree, Nearly Complete Binary Search Tree, Electronic Telephone Dictionary,
Performance Analysis, Performance Measurement, Logarithmic Time Complexity

1 Introduction

Binary Search Trees (BSTs) and the related applica-
tions are studied extensively in literature. Among
the most notable recent contributions, [2] has stud-
ied the BST-based implementation of the Cerebellar
Model Articulation Controllers (CMACs), which are
biologically-inspiredneural network systemssuitable
for trajectory control. Implementing CMACs using
BSTs with the dynamic memory allocation, allows
for lower memory usage without compromising the
functionality of the CMAC [2]. An electronic tele-
phone dictionary (ETD) encounters frequent inser-
tions and deletions of entries and is suitable for the
dynamic memory usage. Internal structures of the
Electronic Dictionaries (EDs) have frequently been
studied in Computer Science literature [1]. How-
ever, the computer-based implementation issues re-
mained neglected. In this paper, an ETD employing
the BST architecture with the dynamic memory allo-
cation scheme is considered for computer implemen-
tation, and the related performance issues are consid-
ered.

The results in this paper are both theoretical and
applied in nature. The dictionary constructed in Java

and C++ works well for a mid-sized organization.
Several performance metrics are considered for fu-
ture improvements. Three different operating system
platforms with separate processor architectures were
used during the performance estimation. An algo-
rithm for multi-key search has been introduced for ef-
ficient BST pruning. Numerical examples supporting
the theoretical results are considered for clarification.

The remainder of this paper is structured as fol-
lows. In Section2, terminology and notations used in
this paper are introduced. Section3 is based on perfor-
mance in terms of the BST height and the node count.
Section4 introduces the multiple key BST search al-
gorithm. Section5 incorporates performance analysis
for the Multi-key BST search algorithm. Section6
deals with the ETD performance measurement issues.
Section7 outlines future research.

2 Terminology and Notations
Following notations are used all throughout this paper.
n: Total number of nodes or records. In this paper,
a node is always considered as a record in lieu of the
application.

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 89 Issue 3, Volume 7, March 2008

m: Total number of the keys.
Tr: A binary search tree (BST). From now and on, it
will be abbreviated as BST.
l: Number of leaves.
ni: Total internal (interior) node count.
ne: Number of the external nodes.
h: The height of the BST.
Cni : Cost for a successful search inside a BST.
Cne : Cost for an unsuccessful search.
I: Internal path length.
E: External path length.
sf : Sparsity factor.
df : Density Factor.
L: Loss in capacity factor.
Some useful definitions are presented next.

Definition 1 Internal Path Length, I: This is a per-
formance metric for BST applications. The average
internal path length of a BST is the average depth of a
record inside the tree. The total internal path length,
It is the sum of depths of all the nodes within the tree.

Stated symbolically,I = It
n =

∑n

j=1
Ij

n . Here,Ij is the
depth of the recordj.

Definition 2 External Path Length, E: The total ex-
ternal path length,Tr is the sum of the depths of all of
its failure nodes. Stated mathematically, the average

external path length,E = Et
n =

∑(n+1)

j=1
Ej

(n+1) . Here,Ej

is the external path length up to the empty record,j.
Also, total number of external records = (n + 1).

Definition 3 Deviation in Height, hdev: The devia-
tion in height,hdev is defined as the deviation of the
actual height,h from the optimal height,ho. This is
expressed in %. It is expressed as follows:
hdev = h−ho

ho
×100%.

3 Performance

3.1 Performance with Internal and External
Path Lengths

Internal and External path lengths relate to the major
metrics in the performance evaluation of a BST ap-
plication. Following analysis concerns internal and
external path lengths.

Lemma 4 Let Tr be a maximal complete BST of
height h. Then forTr:
(1) n = (2h+1 − 1) = total number of nodes.
(2) l = 2h = total number of leaves.
(3) ni = (2h − 1) = total number of internal nodes.

Proof: (1)At level 0, there is20 = 1 node. At the next
level (level1), there will be21 node. In the following
level, there will be22 nodes, and so. Proceeding in
this way, there are2j nodes at levelj. As the height
of the maximal complete BST ish, there are2h leaves
at levelh (since all leaves in a maximal complete BST
of height h are at levelh). Hence, the total number of

nodes,n = 20 +21 + . . .+2h = (2h+1−1)
(2−1) = 2h+1− 1.

(2) Number of nodes at level h =2h = number of
leaves,l.
(3) The number of internal nodes,ni = n - l = 2h+1−1
- 2h = 2× 2h - 1 - 2h = (2h − 1). ut
Lemma 5 Searching for an item in a balanced tele-
phone dictionary withn records requiresΘ(log2n)
comparisons.

Proof: From Lemma4, the heighth of a BST sat-
isfies: (2h − 1) < n ≤ (2h+1 − 1). Therefore,
2h < (n + 1) ≤ (2h+1 − 1 + 1), which is: 2h <
(n+1) ≤ 2h+1. Hence,h < log2(n+1) ≤ (h+1). As
log2(n+1) ≤ (h+1), therefore,log2(n+1)−1 ≤ h.
But h < log2(n + 1). Thus, following holds true:
log2(n + 1) − 1 ≤ h < log2(n + 1). Now, log2n <
log2(n+1) ≤ log2(n+n) = log22n = (log22+log2n)
= (1+ log2n). Solog2n < log2(n+1) ≤ (1+ log2n),
which implies,log2n < log2(n+1) andlog2(n+1)−
1 ≤ log2n. But log2(n + 1)− 1 ≤ h < log2(n + 1),
which provides:log2(n + 1)− 1 ≤ h ≤ (1 + log2n).
Since,log2(n+1)−1≥ (log2n−1). Therefore, finally,
(log2n−1) ≤ h ≤ (1+log2n). Hence,h ∈ Θ(log2n).
In a balanced BST, the search path is bounded by the
height of the tree,h. Therefore, search is inΘ(log2n).
ut

Following result establishes the relationship be-
tween the cost of a successful search with that for an
unsuccessful search.

Theorem 6 If the search for a record in the ETD is
equally likely, then the average cost,Cni for a suc-
cessful search is related to the average costCne for
an unsuccessful search by the following equation:

Cni = [(1 +
1
ni

)× Cne − 3] (1)

Here,ni = number of internal nodes, andne = num-
ber of external nodes.

Proof: Let us denote the Internal path length byI,
and the External path length byE. The relationship
betweenni andne is given by,ne = (ni + 1). From
the data structure literature,E = I +2ni. If successful
search for the nodes is equally likely for all of theni

internal nodes, then the average cost,Cni is:

Cni =
(I + I + ni)

ni
=

(2I + ni)
ni

(2)

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 90 Issue 3, Volume 7, March 2008

OneI accounts for visiting all internal nodes starting
from the root, and the otherI takes care of the return-
ing path distances to the root node from the internal
nodes. Similarly, if the search is unsuccessful, then
the average cost,Cne is:

Cne =
(2E)

(ni + 1)
(3)

Using the above two equations,Cne = (2×(I+2ni))
(ni+1) .

Hence,2I = (ni+1)Cne−4ni. Also,ni×Cni = (2I+
ni). Therefore,2I = niCni−ni = (ni +1)Cne−4n.
Upon manipulation,Cni = [(1 + 1

n)Cne − 3] ut
Corollary 7 The cost difference between an average
unsuccessful search and a successful search is given

by: Cdiff = 3n2
i−2I−ni

ni(ni+1) . Here,ni = total number of
internal nodes.

Proof: Using Theorem6, Cne = (2E)/(n + 1) and
Cni = (2I + n)/n. Therefore,Cdiff = (Cne −
Cni) = (2I+4ni)

(ni+1) - (2I+ni)
ni

= 2Ini+4n2
i−(2I+ni)(ni+1)
ni(ni+1) =

3n2
i−2I−ni

ni(ni+1) ut

3.2 Internal and External Path Length Met-
rics

Following algorithm computes the internal and the ex-
ternal path lengths of the ETD as shown in Figure1.

Algorithm getInternal
Purpose:This algorithm recursively returns the in-
ternal path length of the telephone dictionary BST
for a given number of records,n.
Input: Current rootnode from where the internal
path length is to be measured.
if root node is not NULLthen

if root node.getLeftChild() is not NULLthen
root node.internal length ←
(root node.internal length + 1+
getInternal(root node.getLeftChild()))

end if
if root node.getRightChild() is not NULLthen

root node.internal length ←
(root node.internal length + 1+
getInternal(root node.getRightChild()))

end if
end if
return root node.internallength

For external path lengths,2 × n has been
added to I, as: root node.external length ←
root node.internal length + 2× n.

Consider the curves forIoptimal andEoptimal in
Figure1. Each of these forms a straight line with dif-
ferent slopes, passing through the origin ((0, 0) point).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000

in
te

rn
al

 p
at

h
le

ng
th

, I

number of records, n

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000

in
te

rn
al

 p
at

h
le

ng
th

, I

number of records, n

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000

ex
te

rn
al

 p
at

h
le

ng
th

, E

number of records, n

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000

ex
te

rn
al

 p
at

h
le

ng
th

, E

number of records, n

Figure 1: Internal and external optimal and actual
path lengths. The upper curve in the upper figure
represents variations in the actual internal path length
with the increasing number of nodes,n, and the lower
curve being obtained for the optimal path length val-
ues. The lower plot represents variations in the actual
external path lengths. Again, the lower curve repre-
sents the optimal external path length values.

At first, Ioptimal = n(log2n−2). For a particular value
of n, log2n is fixed. The minimum value ofn con-
sidered in this plot is,n = 10 > 8 = 23. Hence,
log2n > 3 and the quantity (log2n - 2) is always
positive. With the variations inn, the variations in
(log2n − 2) is negligible, and forms the slope of the
straight line for theIoptimal plotting. For clarity, the
minimum value ofn considered is,10. At n = 10,
(log2n − 2) = 1.32. Again, with the maximum value
of n, which is,n = 1000, (log2n− 2) = 7.97. Hence,
for ∆maxn = the maximum variations for the possible
values ofn = (1000−10), the variation in(log2n−2)
is, ∆max(log2n − 2) = (7.97 − 1.32) = 6.65, which
is only 0.67% of 990. Hence,(log2n − 2) may prac-
tically be considered as a constant, which forms the
slope,m of the straight line. Practically, the straight
line equation,Ioptimal = n(log2n − 2) is in the form

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 91 Issue 3, Volume 7, March 2008

of: y = Mx + c. Here,y = Ioptimal, M = slope =
(log2n − 2), x = n, and the constant interceptc with
they-axis needs to be determined. As the line passes
through the origin, (0, 0), this is a point on the straight
line. Hence,0 = M × 0 + c. Therefore,c = 0. Hence,
the experimental curves for the internal and the exter-
nal path lengths fit the corresponding theoretical mod-
els. Next consider,Eoptimal = Ioptimal + 2n. There-
fore,Eoptimal = n(log2n−2) + 2n = n(log2n−2+2)
= nlog2n. For variations inn, the variations inlog2n
is almost negligible, andlog2n forms the slope,M of
the straight line curve forEoptimal. For clarity, when
n = 10, log2n = 3.32, and whenn = 1000, log2n =
9.97. Hence for(1000 − 10) = 990 variations inn,
the variations inlog2n is only 6.65, which is0.67%
of 990. From the practical standpoint,log2n may
be considered constant, which forms the slopeM of
Eoptimal. This curve passes through the origin. There-
fore, the intercept,c = 0. Again, forIactual andEactual

curves,Eactual = Iactual + 2n. Consider two different
points (n1, Eactual1) and (n2, Eactual2) on theEactual

curve. Using Coordinate Geometry, the slope of the
straight line joining these two points onEactual is,

Me =
Eactual2

−Eactual1
n2−n1

=
Iactual2

+2n2−Iactual1
−2n1

n2−n1
=

Iactual2
−Iactual1

n2−n1
+2 = Slope of theIactual curve + 2

= Mi + 2. Hence, the difference in slopes of the
Eactual and theIactual curves varies by a constant fac-
tor, which is2. As a result, the curve forEactual has
the exact similar pattern to that forIactual.

3.3 Height Based Performance

Lemma 8 If r is the root of an ETD withn different
records, then the tree-sort algorithm for the ascend-
ing order dictionary takesΘ(n) time to display the
entries.

Proof: Let Tr(n) denotes the time taken by the tree-
sort algorithm when it is called on the root of ann-
node BST. The tree-sort algorithm consumes a small
constant amount of time on an empty subtree for per-
forming the test thatr 6= NULL. Therefore,T (0) =
c.

For n > 0, let the tree-sort is applied on an ar-
bitrary rootr whose left subtree containsk records.
Therefore, it’s right subtree contains (n − k − 1)
records. Hence, the recursive relationship is:T (n) =
T (k) + T (n − k − 1) + d; here,d > 0. Here,d is
the time to execute the tree-sort on the root node,r,
which is exclusive of the time spent in recursive calls.
Following is the complete set of recurrence relation:
T (0) = c, andT (n) = T (k)+T (n−k−1)+d. When-
ever,k = 0, T (n) = T (0)+T (n−0−1)+d, which is
T (n) = (c+d)+T (n−1) = (c+d)+(c+d)+T (n−2)

= 2(c + d) + T (n− 2)=3(c + d) + T (n− 3) = . . . =
n(c+d)+T (0) = c+n(c+d). This relationship satis-
fies for any positive integer constant,k. Following is
the verification of the correctness for this relationship:
T (n) = (c + d)k + c + (c + d)(n− k− 1) + c + d =
(c+d)(n−k−1+k)+(c+d)+c = (c+d)(n−1+1)+c
= n(c + d)+ c, as expected. AsT (n) = n(c+ d)+ c,
therefore,T (n) ≥ n(c + d), andT (n) ≤ 2nc + dn.
Hence,T (n) ∈ Θ(n). ut
Theorem 9 The required number of comparisons,Nr

in constructing the ETD,Tr with a height, h =
(dlog2(n+1)e−1) satisfies the following constraints:∑(h−1)

k=0 k × 2k < Tr ≤
∑h

k=0 k × 2k.

Proof: Placing the root record does not require any
comparison. Placing2 items at level1 will require 1
comparison each. Placing22 = 4 records at level2
will each require2 comparisons. Similarly,23 = 8
items at level3, each requires3 comparisons. In gen-
eral,2k records that will become the data for levelk,
each requiresk comparisons to determine it’s proper
position in the evolving tree.

This process ends when thenth record is placed.
Thenth record appears at levelh, wheren is bounded
by the following:∑(h−1)

k=0 2k = 2h − 1 < n ≤ ∑h
k=0 2k = (2h+1−1)

(2−1) =

2h+1 − 1. Therefore,2h − 1 < n ≤ 2(h+1) − 1.
By adding1 all over,2h < (n + 1) ≤ 2(h+1). This
provides:h < log2(n + 1) ≤ (h + 1). Hence,(h +
1) = dlog2(n+1)e, which is:h = (dlog2(n+1)e−1).

Each record at levelk requiresk comparisons.
Therefore, fork < h, 2k records at levelk needs a
total ofk × 2k comparisons. The last levelh may not
be full. In constructingTr, following relationship is
being satisfied:∑(h−1)

k=0 k × 2k < Tr ≤
∑h

k=0 k × 2k. ut
Corollary 10 The maximum number of comparisons
required to construct a BST of heighth for the ETD is,
(h− 1)2(h+1) + 2, and the minimum possible number
of comparisons is,(h− 2)2h + 2.

Proof: From Theorem9,
∑(h−1)

k=0 k × 2k < Tr ≤∑h
k=0 k× 2k. Suppose thatS =

∑h
k=0 k× 2k. There-

fore, 2S =
∑h

k=0 k × 2 × 2k =
∑h

k=0 k × 2k+1 =∑h
k=0(k + 1)× 2(k+1) -

∑h
k=0 2(k+1) =

∑h+1
k=1 k× 2k

- 2 × ∑h
k=0 2k =

∑h
k=0 k × 2k + (h + 1) × 2(h+1) -

2× (2h+1− 1) = S + (h+1)× 2(h+1) - 2× 2h+1 +2.
Hence,S = (h+1−2)×2(h+1)+2 = (h−1)2(h+1)+2.
Replacingh by (h − 1) in the expression for maxi-
mum number of comparisons, the expression for min-
imum number of comparisons is obtained as,(h−1−
1)2(h−1+1) + 2 = (h− 2)2h + 2. ut

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 92 Issue 3, Volume 7, March 2008

Corollary 11 Time complexity of the number of com-
parisons, Nr required to construct the ETD is,
Θ(nlog2n).

Proof: From Corollary10, Nr ≤ (h− 1)2(h+1) + 2.
Again from Lemma4, (log2n−1) ≤ h ≤ (1+log2n).
Therefore,hmax = (1+ log2n), andhmin = (log2n−
1). Hence,Nu = Upper bound on the required number
of comparisons =2 + [(hmin − 1)2hmin + 1] = 2 +
[log2(n+1)−1−1]×2log2(n+1)−1+1] = 2 + (log2(n+
1)− 2)(n + 1)=(n + 1)log2(n + 1)− 2n. The other
extreme case is when the final levelh contains only
1 node. The lower bound,Nl on Nr becomes:Nl =
(h−2)2h +2. In this later case, the first (h−1) levels
are full and complete, and there is only1 node at the
last levelh. ut

Corollary 12 The average level,Navg for a complete

BST is,havg = (h− 1) + (h+1)
2h+1−1

.

Proof: At level k, there are2k nodes. The sum of the
comparisons required for all levels is,

∑h
k=0 k × 2k.

From Corollary10,
∑h

k=0 k× 2k = (h− 1)× 2h+1 +
2. A complete BST hasn = (20 + 21 + . . . + 2h)
= (2h+1 − 1) records. Hence, the average number of

comparison for each record is,Navg = (h−1)×2h+1+2
2h+1−1

= (h− 1) + (h+1)
2h+1−1

. ut

3.4 Cost of Computation in Complete and
Nearly Complete BSTs

It is always desired that the BST for the ETD be com-
plete or nearly complete. A complete BST has the
maximum number of entries for its height,h. Hence,
nmax = (2h−1), whereh = height of the BST. A BST
is nearly complete if it has the minimum height for its
nodes (here,hmin = (blog2nc + 1), and all nodes in
the last level are found on the left.

Lemma 13 The Internal Path Length,Ic for a com-
plete BST with the height,h is, Ic = h2h+1−2h+1+2,
and the External Path Length,Ec is, (h + 1)2h+1.

Proof: For a complete BST,Ic =
∑h

j=0 (level number,

j)×2level number, j =
∑h

j=0 j×2j . From Corollary10,∑h
j=0 j×2j = (h−1)2(h+1) +2 = h2h+1−2h+1 +2.

Since the BST is complete, total number of nodes,n

= 20 +21 +22 + . . .+2h = (2h+1−1)
(2−1) = (2h+1−1). The

external path length is,Ec = I +2n = h2h+1−2h+1 +
2+2× (2h+1− 1) = h2h+1 +2h+1 = (h+1)2h+1. ut

Lemma 14 The Internal Path Length,Inc for a nearly
complete binary search tree with height,h is: Inc =

(2 + (1 + n)h− 2h+1), and the External Path Length,
Enc is, (2 + h)(1 + n) − 2h+1. Here,n is the total
number of nodes in the nearly complete BST.

Proof: Suppose that the height of the BST is,h, and
the total number of records is,n. Therefore, the tree is
complete and full up to the (h− 1) level, and suppose
that there arek nodes at the last level,h. Here,k <
2h, andk ≥ 1. The internal path length up to the
(h−1) level is:Ih−1 =

∑h−1
j=0 j×2j . Using Corollary

10, Ih−1 = (h − 1 − 1)2h + 2 = (h − 2)2h + 2.
Therefore, the internal path length,Inc = (h− 2)2h +
2 + h × k. The total number of nodes in the BST is,
n = (20 + 21 + . . . + 2h−1 + k) = (2h−1+1 − 1) +
k = (2h − 1) + k. Hence,k = (n − 2h + 1). Now,
Inc = (h− 2)2h + 2 + h× (n− 2h + 1) = 2 + (1 +
n)h− 2h+1. Hence, the external path length is,Enc =
2 + (1 + n)h− 2h+1 + 2n = 2 + h + nh− 2h+1 + 2n
= (2 + h) + n(2 + h) - 2h+1 = (n + 1)(2 + h)− 2h+1.
ut

Next results concern path length deviations from
a complete BST with heighth to a nearly complete
BST with heighth.

Theorem 15 Maximum possible deviations in the in-
ternal and the external path lengths from a complete
to a nearly complete BST with heighth is, Idmax =
h(2h−1), andEdmax = (h+2)(2h−1), respectively.

Proof: From Lemma13, the internal path length for
a complete BST with the height,h is, Ic = h2h+1 −
2h+1 + 2, and the External Path Length,Ec is, (h +
1)2h+1. From Lemma14, the internal path length for
a nearly complete BST with height,h is, Inc = (2 +
(1 + n)h − 2h+1), and the external path length,Enc

is, (2+h)(1+n)− 2h+1. For a nearly complete BST
with the minimumInc andEnc and a fixed height,h,
k = 1. From Lemma14, k = (n − 2h + 1), which
yields, (n− 2h + 1) = 1 or, n = 2h. Therefore,Incmin

= (2 + (1 + n)h− 2h+1) = (2 + (1 + 2h)h− 2h+1) =
(2 + h + h× 2h − 2h+1). Similarly,Encmin = Incmin

+ 2n = (2 + h + h × 2h − 2h+1) + 2 × 2h = (2 +
h + h× 2h). The maximum possible difference in the
internal path length,Idmax = (h2h+1 − 2h+1 + 2) -
(2 + h + h× 2h− 2h+1) = (h× 2h− h) = h(2h− 1).
The maximum possible difference in the external path
length,Edmax = (h + 1)2h+1 - (2 + h + h × 2h) =
h×2h+1+2h+1−2−h−h×2h = h×2h+2×2h−2−h
= 2h(h + 2)− 1(2 + h) = (2h − 1)(h + 2). ut

Corollary 16 The minimum possible deviation in the
internal and the external path lengths from a complete
to a nearly complete BST with heighth is, Idmin = h,
andEdmin = (h + 2), respectively.

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 93 Issue 3, Volume 7, March 2008

Proof: For the minimum deviations, there is1 less
record than the maximum possible at the highest level
h to make the BST complete. Using Theorem15, k =
(n− 2h + 1), and here,k = (2h − 1). Therefore,n =
(2h− 1) + k = 2(2h− 1). Hence,Incmax = 2 + h(1 +
n)−2×2h = 2+h(1+2(2h−1))−2×2h = 2+h+
h× 2h+1− 2h− 2h+1. Therefore,Encmax = Incmax +
2n = 2+h+h×2h+1−2h−2h+1 + 2×2(2h−1) =
2h+1(1 + h)− (2 + h). Hence,Idmin

= Ic - Incmax =
(h2h+1− 2h+1 +2) - (2+h+h× 2h+1− 2h− 2h+1)
= h. Similarly,Edmin

= Ec - Encmax = ((h + 1)2h+1)
- (2h+1(1 + h)− (2 + h)) = (h + 2). ut

Corollary 17 Maximum possible deviations for the
internal and the external path lengths from a com-
plete to a nearly complete BST with a heighth is, Id

= 2h(2h−1 − 1), andEd = 2(h + 2)(2h−1 − 1), re-
spectively.

Proof: From Theorem15, Idmax = h(2h − 1), and
Edmax = (h + 2)(2h − 1). From Corollary16, Idmin

= h, andEdmin = (h + 2). Therefore,Id = Idmax -
Idmin = h(2h − 1) - h = h2h − 2h = 2h(2h−1 − 1).
Similarly, Ed = Edmax - Edmin = (h + 2)(2h − 1) -
(h + 2) = (h + 2)(2h − 1 − 1) = (h + 2)(2h − 2) =
2(h + 2)(2h−1 − 1). ut

Example 18 Consider a BST with height,h = 5. If it
is complete,Ic = (h − 1)2h+1 + 2 = 2(4 × 25 + 1)
= 258. The external path length,Ec = (h + 1)2h+1 =
6× 26 = 384. NextIncmin = (2 + h) + (h− 2)× 2h

= (2 + 5) + (5 − 2) × 25 = 103. Again,Encmin =
(2+h)(1+2h)−2h+1 = (2+5)(1+25)−26 = 167.
NowIncmax = 2h+1(h− 1) + (2− h) = 32× 8− 3 =
253. Once again,Encmax = 2h+1(1 + h)− (2 + h) =
26(1+5)− (2+5) = 352+25 = 377. Hence,Encmax

- Encmin = (377− 167) = 210, andIncmax - Incmin =
(253−103) = 150. However,Ed = 2(h+2)(2h−1−1)
= 2(5 + 2)(24 − 1) = 210, as expected. Also,Id =
2h(2h−1 − 1) = 2× 5(24 − 1) = 150, as expected.

Lemma 19 For a complete BST with heighth, the
average internal path length is,Iavgc = (h − 1) +

(h+1)
(2h+1−1)

, and the average external path length is,

Eavgc = (h + 1). Also, the difference betweenEavgc

andIavgc is given by,davgEI = (2− (h+1)
2h+1−1

).

Proof: For a complete BST with heighth, Ic =
2h+1(h− 1)+2, andEc = (h+1)2h+1. For the com-
plete BST, the number of nodes,n = (20+21+. . .+2h)
= (2h+1 − 1). Average internal path length,Iavgc =
Ic
n = 2h+1(h−1)+2

2h+1−1
= (h − 1) + (h+1)

(2h+1−1)
. Number

of the terminating external nodes,nex = (n + 1) =

2h+1. The average external path length,Eavgc = Ec
nex

= (h+1)2h+1

2h+1 = (h + 1). Therefore,Eavgc - Iavgc =

(h + 1)− (h− 1)− (h+1)
2h+1−1

= 2− (h+1)
(2h+1−1)

< 2. ut
Theorem 20 The minimum average internal and ex-
ternal path lengths for a nearly complete BST with
heighth are given by:Iavgncmin

= (2+h)
2h +(h−2), and

Eavgncmin
= (2 + h)− 2h+1

(1+2h)
, respectively. The max-

imum average internal and external path lengths for
a nearly complete BST with heighth are: Iavgncmax

= h(2h+1−1)
2(2h−1)

− 1 = h(2h+1−1)
2(2h−1)

− 1, andEavgncmax
=

(h + 1)− 1
(2h+1−1)

, respectively.

Proof: From Theorem15, Incmin = (2+h)+(h−2)2h

andEncmin = (2 + h)(1 + 2h) − 2h+1. For Incmin ,

n = 2h, andnex = (2h +1). Now,Iavgncmin
=

Incmin
n

= (2+h)+(h−2)2h

2h = (2+h)
2h +(h−2). Also,Eavgncmin

=
Encmin

nex
= (2+h)(1+2h)−2h+1

2h+1
= (2 + h)− 2h+1

(1+2h)
. From

Corollary 16, Incmax = 2h+1(h − 1) + (2 − h). For
Incmax , n = 2(2h − 1). Therefore,nex = n + 1 = (2×
2h−2+1) = (2h+1−1). Hence,Iavgncmax

= Incmax
n =

2h+1(h−1)+(2−h)
2(2h−1)

= h(2h+1−1)
2(2h−1)

− 1. Also, Eavgncmax
=

Encmax
nex

. AsEncmax = 2h(1+2h)− (2+h), therefore,

Eavgncmax
= 2h(1+2h)−(2+h)

2h+1−1
= (h+1)(2h+1−1)−1

(2h+1−1)
= (h+

1)− 1
2h+1−1

. ut
Corollary 21 Differences between the maximum and
the minimum averages are:Iavgncdiff

= (1− (h+4)
2(2h−1)

+
(h+2)

2h(2h−1)
), andEavgncdiff

= 2h

(1+2h)
(1− 3

2h+1−1
).

Proof: From Theorem20, Iavgncmax
= (2+h)

2h +
(h − 2), and Iavgncmin

= (2+h)
2h + (h − 2). There-

fore, Iavgncdiff
= Iavgncmax

- Iavgncmin
= (2+h)

2h +

(h − 2) − (2+h)
2h + (h − 2). Upon simplifications,

Iavgncdiff
= (1− (h+4)

2(2h−1)
+ (h+2)

2h(2h−1)
). Using Theorem

20, Eavgncmax
= (h + 1) − 1

2h+1−1
, andEavgncmin

=

(2+h)− 2h+1

(1+2h)
. Therefore,Eavgncdiff

= Eavgncmax
-

Eavgncmin
= ((h+1)− 1

2h+1−1
) - ((2+h)− 2h+1

(1+2h)
). Us-

ing algebraic manipulations,Eavgncdiff
= 2h

(1+2h)
(1−

3
2h+1−1

). ut

3.5 Cost Factor Considerations with Con-
stant Heights

Lemma22 finds the optimal heighth of a nearly com-
plete BST in terms ofn andk. Here,k is the num-

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 94 Issue 3, Volume 7, March 2008

ber of records at the last levelh for a nearly complete
BST.

Lemma 22 The optimal heighth for a nearly com-
plete BST is,hopt = blog2(n − k + 1)c. Here,n =
the total number of records inside the BST, andk =
number of records at the last levelhopt.

Proof: From the structure of a nearly complete BST,
(20+21+. . .+2h−1+k) = n. But(20+21+. . .+2h−1)
= (2h−1). Therefore, (2h−1+k) = n. This provides,
2h = (n−k+1). Hence,h = log2(n−k+1). Therefore,
for a nearly complete BST,hopt = blog2(n− k +1)c.
ut

For the data used in this paper, withn =
40, 50, 60, the heighth remained the same. Also,
for n = 600, 700, 800, 900, 1, 000, the height,h re-
mained unchanged. If the BST is nearly complete,
then it shows linear behavior over range of values for
n, where the height,h is a constant.

Theorem 23 If the height,h for a nearly complete
BST remains constant over a range of values forn,
then the internal and the external path lengths of the
nearly complete BST varies linearly with the changing
n within that range.

Proof: For a nearly complete BST, the internal path
length is,Inc = 2+h(1+n)−2h+1, and the external
path length is,Enc = (2 + h)(1 + n) − 2h+1. If the
height,h is kept constant, thenh = c. Here,c is a
constant. Therefore,Inc = 2 + c(1 + n)− 2c+1, and
Enc = (2 + c)(1 + n) − 2c+1. As c is a constant,
2c+1 is also a constant. Let2c+1 = a. Hence,Inc =
2 + c(1 + n) − a = cn + (2 + c − a). Also, Enc =
(2 + c)(1 + n) − 2c+1 = 2 + c + 2n + cn − a =
n(c + 2) + (2 + c − a). The final expressions for
Inc andEnc are,Inc = cn + (2 + c − a) andEnc =
n(c + 2) + (2 + c − a), respectively. Both of these
expressions are in the form of a straight line equation,
y = Mx + k. Here,M = slope, andk is the intercept
with they-axis. ForInc, y = Inc, x = n, M = c, andk
= (2 + c− a). ForEnc, y = Enc, x = n, M = (c + 2)
(another constant), andk = (2 + c− a). ut
Corollary 24 For a complete BST, with a constant
heighth, the internal path length,Ic and the external
path length,Ec are constants.

Proof: Using Lemma13, and for a constant heighth,
the internal path length,Ic = h2h+1 − 2h+1 + 2, and
the External Path Length,Ec is, (h + 1)2h+1. Since
the heighth is fixed, using Theorem23, let h2h+1 =
constant =c1, and2h+1 = constant =c2. Therefore,
Ic = c1 - c2 + 2 = another constant,d1. Similarly, Ec

= (h + 1)2h+1 = h2h+1 + 2h+1 = c1 + c2 = another
constant,d2. ut

4 Multiple Key BST Search Algo-
rithm

Algorithm find record
Purpose: This algorithm finds a record in the gen-
erated BST.

Require: namesupplied and thisnode as inputs.
if namesupplied.compareTo(thisnode.name)==
0 then

return this node
else if namesupplied.compareTo(thisnode.name)
< 0 then

if this node.getLeftChild() is not NULLthen
return find record (namesupplied,
this node.getLeftChild()) {recursive call
to find record}

else
return NULL

end if
else

if this node.getRightChild() is not NULLthen
return find record (namesupplied,
this node.getRightChild())

else
return NULL

end if
end if

The 2-key BST Search algorithm makes use of the
classical1-key version.

Algorithm find record 2key
Purpose: This algorithm performs2-key binary
search tree search.
The supplied parameters are: array names[], current
node verified thisnode.
find record2key finds out two matching nodes if
available for the array names[] and return those as
array search2[].

Require: names[0].compareTo(names[1]) < 0
Ensure: an array of correct records or NULLs are re-

turned
if names[1].compareTo(thisnode.name)< 0 then

if this node.getLeftChild() is not NULLthen
search2[0]⇐ find record (names[0],
this node.getLeftChild())
search2[1]⇐ find record (names[1],
this node.getLeftChild()) {Make 2 calls
to find record on the left subtree}

else
search2[0]⇐ NULL
search2[1]⇐ NULL

end if
return search2[]

else if names[0].compareTo(thisnode.name)> 0
then

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 95 Issue 3, Volume 7, March 2008

if this node.getRightChild() is not NULLthen
search2[0]⇐ find record (names[0],
this node.getRightChild())
search2[1]⇐ find record (names[1],
this node.getRightChild()) {Make 2 calls
to find record on the right subtree}

else
search2[0] ⇐ NULL
search2[1] ⇐ NULL

end if
return search2[]

else if names[0].compareTo(thisnode.name)< 0
and names[1].compareTo(thisnode.name)> 0
then

if this node.getRightChild() is not NULL and
this node.getLeftChild() is not NULLthen

search2[0] ⇐ find record (names[0],
this node.getLeftChild())
search2[1] ⇐ find record (names[1],
this node.getRightChild()) {Make 2 calls
to find record on two subtrees}

else if this node.getRightChild() is not NULL
then

search2[0] ⇐ NULL
search2[1] ⇐ find record (names[1],
this node.getRightChild())

else if this node.getLeftChild() is not NULL
then

search2[0] ⇐ find record (names[0],
this node.getLeftChild())
search2[1] ⇐ NULL

else
search2[0] ⇐ NULL
search2[1] ⇐ NULL

end if
return search2[]

else ifnames[0].compareTo(thisnode.name)== 0
then

if this node.getRightChild() is not NULLthen
search2[0] ⇐ this node
search2[1] ⇐ find record (names[1],
this node.getRightChild())

else
search2[0] ⇐ this node
search2[1] ⇐ NULL

end if
return search2[]

else ifnames[1].compareTo(thisnode.name)== 0
then

if this node.getLeftChild() is not NULLthen
search2[1] ⇐ this node
search2[0] ⇐ find record (names[1],
this node.getLeftChild())

else
search2[1] ⇐ this node

search2[0] ⇐ NULL
end if
return search2[]

end if
return search2[]

5 Multi-key BST Search Perfor-
mance

Lemma 25 An m-key BST Search Algorithm may be
applied to a BST containingn records, wheren >=
m.

Proof: A proof by contradiction is adopted. Suppose
that n < m. Therefore, the total number of keys to
search for within the BST becomes greater than the
number of records. In the best possible case,n dif-
ferent keys may be identified at the positions of the
n records, leaving (m-n) keys undecided during the
computation, for which, no records to look for may
be available. This violates the objective of them-key
BST search, which is to identify the BST records cor-
responding tom-keys within the entire BST. Hence,
at most,m = n. ut

Theorem 26 An m-key BST search requires consid-
ering (2m+1) different cases in identifying the records
corresponding to them keys within the BST. Here,
m ≥ 1.

Proof: Following is a proof by mathematical induc-
tion.
Base Case:For the base case,m=1. With P(1), it
is the classical, single key BST search. It consid-
ers 3-different cases. These are: (1) key element
= root value, (2) key element> root value, and (3)
key element< root value. Hence, (2 × 1 + 1) = 3
different cases are being considered.
Induction: Suppose that thek-key search algorithm
requires considering (2k + 1) different cases. Here,k
≥ 1. It is required to show that: [P(1)

∧ ∀ P(k)]→
P(k+1), which is showing that for (k+1) different
keys, (2(k + 1) + 1) = 2k + 3 different cases are re-
quired to be considered. For the (k + 1)th key, two
more cases are required in addition to the (2k + 1)
cases for the firstk keys. For the sorted keys,(k+1)th
key is the largest and the last key within the list.
Therefore, it is required to consider only2 additional
cases. Firstly, verify whether the root value is equal
to the (k + 1)th key value. If so, the (k + 1)th key is
found at the root, and it is necessary to use the steps
in the k-key version of the BST search to locate the
first k-keys on the left subtree. Secondly, it may be
required to verify whether the(k + 1)th key is larger,

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 96 Issue 3, Volume 7, March 2008

and thekth key is smaller than the root node. In that
event, confine the search for the(k + 1)th key to the
right subtree of the BST using a classical BST search,
and use the steps inside thek-key version of the multi-
key BST search for the firstk keys on the left subtree.
Rest of the cases are identical to thek-key version ex-
cept that it is required to consider (k+1) keys instead
of only k keys. Altogether, for the (k+1) key version,
it is required to consider (2k + 1 + 2) = 2(k + 1) + 1
different cases.
Conclusion: The theorem is true form = 1. If the
theorem is true form = k keys, it also holds true for
m = (k + 1). As it is true form = 1, it holds true
for m = 2. As it is true form = 2, it is also true for
m = 3, and so on. Hence, the theorem holds true for
anym with m ≥ 1. ut

6 Performance Measurement Issues

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000

nu
m

be
r

of
 le

av
es

, l

number of nodes, n

Figure 2: Variation in the number of leaves with the
increasing number of nodes,n.

Figure2 shows the variation in the leaf count,l with
the number of recordsn. For continued consistency,
with n = 10, a data file with10 records is created.
Next for n = 20, an additional10 records are im-
posed over the existing10 nodes. Forn = 30, an ad-
ditional10 records are added to the existing20 nodes,
and so on. Finally, forn = 1, 000, an additional100
records are added to the previousn = 900 node ver-
sion. Hence, with the increasingn, additional records
are added to the existing ones to get the next highern.
As a result,l in the BST varies almost linearly withn
in the generated BST. The line curve for thel vs. n
plot passes through the origin (0, 0). Hence, the curve
almost satisfies the straight line equation,y = Mx.
Here,y = l, x = n, andM=slope of the curve denot-
ing the number of leaves per record count as a frac-

tion. From the plot,M = 312
1000 = 0.312 (approx) leaves

per record. Therefore, it is possible to manipulatel
for other values ofn within the range fromn = 10 to
n = 1, 000. For instance, ifn = 450, l = M × 450 =
0.312× 450 = 140 (approx).

7 Conclusion

In this paper, some new results on complete and nearly
complete BSTs are introduced for ETD applications.
A recursive algorithm for computingI andE values
in such a dictionary is described, and the related per-
formance data are used during the analysis. Another
algorithm to identify multiple records in an ETD is
proposed for the computational cost reduction. Dy-
namic allocation of memory for an ETD is a highly
desirable property, which may be easily attained for
the currently loaded BST using the tree-sort and writ-
ing the sorted records back to the ETD file through the
software. Dynamic memory allocation speeds up the
computation bypassing the wastage due to the alloca-
tion of unused memory space. On average, a search in
an ETD built fromn random keys requires2loge(n)
comparisons [2]. Using tree-sort, if perfectly bal-
anced, the maximum number of nodes to be traversed
will be no more thand log2(n)+1 e comparisons [2].

Now-a-days, the Personal Digital Assistants
(PDAs), GPS Navigator systems, etc. come with
the built-in ETDs. But these devices have internal
memory constraints. Therefore, a BST-based dynamic
memory allocation scheme for a dictionary designed
for a mid-sized organization would be quite useful in
such a device. If hardware implemented, the compu-
tational techniques rendered by the ETD may be ex-
pected to be extremely fast and efficient.

Performance metric of a BST largely depends on
the I and theE values. In future, a framework will
be considered for generating an optimal BST with the
minimal values ofI andE using a popular and cur-
rent optimization technique. Dynamic programming
(DP) techniques are still popular and useful with their
backward directional computational abilities. A DP
algorithm may be used to generate optimal BSTs with
the minimal values ofI andE.

References:

[1] F. Aoughlis and E. METAIS, An Electronic Dic-
tionary of Computer Science Terminology,Pro-
ceedings of the10th WSEAS International Con-
ference on COMPUTERS,2006, pp.458-462.

[2] P. Scarfe and E. Lindsay, Dynamic Memory Al-
location for CMAC using Binary Search Trees,
Proceedings of the8th WSEAS International
Conference on Neural Networks,2007, pp. 61-
66.

WSEAS TRANSACTIONS on COMPUTERS Ahmed Tarek

ISSN: 1109-2750 97 Issue 3, Volume 7, March 2008

