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Abstract: - This paper introduces the main ideas of the nested partitions (NP) method, analyses its efficiency 
theoretically and proposes the way to improve the optimization efficiency of the algorithm. Then the paper 
introduces the simulated annealing (SA) algorithm and incorporates the ideas of SA into two of the arithmetic 
operators of NP algorithm to form the combined NP/SA algorithm. Moreover, the paper presents the explicit 
optimization procedure of the combined algorithm NP/SA and explains the feasibility and superiority of it. The 
NP/SA algorithm adopts the global optimization ability of NP algorithm and the local search ability of SA 
algorithm so that it improves the optimization efficiency and the convergence rate. This paper also illustrates 
the NP/SA algorithm through an optimization example. 
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1 Introduction 
The solution of many complex decision problems 
involves combinatorial optimization, i.e., obtaining 
the optimal solution among a finite set of 
alternatives[1] [2]. Such optimization problems are 
notoriously difficult to solve. One of the primary 
reasons is that in most applications the number of 
alternatives is extremely large and only a fraction of 
them can be considered within a reasonable amount 
of time. As a result, heuristic algorithms, such as 
evolutionary algorithms, tabu search, and neural 
networks, are often applied in combinatorial 
optimization. All of these algorithms are sequential 
in the sense that they move iteratively between 
single solutions or sets of solutions. However, in 
some applications to the complex decision it may be 
desirable to maintain a more global perspective, that 
is, to consider the entire solution space in each 
iteration. In this paper we propose a new 
optimization algorithm to address this difficult class 
of problems. The new method combines the nested 
partitions (NP) method and the simulated annealing 
(SA) method. It converges to a global optimum for 
combinatorial optimization problems in finite time, 
and effectively reduces the number of times 

backtracking occurs in the nested partitioning. 
Numerical results demonstrate the effectiveness of 
our proposed method. 

The remainder of the paper is organized as 
follows. In Section 2 we review the general 
procedure of the NP method and analyse its 
optimization efficiency in detail. In Section 3 we 
present a combined NP/SA algorithm, i.e. an 
improved NP algorithm enhanced with simulated 
annealing. In Section 4 we give a numerical 
example to illustrate the hybrid method, and Section 
5 contains some concluding remarks and future 
research directions. 
 
 
2 The Nested Partitions Method 
The NP method, an optimization algorithm 
proposed by L. Shi and S. Ólafsson [1], may be 
described as an adaptive sampling method that uses 
partitioning to concentrate the sampling effort in 
those subsets of the feasible region that are 
considered the most promising. It combines global 
search through global sampling of the feasible 
region, and local search that is used to guide where 
the search should be concentrated. This method has 
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been found to be promising for difficult 
combinatorial optimization problems such as: the 
traveling salesman problem [4], buffer allocation 
problem [5], product design problem [6] [7], and 
production scheduling problems [8].  

Suppose the finite feasible region of a complex 
decision problem is Θ. Our objective is to optimize 
the objective performance function f：Θ→R, that is, 
to solve: 

)(max θ
θ

f
Θ∈

 

where . Also, to simplify the analysis, we 
assume that there exists a unique solution 

∞<Θ ||
Θ∈optθ  

to the above problem, which satisfies )()( θθ ff opt >  
for all }{\ optθθ Θ∈ . 

Definition 1. A region partitioned using a fixed 
scheme is called a valid region. In a discrete system 
a partitioned region with a singleton is called a 
singleton region. The collection of all valid regions 
is denoted by Σ . Singleton regions are of special 
interest in the process of optimization, and Σ⊂Σ0  
denotes the collection of all such valid regions. 

The optimization process of the NP method is a 
sequence of set partitions using a fixed partitioning 
scheme, with each partition nested within the last. 
The partitioning is continued until eventually all the 
points in the feasible region correspond to a 
singleton region.  

Definition 2. The singleton regions in 0Σ  are 
called regions of maximum depth. More generally, 
we define the depth, 0: Ndep →Σ , of any valid 
region iteratively with Θ having depth zero, 
subregions of Θ having depth one, and so forth. 
Since they cannot be partitioned further, we call the 
singleton regions in  regions of maximum depth.  0Σ

Definition 3. If a valid region Σ∈σ  is formed 
by partitioning a valid region Σ∈η , then σ is called 
a subregion of region η , and region η is called a 
superregion of region σ . We define the superregion 
function Σ→Σ:s  as follows. Let Θ\Σ∈σ . Define 

Σ∈=ησ )(s , if and only if ησ ⊂  and if ηξσ ⊆⊆  
then ηξ = or σξ = . For completeness we define 

. ( ) ΘΘs =
A set performance function  is defined 

and used to select the most promising region and is 
therefore called the promising index of the region.  

R→Σ:I

In the k-th iteration of the NP method there is 
always a region Θ⊆)(kσ  that is considered the 
most promising, and as nothing is assumed to be 
known about location of good solutions before the 
search is started, Θ=)0(σ . The most promising 

region is then partitioned into  subregions, 
and what remains of the feasible region 

)(kMσ

)(kσ  is 
aggregated into one region called the surrounding 
region. Therefore, in the k-th iteration 1)( +kMσ  
disjoint subsets that cover the feasible region are 
considered. Each of these regions is sampled using 
some random sampling scheme, and the samples 
used to estimate the promising index for each region. 
This index is a set performance function that 
determines which region becomes the most 
promising region in the next iteration. If one of the 
subregions is found to be best, this region becomes 
the most promising region. If the surrounding region 
is found to be best, the method backtracks to a 
larger region. The new most promising region is 
partitioned and sampled in a similar fashion.  
 
 
2.1 The NP algorithm 
The NP method comprises four basic arithmetic 
operators during the four steps respectively: 
partitioning the solution space, obtaining the 
sampling points, selecting a promising index 
function, and backtracking. 

Step 1. Partitioning. After the k-th iteration 
( ), the most promising region 0>k )(kσ  is further 
partitioned into  subregions )(kMσ

)(),...,(
)(1 kk

kMσ
σσ . What remains of the feasible 

region )(kσ , i.e., )(\ kσΘ , is aggregated into the 
surrounding region )(1)(

k
kM +σ

σ . Then, 1)( +kMσ  

partitioned regions are obtained. When the first 
partition starts, the whole feasible region Θ  is 
considered the most promising region, i.e., 

Θ=)0(σ . 
Since the feasible region Θ  is finite, the 

partitioned regions we obtain will eventually be 
singleton regions, i.e., . Then two regions 
are obtained: 

1)( =kM σ

)(kσ  and )(\ kσΘ .  
Step 2. Random sampling. The next step of the 

algorithm is to randomly select  samples 
, 

jN
)()(

2
)(

1 ,...,, j
N

jj
j

θθθ 1,...,2,1 )( += kMj σ , from each of 

the subregions )(kjσ  obtained by the partitioning 
operator. Because of the openness of the NP method, 
various random sampling methods can be adopted 
with a requirement that the possibility of each point 
in each region being selected is more than zero [9]. 

Step 3. Calculation of promising index. Given 
a promising index function , sample each 
region 

R→Σ:I
)(kjσ , where 1,...,2,1 )( += kMj σ , according 

to the fixed sampling strategy and estimate the 
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promising index value of each region. For example, 
assume that the promising index value is the 
maximal objective function value of each region, 

)(max))((
)(

θσ
σθ

fkI
kj

j∈
= , . 1,...,2,1 )( += kMj σ

Estimate the promising index value of each 
region )(kjσ , 

)(max))((ˆ )(

,...,2,1

j
iNij fkI

j

θσ
=

= , 1,...,2,1 )( += kMj σ . 

Notice that  is a random variable. ))((ˆ kI jσ
As long as the promising index corresponds to 

the performance function in singleton region, it can 
adopt any form. That is to say, when )(kjσ  is the 
region of maximum depth, i.e., }{)( θσ =kj , 

))(( kI jσ  must equal to )(θf , i.e., )())(( θσ fkI j = . 
Except for this restriction the NP method does not 
have restrictions on the selection of promising index 
function, which indicates the openness of the NP 
methods. Then, the promising index values of the 

 regions are compared, and the most 
promising region is determined: 

1)( +kMσ

))((ˆmaxargˆ kIj jk σ= , . 1,...,2,1 )( += kMj σ

If , i.e., one of the subregions of the 
current most promising region is found to have the 
maximum promising index, then this subregion is 
the most promising region in the next iteration. If 

, then the most promising region in 
the next iteration is determined by the backtracking 
operator. 

)(
ˆ

kk Mj σ≤

1ˆ
)( += kk Mj σ

Step 4. Backtracking. If the entire region except 
)(kσ  is found to be the most promising region, the 

algorithm backtracks to a larger region that contains 
the current most promising region )(kσ . The 
backtracking rules can be determined by the 
requirements. An obvious backtracking method is to 
make the superregion of the current most promising 
region the backtracking objective. The selection of 
the present most promising region is denoted as 

⎩
⎨
⎧ ≤

=+
otherwiseks

Mjifkk kkjk

))((

ˆ)()1( )(ˆ

σ
σ

σ σ  

Certainly, the entire finite feasible region Θ  can 
be considered the backtracking objective, i.e., 

Θ=+ )1(kσ . Starting from the new most promising 
region )1( +kσ , the algorithm continues with the 
above-mentioned steps of partitioning, sampling, 
promising indices, and backtracking. Then, a 
sequence of partitioned regions is obtained. Finally, 
the algorithm comes to an end when the points in all 
feasible regions correspond to the singleton regions. 
The point in the singleton that has been considered 

the most promising regions for the most times can 
be considered the global optimal solution. 
 
 
2.2 The Analysis on Optimization Efficiency 
of the NP method 
 
 
2.1.1 The significance of the number of times 
backtracking is implemented to the optimization 
efficiency of the NP method 
During the optimization process using the NP 
method, if the current most feasible region is proved 
to be unsatisfactory by sampling and calculation of 
promising index, backtracking is then necessary. 
This implicates that the last time partitioning, 
sampling, and promising indices are invalid. The 
algorithm should backtrack to the last iteration and 
continue with sampling and promising indices. 
Therefore, backtracking implies the decrease of 
calculation efficiency. 

In the k-th iteration of the NP method if the 
surrounding regions of )(kσ  is considered the most 
promising, it then backtracks to the superregion 

))(( ks σ  of the current most promising region and 
makes ))(( ks σ  the most promising region for the 
next partitioning. In the condition that the 
partitioning and sampling schemes are fixed, each 
backtracking results in two more times of 
partitioning and  more points in the 
feasible regions are sampled, where  is the 
number of feasible regions for partitioning with a 
fixed partitioning scheme, and N  is the number of 
sampled points in each feasible region. Calculating 
the promising index at these points requires 

)1(2 )( +kMN σ

)(kMσ

)1(2 )( +kMN σ  performance functions of the 
promising index. The backtracking rate of the NP 
method is tightly related to the optimization 
efficiency indexes such as the convergence rate. If 
the backtracking is reduced once, )1(2 )( +kMN σ  

performance functions of the promising index are 
reduced, which consequently shortens the 
optimization route, reduces optimization time, and 
speeds up the convergence. Thus, the number of 
times backtracking occurs is an important criterion 
for measuring the efficiency of this simulated 
optimization method. 
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2.1.2 The analysis on optimization probability of 
the NP method 
L. Shi and S. Ólafsson improved that the NP method 
converges to a global optimal solution with 
probability one [3]. Let Σ∈lη  be a feasible region 
obtained by nested partitions,  be the optimum we 
get after introducing some other local optimization 
algorithms (such as SA, tabu search, etc.) into 
sampling of the NP method, and  be the optimum 
we get using the other simple random sampling 
methods. Although we cannot assure that  is the 
global optimum of the feasible region, the 
probability of  being the global optimum is 
greater than the probability of  being the global 
optimum in that these local optimization algorithms 
are capable of avoiding getting trapped in the local 
optima, i.e., P{  is the global optimum of 

*
lθ

'
lθ

*
lθ

*
lθ

'
lθ

*
lθ lη }> 

P{  is the global optimum of '
lθ lη }. 

Suppose the global optimal solution to the 
original problem , i.e., Σ∈∈ lηθ *

lη  is the feasible 
region that contains the global optimal solution. 
Then, in the process of nested partitioning, lη  is 
unavoidable in the way to the global optimal 
solution. Compare the promising index of lη  is 
compared with those of the other regions 

( )( )liMi ki ≠+= ,1,,1 ση L . If lη  is selected to be the 
most promising region, the backtracking is reduced 
for at least once. Therefore, we can infer that, if the 
probability of lη  being selected to be the most 
promising region is increased, the efficiency of the 
algorithm will be improved. The probability of lη  
being selected to be the most promising region is: 
{ })()(),...,()( *

1
**

1
*

)( +>>
kMll ffffP

σ
θθθθ

{ }∏
+

≠
=

>=
1

1

**
)(

)()(
kM

li
i

il ffP
σ

θθ . 

where 
{ } )1()1()()( ** ρψρρψωρθθ −+=−+=> il ffP , ω  

is the probability of  under the 
condition that  is the global optimal solution, 

)()( **
il ff θθ >

*
lθ ρ  

is the probability of  being the global optimal 
solution, and 

*
lθ

ψ  is  is the probability of 
 under the condition that  is the 

local optimal solution. As the l-th feasible region 
contains the global optimum, 

*
lθ

)()( **
il ff θθ > *

lθ

1=ω . The above 
probability function is shown as Fig. 1.  

 
Fig. 1.  The figure of the probability function 
Therefore, the above probability equals the 

weighted average of 1 and ψ . And because 
)1,0(∈ψ , we have 

01 >−=
∂
∂ ψ
ρ
P . 

If the probability ρ  of  being the global 
optimal solution is increased greatly, the above 
probability will correspondingly be increased. If the 
random sampling operator of the NP algorithm is 
changed and the probability of obtaining the global 
optimal solution in each region is increased, the 
convergence will be sped up and the efficiency of 
the algorithm will be improved greatly. The 
probability that the point we obtain using the local 
search of the SA method is the global optimal 
solution is much greater than the probability that the 
points we get using other simple randomized 
sampling methods are the global optima. Hence, the 
ideas of SA can be introduced into the NP method in 
order to increase the probability that 

*
lθ

lη  is selected 
properly, decrease the number of times that 
backtracking in the NP method is implemented, 
speed up the convergence, and eventually improve 
the optimization efficiency. In the next section we 
present a new algorithm combining NP and SA. 
 
 
3 The Combined NP/SA Algorithm 
 
 
3.1 The simulated annealing method 
The simulated annealing algorithm (SA) is 
essentially a heuristic algorithm. The technique has 
been widely applied to a variety of problems 
including many complex decision problems. The 
term simulated annealing derives from the roughly 
analogous physical process of heating and then 
slowly cooling a substance to obtain a strong 
crystalline structure [10].  
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Often the solution space of a complex decision 
problem has many local minima. A simple local 
search algorithm proceeds by choosing random 
initial solution and generating a neighbor from that 
solution. The neighboring solution is accepted if it is 
a cost decreasing transition. Such a simple algorithm 
has the drawback of often converging to a local 
minimum. The SA method, though by itself it is a 
local search algorithm, avoids getting trapped in a 
local minimum by accepting cost increasing 
neighbors with some probability.  

To solve the objective function Z： , 

over a feasible region Θ , SA is implemented in the 
following steps. Firstly, at temperature T, starting 
from an initial point 

)(max sf
s Θ∈

)0(X , randomly sample the 
feasible region. If , where 

 is the function value of the sampled point 
)

)()( )0()( XfXf k ≥
)( )(kXf

(kX , )(kX  is accepted and taken as the initial point 
)0(X  to continue the optimization; otherwise, if 

, )()( )0()( XfXf k < )(kX  is accepted with a 
probability of )))()(exp(( )0()( TXfXf k − . Then, 
beginning from the initial annealing temperature , 
the annealing temperature is lowered at a fixed 
temperature interval of 

0T

TΔ . At each annealing 
temperature N points are randomly sampled. The 
above process is implemented repeatedly until the 
temperature reaches the final annealing one  [11] 
[12] and the algorithm converges to the global 
optimum. 

fT

 
 
3.2 The combined NP/SA algorithm 
For a given feasible region the SA method focuses 
on searching for feasible points. It is capable of 
obtaining the global optima with a great probability 
and has a very strong local search ability. Applying 
the ideas of SA to the random sampling of the NP 
algorithm will greatly improve the ability of global 
optimization of the NP algorithm and the ability of 
local optimization of the SA method; hence the 
efficiency of the NP algorithm is improved greatly. 
Merging the SA method into the NP algorithm, we 
get the combined NP/SA algorithm.  

Note that NP/SA is not simply merging the 
whole SA into the random sampling of the NP 
algorithm, but combining the basic optimization 
idea of SA with the complete optimization process 
of the NP algorithm properly in order to improve the 
optimization efficiency of the NP algorithm. 
 
 

3.2.1 The implementation procedure of NP/SA 
Similar to the preparatory work of SA 
implementation, firstly we need to set the initial 
annealing temperature , the final annealing 
temperature , and the number N of random 
samples at each annealing temperature. NP/SA is an 
improvement of the NP algorithm. It has the same 
operations in partitioning, calculation of promising 
indices and backtracking. The random sampling of 
NP/SA is improved. Actually, NP/SA does not 
implement a complete annealing process in every 
sampled region to obtain an optimal solution over 
the region. Instead, NP/SA carry out the 
optimization according to the same annealing 
temperature over the feasible regions at the same 
depth. According to the maximum depth 

0T

fT

)(σdep  
( 0Σ∈σ ) of singleton region in the feasible region, 
the annealing speed )()( 0 σdepTTT f−=Δ  is set.  

Respectively optimize the uncrossed 1)( +kMσ  
feasible regions obtained through the k-th 
partitioning at the annealing temperature 

TkdepTTk Δ⋅−= ))((0 σ  according to the SA 
method. That is to say, starting from a certain initial 
point )0(X , randomly sample the feasible regions. If 

, where  is the function 
value of the sampled point 

)()( )0()( XfXf k ≥ )( )(kXf
)(kX , )(kX  is accepted 

and taken as the initial point )0(X  to continue the 
optimization; otherwise, if , )()( )0()( XfXf k < )(kX  
is accepted with a probability of 

)))()(exp(( )0()( TXfXf k −  and taken as the initial 
point )0(X  to continue the optimization. When N 
points are sampled, the function value  at 
the optimal point is used as the promising index 
function of each feasible region to fix the next most 
feasible region. The pseudo-code of the 
optimization process is following. 

)( )0(Xf

(k)= ;σ Θ  
d( (k))=0;σ  
Repeat 
Partition the current promising 
regionσ(k) into  subregions. )(kMσ

T(k)=T(0)-dep(σ(k))*ΔT 
For i=1 to +1 do )(kMσ

For j=1 to N do 
Generate_state_x(j); 
δ=f(x(j))-f(x(k)); 
ifδ>0 then k=j 

else if random(0,1)<exp(-δ/T(k)) 
then 

k=j; 
Promising(i)=f(x(k)); 

End 
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if promising(i)>promising(m) then 
m=i;  
if m<=  thenσ(k+1)=subregion(m); )(kMσ

        dep(σ(k))= dep(σ(k))+1; 
else backtrack(σ(k-1)); 

        dep(σ(k))= dep(σ(k))-1; 
until it reaches the maximum depth 
and stabilizes. 
 
We may notice that the same annealing 

temperature is applied to the sampling operation of 
 feasible regions at the same depth. When 

the depth of the feasible region is low, the annealing 
temperature is high and the probability of the worse 
solutions being accepted in sampling is also high. 
As the partitioning is moved on and the depth of the 
feasible region is increased, the annealing 
temperature used is comparatively low. At this 
temperature the probability of the worse solutions 
being accepted in sampling is hence low. NP/SA 
does not implement the complete annealing process 
of SA over every feasible region to be sampled. 

1)( +kMσ

 
 
3.2.2 Feasibility analysis on NP/SA 
The openness of the NP algorithm allows for the 
introduction of other algorithm and thoughts. The 
NP algorithm implicitly contains a requirement: the 
modifications to the operators of the NP algorithm 
are allowed so long as two conditions are satisfied. 
They are: (a) the probability of each point in the 
feasible region being sampled is larger than 0, and 
(b) the promising index corresponds with the 
performance function of the singleton region. 

Although NP/SA is different from the pure NP 
algorithm in fixing the optima in the partitioned 
regions, its essential sampling method is still 
random sampling. This ensures that the probability 
of each point in the feasible region being sampled is 
larger than 0. Therefore, NP/SA completely satisfies 
condition (a) of the NP algorithm. When the 
partitioning process of the NP/SA algorithm moves 
on to singleton, there is only one feasible point in 
the feasible region and only one point is obtained 
through sampling. The promising index at this point 
is the function value of this point; hence it 
corresponds with the performance function over the 
singleton. Thus, NP/SA satisfies the condition (b) of 
the NP algorithm. 

In all, the introduction of SA into the NP 
algorithm satisfies the openness of the latter one, 
which ensures that NP/SA converges to the global 
optimal solution with a probability of 1. 
 
 

3.2.3 Superiority analysis on NP/SA 
As the NP algorithm evolves, the sequence of most 
promising regions  forms a Markov chain 
with state space 

∞
=1)}({ kkσ

Σ . The singleton regions with the 
global optima are denoted as the absorbing states. In 
literature [3] and [4], L. Shi and S. Ólafsson proved 
that, the expected number of nested partitioning 
when the NP algorithm converges to the optimal 
solution is given by the following equation: 

∑∑
Σ∈ ΘΘΘ

ΘΘ

Σ∈ <⋅<

<
+

<
+=

21
}],min{[][

}],min{[
][

11][
η ησηη

ση

η ηση TTTPTTP
TTTP

TTP
YE

opt

opt

opt

. 

where  is the hitting time of state ηT Σ∈η , i.e. the 
first time that the Markov chain visits the state, 

][⋅ηP denotes the probability of an event given that 
the chain starts in state Σ∈η , optσ  is the region 
corresponding to the unique global optimum, and 

}}{\{1 ησση ⊆Σ∈=Σ optopt , }{2 ηση ⊆/Σ∈=Σ opt  

and 21}{ ΣΣ=Σ UUoptσ  are disjoint state spaces. 
NP/SA introduces SA into the NP algorithm, 

which increases the probability of obtaining the 
global optima in the sampled regions and further 
increases the probability of the state of the Markov 
chain changes in the correct direction. Consequently, 
probability ][ ηση TTP

opt
<  at time , probability 1Σ∈η

][ ηη TTP <Θ  at time , and probability 2Σ∈η

}],min{[ ησ TTTP
opt ΘΘ <  are increased while 

probability }],min{[
opt

TTTP ση ΘΘ <  at time  is 

decreased. The combined effect of these factors 
reduces the expected number of nested partitioning 
when the NP algorithm converges to the global 
optima, and thus speeds up the convergence of the 
algorithm. 

2Σ∈η

 
 
4 A Numerical Example 
In this section we consider a numerical example to 
illustrate the combined NP/SA method. In order to 
prove the optimization efficiency of the NP/SA 
method, we respectively implement the NP 
algorithm using the traditional random sampling as 
well as the NP/SA method for the minimization 
problem of Schaffer’s f6 function. Then we represent 
numerical results that compare the computation 
efficiency of the NP/SA method to a pure NP 
implementation.  

The Schaffer’s f6 function is designed to have its 
global optimum at 0, surrounded by circular 
“valleys” designed to trap methods based on local 
search, see Fig. 2 [13].  
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Fig. 2.   The Schaffer’s f6 function 

The function is given by 

( ) ( )
[ ]22

2
2
1

2
2
2

2
1

21
)(001.00.1

5.0sin
5.0,

xx

xx
xxf

++

−+
−= . 

To calculate its optimal solution, firstly we 
implement the pure NP method with the traditional 
random sampling operator. The following scheme is 
used. In each iteration the most promising region is 
partitioned into nine subregions. 30 points in each 
subregion is randomly sampled. The algorithm 
terminates at the tenth iteration. Secondly, we 
implement the NP/SA method and use the same 
nested partitioning scheme as the pure NP method. 
Moreover, the initial annealing temperature is 10 
and the final annealing temperature is 0.0001. The 
comparison between the results of the two methods 
is shown in Table 1. 

Table 1. Comparison of NP and NP/SA 
Performance 

Algorithm Result Number of Times 
Backtracking Occurs 

NP 0 6 

NP/SA 0 0 
As a result, after the adoption of the NP/SA 

method, the saved number of times we need 
calculate the performance function values is 

36006)19(302)1(2 )( =×+××=+=Δ HMNC kσ
 

where H  is the reduced number of times 
backtracking occurs after NP/SA is adopted. 

These results give a strong indication that the 
NP/SA method obtained by introducing SA into the 
NP algorithm is very useful in combining the global 
optimum search capability of the NP algorithm and 
the local search capability of the SA algorithm, 
reducing the number of times backtracking occurs in 

the nested partitioning, and making great 
improvements in calculation efficiency. 
 
 
5 Conclusions 
We have presented a new optimization algorithm 
that combines the NP algorithm and the SA 
algorithm. The resulting algorithm NP/SA retains 
the benefits of both algorithms, i.e., the global 
perspective and convergence of the NP algorithm 
and the powerful local search capabilities of the SA. 

Since the random sampling operator of the NP 
algorithm is changed and the probability of 
obtaining the global optimal solution in each region 
is increased, the convergence is sped up, the number 
of times backtracking occurs in the nested 
partitioning is reduced, and hence the optimization 
efficiency is improved. 

However, further theoretical and empirical 
development is needed for the algorithm. The 
NP/SA algorithm can be enhanced in several aspects. 
For example, we can use more elaborate partitioning, 
sampling and backtracking schemes if we have 
more knowledge of the specific decision problem. If 
we know that some solutions with certain properties 
are better than other solutions, we can add more 
weights on the regions containing these points. 
Future work will also focus on more numerical 
experiments and implementing the algorithm for 
complex decision problems in many fields to 
improve the current solving methods. 
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