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Abstract: - Different parallel architectures may require different algorithms to make the existent algorithms on one 
architecture be easily transformed to or implemented on another architecture. This paper proposes a novel 
algorithm for embedding complete binary trees in a faulty Incrementally Extensible Hypercube (IEH). Furthermore, 
to obtain the replaceable node of the faulty node, 2-expansion is permitted such that up to (n+1) faults can be 
tolerated with dilation 3, congestion 1 and load 1. The presented embedding methods are optimized mainly for 
balancing the processor loads, while minimizing dilation and congestion as far as possible. According to the result, 
we can map the parallel algorithms developed by the structure of complete binary tree in an IEH. These methods of 
reconfiguring enable extremely high-speed parallel computation. 
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1 Introduction  
From the computational perspective, hypercube 
multiprocessors have recently offered a cost effective 
and feasible approach to supercomputing through 
parallelism at the processor level by directly 
connection a large number of low-cost processors 
with local memories which communicate by 
message-passing instead of shared variables. 
Therefore, hypercubes are widely used 
interconnection architectures in parallel machines. 

Another reason for the popularity of the 
hypercube is that several other architectures can be 
embedded in it. Motivations for embedding 
architectures include: 
(1) Efficient algorithms may exist for some 

architecture which suits the needs of these 
algorithms perfectly, and we may wish to 
implement these algorithms in the hypercube.  

(2) Proof of embedding for an architecture is also 

proof of all of its algorithms to be implemented in 
the hypercube architecture, with a level of 
efficiency determined only by the cost associated 
with the embedding.  

(3) The embedded architecture is usually easier to 
understand the visualize. It is often easier to 
design algorithms for the simpler architecture. In 
this sense, the embedded architecture can be 
considered an abstraction from the hypercube, 
where the irrelevant connections are masked out. 

(4) Embedded architectures can be also considered as 
parallel data structures for parallel architectures. 
The embedding method shows the way to 
implement these data structures in the hypercube 
parallel computer.  
But, there are some imperfections to be 

hypercube architectures for parallel computation, for 
example only 2n nodes that a hypercube can be 
produced. In order to conquer the difficulties 
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associated with hypercube, several 
hypercube-like[5-9] Computers have been proposed 
during past years, which are discussed. Based on this 
observation, we present a new characterization of a 
fault-tolerant hypercube-like architecture, which is 
Incrementally Extensible Hypercube (IEH) that 
allows the performance degradation due to faults to 
be measured.  

Tree is a basic network topology. A complete 
binary tree is special tree underlying divide-and- 
conquer algorithms. A complete binary tree arises in 
the solution of tridiagonal systems by even-odd 
cyclic reduction and solution of systems of 
equations that is noted in [4]. Suppose some process 
can be naturally decomposed into a collection of 
subprocesses that can be executed concurrently with 
certain communication between subprocesses by an 
edge between corresponding nodes. One obtains a 
complete binary tree by denoting each subprocess 
by a node and each communication between 
subprocesses by an edge between corresponding 
nodes. The problem of allocating those subprocesses, 
structured by a complete binary tree, to processors 
in a given interconnection networks will be reduced 
to the problem of embedding a complete binary 
tree[1, 4]. 

Graph mappings have been used successfully to 
show simulation capabilities of guest architecture by 
host architecture[1, 4]. In graph mapping techniques, 
host and guest architectures are viewed as graphs H 
and G, respectively, and then the graph G is mapped 
into the graph H. In the mapping of a graph G into 
H, we map the set of nodes of G into the set of 
nodes of H and the edges of G to paths in H which 
connect the image of the nodes of G. In order to 
obtain efficient simulations of G by H, various cost 
measures of a mapping must be optimized. The load 
is defined as the maximum number of nodes of G 
assigned to any node of H. We say that a mapping 
achieves a balanced load when load = 1. The 
dilation of an edge of G is the maximum distance 
between any pair of processes of H corresponding to 
a pair of neighbor processes of G. The congestion is 
defined as the maximum number of paths over an 
edge in H, where every path represents an edge in G. 
The expansion of the mapping is the ratio of the 
number of nodes in G to the number of nodes in H. 

We develop some method to modify the IEH by 
the addition of spare nodes and communication 
links in order to obtain designs whose performance 
degrades gracefully in the presence of node failures.  

The rest of this paper is organized as follows. In 
Section 2, definitions of these topologies are given. 
Notations and definitions of terms are also provided. 
Section 3 presents the method for mapping a 
complete binary tree. In Section 4, we describe the 
novel algorithm for mapping a complete binary tree 
in an IEH. Conclusions are finally made in section 
5.  
 
 
2 Preliminaries  
We briefly describe notations and definitions of the 
hypercube and the IEH graph.  

A hypercube Qn of order n, is defined to be a 
symmetric graph G= (V, E) where V is the set of 2n 
vertices, each representing a distinct n-bit binary 
number and E is the set of symmetric edges such 
that two nodes are connected by an edge iff the 
number of positions where the bits differ in the 
binary labels of the two nodes is 1.  

The IEH graph is the composition of some m 
different hypercubes. Let Gn(N) be an IEH graph 
with N nodes, and N can be expressed by the binary 
string N= bnbn-1bn-2…b1b0, and bi ∈ {0,1}. An IEH 
graph Gn(N) is composed of some different 
hypercubes which have lower dimension than Gn(N) 
has. That is, Gn(N) contains a hypercube, denoted by 
Hi, if and only if the ith bit in the binary 
representation of N is 1. 

Accordingly, the IEH graph is composed of 
some hypercubes, so there is a new type of 
connections beside the usual connections in a 
hypercube. These edges (or links) are used for 
connecting two hypercubes are called Inter-Cube or 
IC edges. The basic philosophy in the design of the 
IEH graphs is to express N as a sum of several 
powers of 2, i.e., to write N as a binary number, 
build the smaller hypercubes, and then to add 
appropriate inter-cube edges to connect those 
smaller hypercubes. For any given N, 2n≤ N<2n+1, 
the steps of finding IEH graphs are as follows. 
Step 1 Build subcube graphs. Express N as (n+1) 
bits a binary number as N= bnbn-1bn-2…b1b0, where 
bi ∈ {0,1} and bn=1 since N ≥ 2n. For each bi, bi≠0, 
construct a hypercube graph Qi with 2i nodes. 
Step 2 Label the nodes. Note that each node has a 
(n+1)-bit binary label. Each hypercube Qi is labeled 
as 11…10bi-1bi-2…b1b0. Obviously each hypercube 
of dimension i (having 2i nodes) has i number of 
dashed and the individual nodes of the hypercube 
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can be obtained by filling the dashes with 0 or 1 in 
all possible ways. In other words, the binary 
representation of each node in Qi has the same 
prefix of (n-i)1's followed by a single zero. 
Step 3 Construct the incremental hypercube in steps 
by providing the inter-cube edges. Find the 
minimum i such that bi≠0. Set j=i and Gj=Qi.  

Set i=i+1.  
While i≤n do 
if bi≠0 then 
  if i-j=1 then 
each node x in Gj with label 11…bjbj-1…b0 is 

connected to the node 11…10bjbj-1…b0 of Qi. 
  else 
each node x in Gj with label 11…1bjbj-1…b0 is 

connected to (i-j) different nodes of Qi chosen in the 
following way: 
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Set j=i and set Gj to be the composite graph 
generated in the previous steps. Note that Gj has 

now  nodes and the binary label of each 

node in G
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j has a prefix of (n-j) 1's. 
   i=i+1 
 Return Gn as the desired incremental 

hypercube graph of N vertices. � 

 
Fig. 1: The IEH graph contains 11 nodes 

Figure 1 shows the example of G3(11). G3(11) 
consists of three subcubes. The three subcubes are 
0-subcube(H0), 1-subcube(H1), and 3-subcube(H3). 
Node 14 is the single node in H0. Nodes 12 and 13 

are composed as a 1-subcube(H1), and nodes 0, 1, 2, 
3, 4, 5, 6 and 7 are the elements of a 3-subcube(H3). 
The edge (12, 14) is an IC edge connected between 
H0 and H1 such that H0 and H1 are connected to be 
an IEH graph containing 3 nodes(G1(3)). In addition, 
the H3 connects to G1(3) with these IC edges (2, 14), 
(6, 14), (0,12), (4,12), (1,13), and (5,13).  
Definition 1[5] The Hamming distance between two 
nodes with labels x=xn-1xn-2...x0 and y= yn-1yn-2...y0 is 
defined as  

HD(x, y)= , where hd(x∑
−

=

1

0

),(
n
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Definition 2[5] Let x=xn-1…x0, y=yn-1…y0, then 
Dim(x, y)={i in (0…n-1)∣ xi ≠  yi}� 
Definition 3[4] If a complete binary tree is a rooted 
binary tree and each internal nodes contains two 
offspring nodes, then a complete binary of height h 
denoted by Th, contains 2h-1 nodes. � 
Definition 4[4] A double-rooted binary tree DTh, 
where h is the height of the tree, is a complete 
binary tree with the root replaced by a path of length 
two is shown in figure 2. � 

 
Fig. 2: A double-rooted complete binary tree 

Lemma 7[4] A double-rooted complete binary tree 
can be embedded into a hypercube with dilation 2 
and load 1. � 
Definition 5[6] An IEH graph is called a full IEH 
graph, denoted by Fn, if and only if it has 2n+1-1 
nodes. Intuitively, a full IEH graph must contain 
hypercubes H0, H1,…, Hn as its subcubes. � 
 
 
3 Mapping of Complete Binary Tree   
Consider a complete binary tree Th, where h is the 
number of levels. Assume that the levels of the tree 
are indexed as 0,…,(h-1) starting from the root and 
each internal nodes contains two offspring nodes, 
then a complete binary tree Th contains (2h-1) nodes. 

IEH graphs are provided with all properties of 
hypercubes because an IEH graph may contain 
some different-sized hypercubes as its subgraphs. 
Thus the IEH graphs are selected to be the host 
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graph of our embedding. Complete binary tree are 
usually used in a lot of algorithms and 
communications, so we proposed the method of 
embedding complete binary trees into IEH graphs. 

We describe our approach that maps a complete 
binary tree in the full IEH or the IEH. 
Lemma 1 A complete binary tree with height n 
contains the same number of nodes as an 
(n-1)-dimensional full IEH graph. 
Proof. Suppose a tree Tn is said to be a complete 
binary tree with height n, then each node of Tn 
contains the same number of nodes in its right and 
left subtrees. Consequently, the number of nodes in 
a complete binary tree Tn has totally 2n-1 nodes. A 
(n-1)-dimensional full IEH graph must, by the 
definition, contain n hypercubes with different 
dimensions. Therefore, a (n-1)-dimension IEH 
graph, simply denoted by Fn-1, will consist of 
hypercube with dimension with 0, 1, 2, …, and (n-1). 
The kth-dimensional hypercube in a IEH is denoted 
by Hk. Obviously, an (n-1)-dimensional full IEH 
contains 20+21+22+…+2n-1 = 2n-1 nodes because 
each kth-dimensional hypercube in the IEH graph 
contains 2k nodes. Hence, a complete binary tree 
with height n contains the same number of nodes as 
an (n-1)-dimensional full IEH graph.� 
Lemma 2 An (n-1)-dimensional full IEH graph is a 
subgraph of an n-dimensional full IEH graph. 
Proof. Let Fn be a full IEH graph, then two divided 
components Hn and F’n exist in Fn where Hn is an 
n-dimensional hypercube and F’n is an 
(n-1)-dimensional full IEH graph. According to the 
method of constructing an IEH graph, the vertex set 
of Fn-1 is a subset of the vertex set of Fn and the 
edge set of Fn-1 is a subset of the edge set Fn. 
Therefore, Fn-1 is said to be a subgraph of Fn.� 
Lemma 3 Assume that Hn is an n-dimensional 
hypercube and Fn-1 is and (n-1)-dimensional full 
IEH graph, Fn-1 is a subgraph of Hn. 
Proof. According to the method of constructing an 
IEH graph, H0, H1, …, Hn-1 construct Fn-1. These IC 
edges connecting between the n hypercubes are all 
of Hamming distance 1. Hence, these IC edges in 
Fn-1 are normal edges in Hn. Consequently, the 
vertex set of Fn-1 is a subset of the vertex set of Hn 
and the edge set of Fn-1 is a subset of the edge set Hn. 
Therefore, Fn-1 is said to be a subgraph of Fn. � 
Lemma 4[6] A full IEH graph contains a 
complete binary tree. 
Lemma 5[6] A complete binary tree can be 

embedded into a hypercube with one faulty 
node. 
Lemma 6 Embedding the complete binary tree 
into a full IEH graph or a hypercube graph is 
dilation 2, expansion 1, load 1 and congestion 1. 
Proof. In the embedding of Tn into Fn-1, there are 
some midway node must be passed to connect two 
nodes That is, some edges in the tree Tn are mapped 
in a path of the length 2 in the IEH graph Fn. As the 
consequence, the dilation of the embedding is 2 and 
congestion is 1. The embedding of Tn into Fn-1 is 
one-to-one mapping for these nodes, so the 
expansion and load of our embedding is exactly 
equal to 1. Therefore, embedding the complete 
binary tree into a full IEH graph or a hypercube 
graph is dilation 2, expansion 1, load 1 and 
congestion 2.� 
Theorem 1 A complete binary tree Tn can be 
embedded into Gn(N) with expansion 2, dilation 2, 
congestion 1, and load 1. 
Proof. It’s trivial by lemma 4 and lemma 5. And an 
example is shown by figure 3. � 
Figure 3 shows three steps of T3 embedding to 
G3(11). 

 
Fig. 3: Three steps of T3 embedding to G3(11) 

 
 

4 Faulty-Tolerance Mapping  
We present how to embed a complete binary 
tree to a faulty IEH graph. Hence, in this section, 
we consider a complete binary tree can be mapped 
in an IEH with 2-expansion graph which contains 
faulty node. 

We show that a complete binary tree can be 
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mapped in an IEH graph with expansion 2, load 1, 
congestion 1, and dilation 4. By theorem 1, Tn can 
be embedded into Gn(N) with 2-expansion. We 
propose an algorithm FT_Tree_Embedding( ) for 
mapping a complete tree in a faulty IEH as follows. 

Algorithm FT_Tree_Embedding(x) 
Input: x /*the faulty node*/, Gn(N)  
Output: y /*the replaceable node*/ 
1. if the root r is faulty then 
2.  search the other root node r’ 
3.  if the node r’ is faulty then backtrack the root 

r 
4.  else 
5.     return(r’) /* node r is replaced by node r’/ 
6.     exit() 
7.     i=0  
8.  if other node x is faulty 
9.  then 
10.  { 
11.     search the node y  

/* HD(x, y )=1, Dim(x, y)={n}*/ 
12.    if y is a exist node and it is free 
13.    then 
14.      return(y) /*replace x with y*/ 
15.      exit() 
16.    else 
17.      while i < n do 
18.   search the node z  
        /* HD(y, z )=1, Dim(y, z)={i}*/ 
19.   if z is a exist node and it is free 
20.   then 
21.      return(y) /*replace x with z*/ 
22.      exit() 
23.                     i=i+1 
24. return(“Failure”) 
25. end 

The searching path of the faulty node is shown 
as follows. 
 node0=0Xn-1Xn-2…X1X0

 node1=1Xn-1Xn-2…X1X0  
 node2=1Xn-1Xn-2…X1X’0  
 node3=1Xn-1Xn-2…X1’X0

  #
 node(n+1)=1X’n-1Xn-2…X1X0

We illustrate an example of finding a 
replaceable node in G3(11) as shown figure 24 and 
figure 33. 

 
Fig. 4: T3 can be embedded into faulty G3(11) 

   We illustrate an example of finding a 
replaceable node in G3(11) as shown figure 5. 

 
Fig.5: T3 can be embedded into faulty G3(11) 

Theorem 2 A complete binary tree (Th) can be 
embedded into faulty IEH Gn(N) graph with dilation 
4, expansion 2, congestion 1, and load 1. 
Proof. By the algorithm FT_Tree_Embedding( ), 
every searching path is only on path. Allowing us to 
obtain congestion 1 and load 1. Herein, we allow 
2-expansion to obtain the replaceable node of the 
faulty node. When a node is faulty, it is worst case 
in which the dilation=2+2=4 at most by 
FT_Tree_Embedding( ). Because these nodes and 
links of searching path are not replicated from 
FT_Tree_Embedding( ), four costs associated with 
graph embedding are dilation 4, expansion 2, 
congestion 1, and load 1. � 
Theorem 3 A searching path of 
FT_Tree_Embedding( ) is include approximate to 
(n+1) nodes. 
Proof. Every node can be represented by a (n+1)-bit 
binary string  where . First, we 
change the most significant bit from 0 to 1. Then, a 
bit can be changed from to  sequentially by 

0iin" { 1,0∈pi }

0i 1−ni
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the FT_Tree_Embedding( ). But IEH graph may be 
have empty nodes. Hence, a searching path of 
FT_Tree_Embedding( ) is including approximate to 
(n+1) nodes. � 
Theorem 4 There are O(n) faults, which can be 
tolerated. 
Proof. It’s trivial by theorem 3.� 
 
 
5 Conclusions  
In this paper, we consider the algorithm 
FT_Tree_Embedding for a complete binary tree can 
be mapped in an IEH. Considering embedding of 
complete binary tree into a faulty IEH, allowing 
2-expansion shows that up to (n+1) faults can 
be tolerated. The main result of this paper is that it 
is always possible to give solutions to the mapping 
of complete binary trees in a faulty IEH graph with 
2-expansion. The costs associated with graph 
embedding in our strategies of reconfiguration 
are dilation 3, congestion 1 and load 1. By the 
result, we can embed the parallel algorithms 
developed by the structure of complete binary 
tree in an IEH. These methods of reconfiguring 
enable extremely high-speed parallel 
computation. Therefore, we can easily port the 
parallel or distributed algorithms developed for 
these structures to the IEH graphs and 
hypercubes. 
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