
Faulty-Tolerant Algorithm for Mapping a Complete Binary Tree in an
IEH

Shih-Jung Wu1, *Jen-Chih Lin2, and Huan-Chao Keh3

Department of Computer Science and Information Engineering,
Nanya Institute of Technology,

No. 414, Sec. 3, Jhongshan E. Rd., Jhongli City,
Taoyuan County 32091, Taiwan, R.O.C.

2Department of Digital Content Design
National Taipei University of Education,

No.134, Sec. 2, Heping E. Rd., Da-an District,
Taipei City 106, Taiwan, R.O.C.
E-mail: *yachih@tea.ntue.edu.tw

3Department of Computer Science and Information Engineering,
Tamkang University

No. 151 Ying-chuan Road, Tamsui,
Taipei 251, Taiwan, R.O.C.

Abstract: - Different parallel architectures may require different algorithms to make the existent algorithms on one
architecture be easily transformed to or implemented on another architecture. This paper proposes a novel
algorithm for embedding complete binary trees in a faulty Incrementally Extensible Hypercube (IEH). Furthermore,
to obtain the replaceable node of the faulty node, 2-expansion is permitted such that up to (n+1) faults can be
tolerated with dilation 3, congestion 1 and load 1. The presented embedding methods are optimized mainly for
balancing the processor loads, while minimizing dilation and congestion as far as possible. According to the result,
we can map the parallel algorithms developed by the structure of complete binary tree in an IEH. These methods of
reconfiguring enable extremely high-speed parallel computation.

Key-Words: - Hypercube, Incrementally Extensible Hypercube, Complete binary tree, Fault-Tolerance, Embedding

1 Introduction
From the computational perspective, hypercube
multiprocessors have recently offered a cost effective
and feasible approach to supercomputing through
parallelism at the processor level by directly
connection a large number of low-cost processors
with local memories which communicate by
message-passing instead of shared variables.
Therefore, hypercubes are widely used
interconnection architectures in parallel machines.

Another reason for the popularity of the
hypercube is that several other architectures can be
embedded in it. Motivations for embedding
architectures include:
(1) Efficient algorithms may exist for some

architecture which suits the needs of these
algorithms perfectly, and we may wish to
implement these algorithms in the hypercube.

(2) Proof of embedding for an architecture is also

proof of all of its algorithms to be implemented in
the hypercube architecture, with a level of
efficiency determined only by the cost associated
with the embedding.

(3) The embedded architecture is usually easier to
understand the visualize. It is often easier to
design algorithms for the simpler architecture. In
this sense, the embedded architecture can be
considered an abstraction from the hypercube,
where the irrelevant connections are masked out.

(4) Embedded architectures can be also considered as
parallel data structures for parallel architectures.
The embedding method shows the way to
implement these data structures in the hypercube
parallel computer.
But, there are some imperfections to be

hypercube architectures for parallel computation, for
example only 2n nodes that a hypercube can be
produced. In order to conquer the difficulties

WSEAS TRANSACTIONS on COMPUTERS

Shih-Jung Wu, Jen-Chih Lin, and Huan-Chao Keh

ISSN: 1109-2750 83 Issue 3, Volume 7, March 2008

associated with hypercube, several
hypercube-like[5-9] Computers have been proposed
during past years, which are discussed. Based on this
observation, we present a new characterization of a
fault-tolerant hypercube-like architecture, which is
Incrementally Extensible Hypercube (IEH) that
allows the performance degradation due to faults to
be measured.

Tree is a basic network topology. A complete
binary tree is special tree underlying divide-and-
conquer algorithms. A complete binary tree arises in
the solution of tridiagonal systems by even-odd
cyclic reduction and solution of systems of
equations that is noted in [4]. Suppose some process
can be naturally decomposed into a collection of
subprocesses that can be executed concurrently with
certain communication between subprocesses by an
edge between corresponding nodes. One obtains a
complete binary tree by denoting each subprocess
by a node and each communication between
subprocesses by an edge between corresponding
nodes. The problem of allocating those subprocesses,
structured by a complete binary tree, to processors
in a given interconnection networks will be reduced
to the problem of embedding a complete binary
tree[1, 4].

Graph mappings have been used successfully to
show simulation capabilities of guest architecture by
host architecture[1, 4]. In graph mapping techniques,
host and guest architectures are viewed as graphs H
and G, respectively, and then the graph G is mapped
into the graph H. In the mapping of a graph G into
H, we map the set of nodes of G into the set of
nodes of H and the edges of G to paths in H which
connect the image of the nodes of G. In order to
obtain efficient simulations of G by H, various cost
measures of a mapping must be optimized. The load
is defined as the maximum number of nodes of G
assigned to any node of H. We say that a mapping
achieves a balanced load when load = 1. The
dilation of an edge of G is the maximum distance
between any pair of processes of H corresponding to
a pair of neighbor processes of G. The congestion is
defined as the maximum number of paths over an
edge in H, where every path represents an edge in G.
The expansion of the mapping is the ratio of the
number of nodes in G to the number of nodes in H.

We develop some method to modify the IEH by
the addition of spare nodes and communication
links in order to obtain designs whose performance
degrades gracefully in the presence of node failures.

The rest of this paper is organized as follows. In
Section 2, definitions of these topologies are given.
Notations and definitions of terms are also provided.
Section 3 presents the method for mapping a
complete binary tree. In Section 4, we describe the
novel algorithm for mapping a complete binary tree
in an IEH. Conclusions are finally made in section
5.

2 Preliminaries
We briefly describe notations and definitions of the
hypercube and the IEH graph.

A hypercube Qn of order n, is defined to be a
symmetric graph G= (V, E) where V is the set of 2n
vertices, each representing a distinct n-bit binary
number and E is the set of symmetric edges such
that two nodes are connected by an edge iff the
number of positions where the bits differ in the
binary labels of the two nodes is 1.

The IEH graph is the composition of some m
different hypercubes. Let Gn(N) be an IEH graph
with N nodes, and N can be expressed by the binary
string N= bnbn-1bn-2…b1b0, and bi ∈ {0,1}. An IEH
graph Gn(N) is composed of some different
hypercubes which have lower dimension than Gn(N)
has. That is, Gn(N) contains a hypercube, denoted by
Hi, if and only if the ith bit in the binary
representation of N is 1.

Accordingly, the IEH graph is composed of
some hypercubes, so there is a new type of
connections beside the usual connections in a
hypercube. These edges (or links) are used for
connecting two hypercubes are called Inter-Cube or
IC edges. The basic philosophy in the design of the
IEH graphs is to express N as a sum of several
powers of 2, i.e., to write N as a binary number,
build the smaller hypercubes, and then to add
appropriate inter-cube edges to connect those
smaller hypercubes. For any given N, 2n≤ N<2n+1,
the steps of finding IEH graphs are as follows.
Step 1 Build subcube graphs. Express N as (n+1)
bits a binary number as N= bnbn-1bn-2…b1b0, where
bi ∈ {0,1} and bn=1 since N ≥ 2n. For each bi, bi≠0,
construct a hypercube graph Qi with 2i nodes.
Step 2 Label the nodes. Note that each node has a
(n+1)-bit binary label. Each hypercube Qi is labeled
as 11…10bi-1bi-2…b1b0. Obviously each hypercube
of dimension i (having 2i nodes) has i number of
dashed and the individual nodes of the hypercube

WSEAS TRANSACTIONS on COMPUTERS Shih-Jung Wu, Jen-Chih Lin, and Huan-Chao Keh

ISSN: 1109-2750 84 Issue 3, Volume 7, March 2008

can be obtained by filling the dashes with 0 or 1 in
all possible ways. In other words, the binary
representation of each node in Qi has the same
prefix of (n-i)1's followed by a single zero.
Step 3 Construct the incremental hypercube in steps
by providing the inter-cube edges. Find the
minimum i such that bi≠0. Set j=i and Gj=Qi.

Set i=i+1.
While i≤n do
if bi≠0 then
 if i-j=1 then
each node x in Gj with label 11…bjbj-1…b0 is

connected to the node 11…10bjbj-1…b0 of Qi.
 else
each node x in Gj with label 11…1bjbj-1…b0 is

connected to (i-j) different nodes of Qi chosen in the
following way:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

−

−

−

−

01

01

01

01

01

......101101111

......011101111

......111101011

......111100111

......111101111

bbb

bbb

bbb

bbb

bbb

jj

jj

jj

jj

jj

……
……

#
……
……
……

Set j=i and set Gj to be the composite graph
generated in the previous steps. Note that Gj has

now nodes and the binary label of each

node in G

∑
=

j

k

k
kb

0
2

j has a prefix of (n-j) 1's.
 i=i+1
 Return Gn as the desired incremental

hypercube graph of N vertices. �

Fig. 1: The IEH graph contains 11 nodes

Figure 1 shows the example of G3(11). G3(11)
consists of three subcubes. The three subcubes are
0-subcube(H0), 1-subcube(H1), and 3-subcube(H3).
Node 14 is the single node in H0. Nodes 12 and 13

are composed as a 1-subcube(H1), and nodes 0, 1, 2,
3, 4, 5, 6 and 7 are the elements of a 3-subcube(H3).
The edge (12, 14) is an IC edge connected between
H0 and H1 such that H0 and H1 are connected to be
an IEH graph containing 3 nodes(G1(3)). In addition,
the H3 connects to G1(3) with these IC edges (2, 14),
(6, 14), (0,12), (4,12), (1,13), and (5,13).
Definition 1[5] The Hamming distance between two
nodes with labels x=xn-1xn-2...x0 and y= yn-1yn-2...y0 is
defined as

HD(x, y)= , where hd(x∑
−

=

1

0

),(
n

i

ii yxhd i , yi)=

�
⎩
⎨
⎧

≠
=

.yxif 1,
,yxif 0,

ii

ii

Definition 2[5] Let x=xn-1…x0, y=yn-1…y0, then
Dim(x, y)={i in (0…n-1)∣ xi ≠ yi}�
Definition 3[4] If a complete binary tree is a rooted
binary tree and each internal nodes contains two
offspring nodes, then a complete binary of height h
denoted by Th, contains 2h-1 nodes. �
Definition 4[4] A double-rooted binary tree DTh,
where h is the height of the tree, is a complete
binary tree with the root replaced by a path of length
two is shown in figure 2. �

Fig. 2: A double-rooted complete binary tree

Lemma 7[4] A double-rooted complete binary tree
can be embedded into a hypercube with dilation 2
and load 1. �
Definition 5[6] An IEH graph is called a full IEH
graph, denoted by Fn, if and only if it has 2n+1-1
nodes. Intuitively, a full IEH graph must contain
hypercubes H0, H1,…, Hn as its subcubes. �

3 Mapping of Complete Binary Tree
Consider a complete binary tree Th, where h is the
number of levels. Assume that the levels of the tree
are indexed as 0,…,(h-1) starting from the root and
each internal nodes contains two offspring nodes,
then a complete binary tree Th contains (2h-1) nodes.

IEH graphs are provided with all properties of
hypercubes because an IEH graph may contain
some different-sized hypercubes as its subgraphs.
Thus the IEH graphs are selected to be the host

WSEAS TRANSACTIONS on COMPUTERS Shih-Jung Wu, Jen-Chih Lin, and Huan-Chao Keh

ISSN: 1109-2750 85 Issue 3, Volume 7, March 2008

graph of our embedding. Complete binary tree are
usually used in a lot of algorithms and
communications, so we proposed the method of
embedding complete binary trees into IEH graphs.

We describe our approach that maps a complete
binary tree in the full IEH or the IEH.
Lemma 1 A complete binary tree with height n
contains the same number of nodes as an
(n-1)-dimensional full IEH graph.
Proof. Suppose a tree Tn is said to be a complete
binary tree with height n, then each node of Tn
contains the same number of nodes in its right and
left subtrees. Consequently, the number of nodes in
a complete binary tree Tn has totally 2n-1 nodes. A
(n-1)-dimensional full IEH graph must, by the
definition, contain n hypercubes with different
dimensions. Therefore, a (n-1)-dimension IEH
graph, simply denoted by Fn-1, will consist of
hypercube with dimension with 0, 1, 2, …, and (n-1).
The kth-dimensional hypercube in a IEH is denoted
by Hk. Obviously, an (n-1)-dimensional full IEH
contains 20+21+22+…+2n-1 = 2n-1 nodes because
each kth-dimensional hypercube in the IEH graph
contains 2k nodes. Hence, a complete binary tree
with height n contains the same number of nodes as
an (n-1)-dimensional full IEH graph.�
Lemma 2 An (n-1)-dimensional full IEH graph is a
subgraph of an n-dimensional full IEH graph.
Proof. Let Fn be a full IEH graph, then two divided
components Hn and F’n exist in Fn where Hn is an
n-dimensional hypercube and F’n is an
(n-1)-dimensional full IEH graph. According to the
method of constructing an IEH graph, the vertex set
of Fn-1 is a subset of the vertex set of Fn and the
edge set of Fn-1 is a subset of the edge set Fn.
Therefore, Fn-1 is said to be a subgraph of Fn.�
Lemma 3 Assume that Hn is an n-dimensional
hypercube and Fn-1 is and (n-1)-dimensional full
IEH graph, Fn-1 is a subgraph of Hn.
Proof. According to the method of constructing an
IEH graph, H0, H1, …, Hn-1 construct Fn-1. These IC
edges connecting between the n hypercubes are all
of Hamming distance 1. Hence, these IC edges in
Fn-1 are normal edges in Hn. Consequently, the
vertex set of Fn-1 is a subset of the vertex set of Hn
and the edge set of Fn-1 is a subset of the edge set Hn.
Therefore, Fn-1 is said to be a subgraph of Fn. �
Lemma 4[6] A full IEH graph contains a
complete binary tree.
Lemma 5[6] A complete binary tree can be

embedded into a hypercube with one faulty
node.
Lemma 6 Embedding the complete binary tree
into a full IEH graph or a hypercube graph is
dilation 2, expansion 1, load 1 and congestion 1.
Proof. In the embedding of Tn into Fn-1, there are
some midway node must be passed to connect two
nodes That is, some edges in the tree Tn are mapped
in a path of the length 2 in the IEH graph Fn. As the
consequence, the dilation of the embedding is 2 and
congestion is 1. The embedding of Tn into Fn-1 is
one-to-one mapping for these nodes, so the
expansion and load of our embedding is exactly
equal to 1. Therefore, embedding the complete
binary tree into a full IEH graph or a hypercube
graph is dilation 2, expansion 1, load 1 and
congestion 2.�
Theorem 1 A complete binary tree Tn can be
embedded into Gn(N) with expansion 2, dilation 2,
congestion 1, and load 1.
Proof. It’s trivial by lemma 4 and lemma 5. And an
example is shown by figure 3. �
Figure 3 shows three steps of T3 embedding to
G3(11).

Fig. 3: Three steps of T3 embedding to G3(11)

4 Faulty-Tolerance Mapping
We present how to embed a complete binary
tree to a faulty IEH graph. Hence, in this section,
we consider a complete binary tree can be mapped
in an IEH with 2-expansion graph which contains
faulty node.

We show that a complete binary tree can be

WSEAS TRANSACTIONS on COMPUTERS Shih-Jung Wu, Jen-Chih Lin, and Huan-Chao Keh

ISSN: 1109-2750 86 Issue 3, Volume 7, March 2008

mapped in an IEH graph with expansion 2, load 1,
congestion 1, and dilation 4. By theorem 1, Tn can
be embedded into Gn(N) with 2-expansion. We
propose an algorithm FT_Tree_Embedding() for
mapping a complete tree in a faulty IEH as follows.

Algorithm FT_Tree_Embedding(x)
Input: x /*the faulty node*/, Gn(N)
Output: y /*the replaceable node*/
1. if the root r is faulty then
2. search the other root node r’
3. if the node r’ is faulty then backtrack the root

r
4. else
5. return(r’) /* node r is replaced by node r’/
6. exit()
7. i=0
8. if other node x is faulty
9. then
10. {
11. search the node y

/* HD(x, y)=1, Dim(x, y)={n}*/
12. if y is a exist node and it is free
13. then
14. return(y) /*replace x with y*/
15. exit()
16. else
17. while i < n do
18. search the node z
 /* HD(y, z)=1, Dim(y, z)={i}*/
19. if z is a exist node and it is free
20. then
21. return(y) /*replace x with z*/
22. exit()
23. i=i+1
24. return(“Failure”)
25. end

The searching path of the faulty node is shown
as follows.
 node0=0Xn-1Xn-2…X1X0

 node1=1Xn-1Xn-2…X1X0
 node2=1Xn-1Xn-2…X1X’0
 node3=1Xn-1Xn-2…X1’X0

 #
 node(n+1)=1X’n-1Xn-2…X1X0

We illustrate an example of finding a
replaceable node in G3(11) as shown figure 24 and
figure 33.

Fig. 4: T3 can be embedded into faulty G3(11)

 We illustrate an example of finding a
replaceable node in G3(11) as shown figure 5.

Fig.5: T3 can be embedded into faulty G3(11)

Theorem 2 A complete binary tree (Th) can be
embedded into faulty IEH Gn(N) graph with dilation
4, expansion 2, congestion 1, and load 1.
Proof. By the algorithm FT_Tree_Embedding(),
every searching path is only on path. Allowing us to
obtain congestion 1 and load 1. Herein, we allow
2-expansion to obtain the replaceable node of the
faulty node. When a node is faulty, it is worst case
in which the dilation=2+2=4 at most by
FT_Tree_Embedding(). Because these nodes and
links of searching path are not replicated from
FT_Tree_Embedding(), four costs associated with
graph embedding are dilation 4, expansion 2,
congestion 1, and load 1. �
Theorem 3 A searching path of
FT_Tree_Embedding() is include approximate to
(n+1) nodes.
Proof. Every node can be represented by a (n+1)-bit
binary string where . First, we
change the most significant bit from 0 to 1. Then, a
bit can be changed from to sequentially by

0iin" { 1,0∈pi }

0i 1−ni

WSEAS TRANSACTIONS on COMPUTERS Shih-Jung Wu, Jen-Chih Lin, and Huan-Chao Keh

ISSN: 1109-2750 87 Issue 3, Volume 7, March 2008

the FT_Tree_Embedding(). But IEH graph may be
have empty nodes. Hence, a searching path of
FT_Tree_Embedding() is including approximate to
(n+1) nodes. �
Theorem 4 There are O(n) faults, which can be
tolerated.
Proof. It’s trivial by theorem 3.�

5 Conclusions
In this paper, we consider the algorithm
FT_Tree_Embedding for a complete binary tree can
be mapped in an IEH. Considering embedding of
complete binary tree into a faulty IEH, allowing
2-expansion shows that up to (n+1) faults can
be tolerated. The main result of this paper is that it
is always possible to give solutions to the mapping
of complete binary trees in a faulty IEH graph with
2-expansion. The costs associated with graph
embedding in our strategies of reconfiguration
are dilation 3, congestion 1 and load 1. By the
result, we can embed the parallel algorithms
developed by the structure of complete binary
tree in an IEH. These methods of reconfiguring
enable extremely high-speed parallel
computation. Therefore, we can easily port the
parallel or distributed algorithms developed for
these structures to the IEH graphs and
hypercubes.

Reference
[1] S. B. Akers, and B. Krishnamurthy, A

Group-Theoretic Model for Symmetric
Interconnection Networks, IEEE Trans. on
Computers, Vol. 38, 1989, pp. 555-565.

[2] M. Amiripour, H. Abachi, and K Dabke,
Hardware Cost Analysis of Master-Slave Star
Ring Super-Hypercube and Master-Slave
Super-Super-Hypercube 4-Cube Architecture,”
Proceedings of the 6th WSEAS International
Conference on SOFTWARE ENGINEERING,
PARALLEL and DISTRIBUTED SYSTEMS
(SEPADS '07), 2007, pp.115-120.

[3] C.-C. Chen, Dynamic Reconfiguration of
Complete Binary Trees in Faulty Hypercubes,
Journal of Information Science and
Engineering, Vol. 21, No. 1, 2005, pp.
195-207.

[4] F. T. Leighton, Introduction to parallel

algorithms and architectures: Arrays, Trees,
Hypercubes, MORGAN KAUFMANN
PUBLISHERS, Inc., 1992.

[5] J.-C. Lin, Simulation of Cycles in the IEH
Graph, International Journal of Hjgh Speed
Computing, Vo1. 10, 1999, pp. 327-342.

[6] J.-C. Lin, Load Balancing and Embedding
Rings in Faulty Incrementally Extensible
Hypercubes, WSEAS Transactions on
Computers, Vol. 5, 2006, pp. 1867-1872.

[7] J.-C. Lin, Faulty-Avoiding Methods for
Mapping Meshes in an IEH, WSEAS
Transactions on Computers, Vol. 6, No.6,
2007, pp. 888-893.

[8] J.-C. Lin, S. K.C. Lo, S.-J. Wu, and H.-C. Keh,
Distributed Fault-Tolerant embeddings of rings
in Incrementally Extensible Hypercubes with
Unbounded Expansion, Tamkang Journal of
Science and Engineering, Vol. 9, No. 2, 2006,
pp. 121-128.

[9] C.D. Park, and K.-Y. Chwa, Hamiltonian
properties on the class of hypercube-like
networks, Information Processing Letters, No.
91, 2004, pp. 11-17.

[10] J. T. Richard, and R. R. Yager, Hypercube
Graph Representations and Fuzzy Measures of
Graph Properties, IEEE Trans. on Fuzzy
Systems, Vol. 15, No. 6, 2007, pp. 1278-1293.

[11] Y. Saad, and M. Schultz, Topological
properties of Hypercube, IEEE Trans. on
Computers, Vol. 37, 1988, pp. 867-871.

[12] S. Sur, and P. K. Srimani, Incrementally
Extensible Hypercube Networks and Their
Fault Tolerance, Mathematical and Computer
Modeling, Vol. 23, 1996, pp. 1-15.

[13] S. Sur, and P. K. Srimani, IEH graphs: A
novel generalization of hypercube graphs,
Acta Informatica, Vol. 32, 1995, pp.
597-609.

[14] I. Zelina, P. Pop, C. P. Sitar, and I. Tascu,
A parallel algorithm for interpolation in
Pancake graph, Proceedings of the 6th
WSEAS International Conference on
SOFTWARE ENGINEERING, PARALLEL
and DISTRIBUTED SYSTEMS (SEPADS '07),
2007, pp.98-101.

WSEAS TRANSACTIONS on COMPUTERS Shih-Jung Wu, Jen-Chih Lin, and Huan-Chao Keh

ISSN: 1109-2750 88 Issue 3, Volume 7, March 2008

