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Abstract: - Virtual backbone has been used extensively in various aspects for wireless ad hoc or sensor 
networks recently. We propose an approximation solution to construct a virtual backbone based on a more 
generalized and realistic model of polynomial bounded growth. A localized distributed algorithm of 
MCDS_GBG for computing a Minimum Connected Dominating Sets as backbone in the growth-bounded 
graph is presented. This approach consists of three stages: firstly construct an MIS by network decomposition 
scheme; secondly compute a minimum dominating set in 2-separated collection with r transmission range and 
finally use Marking process and ruling k to reduce the virtual backbone with 3r transmission range. The 
computed Connected Dominating Set guarantees a constant stretch factor on the length of a shortest path and 
induces a subgraph of constant degree while the nodes only require direct neighborhood information. The 
efficiency of our approach is confirmed through both theoretical analysis and comparison study. 
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1 Introduction 
Recently, the use of a virtual backbone in various 
applications in wireless ad hoc network has become 
popular [1-6]. These applications include topology 
control, point and area coverage in sensor networks, 
and routing protocol design. Researchers have 
proposed the use of a virtual backbone in the 
network as an alternative to a fixed routing 
infrastructure. Nodes in the virtual backbone act as a 
connected skeleton for the entire network. A recent 
overview can be found in [7]. When modeling the 
network as a graph, the most widely used concept 
for defining a backbone is the Connected 
Dominating Set (CDS). A dominating set (DS) [8]is 
a subset of nodes in the network where every node 
is either in the subset or a neighbor of a node in the 
subset. A CDS is a connected subset of the network 
nodes such that any node in the network is either 
part of the CDS or has a neighbor in the CDS. 

A Connected Dominating Set is a natural 
candidate for virtual backbone infrastructure in ad 
hoc networks. For a virtual backbone to be effective, 
the underlying CDS must be small in size, have a 
low stretch (i.e., preserve the shortest paths in the 
original network), and must be computable using 
fast distributed local control algorithms. Since a 
maximal independent set (MIS) is a dominating set 

and it is easy to construct, one usually constructs a 
maximal independent set at the first step.  

Of the solutions to construct a virtual backbone 
in wireless networking, the usually used model of 
graph is unit disk graphs (UDG) [13]. While a UDG 
is too optimistic, the general graph (GG) [11] is 
often too pessimistic, as the connectivity of most 
networks is not arbitrary but obeys certain 
geometric constraints [14]. Since the growth-
bounded graph (GBG) model reflects reality quite 
well and is appropriate in many situations, related 
researches[10, 15-17]on approximation algorithms 
of constructing maximal independent set, 
dominating sets, and minimum connected 
dominating sets (MCDS) [26] on GBG model have 
been done recently without considering effective 
clustering or backbone formation. Proposed 
clustering and backbone formation methods [6, 18-
21]mostly use the UDG model. Here, we propose a 
distributed algorithm for finding an approximation 
of a Minimum connected dominating sets to 
construct a virtual backbone in the growth-bounded 
graph. This approach constructs a MCDS by three 
phases: firstly construct an MIS by network 
decomposition; secondly find a minimum 
dominating set and finally use Marking process and 
ruling K to optimize the virtual backbone. 
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The paper is structured in the following way. 
Section 2 introduces some notation and 
preliminaries. A distributed algorithm to computer 
MCDS in growth-bounded graph is present in the 
section 3. Section 4 theoretically analyzes the 
proposed algorithm and makes comparison with 
others. The paper is conclude in section 5   
 
 
2 Definition and model 
The growth-bounded graph captures the intuitive 
notion that if many nodes are located close from 
each other, many of them must be within mutual 
transmission range. In graph theoretical terms, a 
graph is growth-bounded if the number of 
independent nodes in a node's r-neighborhood is 
bounded. We have the following definition. 

Definition 1. (Growth-Bounded Graph) An 
undirected graph G=(V, E) is called a growth-
bounded if there exists a polynomial bounding 
function f(r) such that for every v ∈ V and r ≥ 0, the 
size of any maximal independent set in the r-
neighborhood Γr(v) is at most f(r). Further, we say 
that G has polynomially bounded growth if f(r) is a 
polynomial p(r). 

Note that f(r) does not depend on the number of 
vertices in the graph, but on the radius of the 
neighborhoods only. 

We model a wireless network as a growth-
bounded graph. Each node has a unique identifier 
and knows which nodes are within its transmission 
range[29]. When we say that a distributed algorithm 
computes a CDS, we mean that each node knows 
after executing its code whether it is part of the CDS 
or not. In the following, we need to introduce some 
notion and preliminaries for our description and 
analysis. 

Let G = (V, E) be an undirected connected graph. 
For V' ⊆ V, we denote by G[V'] the subgraph of G 
induced by V': the vertex set of G[V'] is V' and the 
edge set consists of the edges of G with both 
endpoints in V'. The distance d(v, w) between two 
vertices v, w∈ V is the number of hops that must be 
traversed to go from v to w on a shortest path. 
Furthermore, we denote by Γ(v) the closed 
neighborhood of a vertex v ∈ V , i.e. Γ(v) := {u ∈V | 
d(v, w) ≤ 1} ∪ {v}. Analogously, for S ⊂  V, let 
Γ(S):=∪s∈S Γ(s) define the neighborhood of S. 
Likewise, the i-neighborhood of a set of vertices S is 
defined recursively as Γ1(S):=S, and Γi(S):= Γ(Γi-

1(S)) for i ≥ 1. A maximal independent set M for a 
given graph G is a subset M V such that for every 
v, w∈M we have v Γ(w) and furthermore no 

superset M'

⊆
∉

⊃ M with the latter property exists. For a 
subset S⊆ V, MIS(S) is a maximum independent set 
on the induced subgraph G[S]. A dominating set 
(DS) D for a G is a subset D V such that for every 
v∈V there is a w∈D such that v∈Γ(w).  

⊆

Let S V be a subset of the nodes of a graph G = 
(V, E). S is called r-ruling if for each node u∈ V\S, 
the distance to the closest node in S is at most r. If 
the set S in the above definition is an independent 
set, we speak of an r-ruling independent set [22]. 
For instance, a MIS is a 1-ruling independent set.  

⊆

The concept of a 2-separated collection of 
subsets is introduced in [9]. For a graph G = (V, E), 
let S := {S1, . . . , Sk} be a collection of subsets of 
vertices Si ⊂ V , i = 1, . . . , k, with the following 
property: for any two vertices s ∈ Si and s ∈ Sj with 
i ≠ j, it is d(s, s ) > 2. We refer to S as a 2-separated 
collection of subsets.  

For local neighborhoods, and subsets of the 
vertices in general, we now define local or partial 
solutions. Let P(V ) denote the set of all subsets of 
vertices in G, and let D : P(V ) → P be a function 
that returns for a set V′ a minimum cardinality 
dominating set in G. In the following, we denote by 
Dopt an optimal solution to the MDS problem on G, 
in other words, Dopt:= D(V ). The function D(.) is 
always computed with respect to the entire 
underlying graph G = (V, E). It may thus include 
vertices from outside the argument subset in its 
returned solution, i.e. , for a subset V′ ⊂V the 
inclusion D(V′) ⊆ V′ needs not to hold. [6]shows 
that the sum of the cardinalities of minimum 
dominating sets D(Si) for the subsets Si ∈ S of a 2-
separated collection forms a lower bound on the 
cardinality |D(V)| of a minimum dominating set in 
G. 

Consider a subset W⊆V of vertices called 
clusterheads. A clustergraph G of radius c is then 
given by introducing edges in the c-hop 
neighborhoods around w∈ W. In this context, the 
vertices in W are used to identify each cluster. In 
other words, a clustergraph G = (V, E) can be 
described by the set V := W of vertices, and the 
edges are characterized by (u, v) ∈ E⇔ dG(u, v)≤c 
for any two u, v ∈ W. 
 
 
3 MCDS on GBG algorithm 
In the section, we present the algorithm of 
MCDS_GBG that yield a local approach to 
constructing a ρ-approximate connected dominating 
set in a connected graph. Inspired by [2, 23], the 
basic idea is to first reduce the network density 
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through clustering using a short transmission range. 
Neighboring clusterheads (clusterheads that are 2 or 
3 hops away) are connected using a long (and 
normal) transmission range.  
Algorithm: MCDS_GBG 
Input: Connected Graph G = (V, E) of bounded 
growth, ε > 0, := c(ε) + 2  c~

Output: (1+ε)-approximation Minimum Connected 
Dominating Set D 
S1: Computer maximal independent set I; 
S2: Use MIS I to construct cluster graph G ; 
S3: Color G using GΔ + 1 colors; 
S4: D := φ; 
S5: for k = 1 to GΔ + 1 do 
S6: for each v ∈ I with color k do in parallel 
S7: while Γ(v) ∩V ≠ φ  do 
S8: For some u ∈ Γ(v) ∩V, compute minimum 
dominating set rD of Vvr ∩Γ )( such 
that rr DD )1(2 ε+≤+ ; 
S9: Inform about )(~ vcΓ r and 2+rD ; 
S10: D := D ∪ 2+rD (u); 
S11: V := V \ )(2 ur +Γ ;  
End do  
End for 
End for 
S12: Use D as clusterhead set and applies Marking 
process and self-pruning rule k in D; 
End 
 
3.1 MIS algorithm 
The distributed MIS construction for growth-
bounded graphs firstly computes a 3-ruling 
independent set and then induces an (O(1), O(1))-
decomposition [10, 22, 24]]which can be used to 
finally extend S' to a maximal independent set. 
Network decomposition is a very basic structure 
which can be used as the basis of distributed 
algorithms for a huge number of problems. A (d(n), 
c(n))-network decomposition of a graph G = (V, E) 
is a partition of V in disjoint clusters, such that the 
subgraph induced by each cluster is connected, the 
diameter of each cluster is in d(n), and the chromatic 
number of the resulting cluster graph is in c(n), 
where the cluster graph is obtained by contracting 
each cluster into a single node [5]. 

We apply algorithms from [24] to create a 3-
ruling independent set S′ and turn S′ into a MIS. Set 
S′ induces a natural clustering of the nodes of G. For 
each node u ∈ S′, we define the cluster Cu to be the 
set of all nodes v ∈ V for which u is the nearest node 
of S′. The cluster graph GS′  induced by S′ is then 
defined as follows. The node set of GS′ is the set of 

clusters {Cu | u ∈ S′}. The clusters Cu and Cv are 
connected by an edge in GS′ if and only if there are 
nodes u′ ∈ Cu and v′ ∈ Cv which are neighbors in 
the network graph G. Because S is a 3-ruling set, the 
distance between the centers u and v of two 
neighboring clusters Cu and Cv can be at most 7. The 
degree of GS′ is therefore bounded by f(7) = O(1) if 
G is f-growth-bounded. Our MIS algorithm firstly 
compute GS′ and color GS′ with f(7) + 1 colors, 
resulting in a (O(1), O(1))-decomposition of G. 
Applying algorithms from [22, 24], this can be 
achieved in O(log* n) rounds using messages of size 
O(log n). 

After computing the decomposition, a MIS M of 
G is constructed by sequentially computing the 
contributions from each color of the coloring of GS′ . 
For each node v, let xv be the color of v's cluster. 
Using the cluster colors and the node identifiers, we 
define a lexicographic order ≺  on the set V such 
that for u, v∈ V, u  v if and only if x≺ u < xv or if xu 
= xv ∧ ID(u) < ID(v). Each node now proceeds as 
follows: 

Initially, we set M = S'. All nodes v of S' inform 
their neighbors about the joining of M by sending a 
JOIN(v) message. If a node u receives a JOIN(v) 
message from a neighbor v, it cannot join the MIS 
any more and therefore sends a COVERED(u) 
message to all neighbors. If a node v has not 
received a JOIN(u) message but has received a 
COVERED(u) from all u ∈ Γ(v) for which u  v, it 
can safely join M. Note that all neigbors w ∈ Γ(v) 
with w ≺  v, would need to receive a COVERED(v) 
message from v before joining M. If a node v joins 
M, it informs its neighbors by sending a JOIN(v) 
message. 

≺

 
3.2 MDS construction 

A locally optimal dominating set is computed by 
the central vertices of the MIS I created by the first 
stage. Using the same method as [9], we construct 
suitable subsets Ti ⊂  V, which contain a 2-separated 

collection Si ⊂  Ti, i=1,…,k. corresponding sets Si ⊂  
Ti together with a bound of (1 + ε) for the local 
dominating sets D(Si) and D(Ti), then the union of 
the respective local dominating sets also dominates 
the entire set of vertices, resulting in a global (1+ε)-
approximation for the MDS. The basic idea of the 
construction is simple: we compute a local 
dominating set for a neighborhood of a vertex, and 
expand this neighborhood until we have formed sets 
S and T ⊃  S which satisfy a desired bound. Then, 
we eliminate the current neighborhood and continue 
the same steps for the remaining graph. The 
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algorithm works as follows. We start with an 
arbitrary vertex v ∈ V and consider for r = 0, 1, 2, . . 
. , the r-th neighborhoods Γr(v). Starting with Γ(v) = 
v, we compute dominating sets of minimum 
cardinality for these neighborhoods as long as (1) 
holds. 

|D(Γr+2(v))| > (1+ε) |D(Γr(v))|           (1) 
Denote by r  the smallest r for which (1) is 

violated. 
For the dominating set, )(2 vr+Γ is removed from 

G, and 2+rD is added to the partial solution, before 
again going on with the remaining graph. 
Considering the ( r +2)-neighborhoods is due to the 
fact that Dr ⊂ needs not hold, but DrΓ r ⊂ 1+Γr  is 
clearly satisfied. The combinations of these local 
subsets dominate the whole graph G and obey the 
desired approximation ratio. During the pre-
processing part of Algorithm, the graph is clustered 
using balls of radius 2 c~ around vertices that form a 
maximal independent set I in G. The set I can be 
created by a local algorithm presented above. The 
resulting cluster graph G then has bounded degree, 
which allows for an efficient ( GΔ +1)-coloring by a 
local algorithm [15].  
 
3.3 MP and Rule k 
After constructing a (1+ε)-approximation MDS as 
clusters within the r1=r transmission range, we 
apply the r2=3r transmission range to connect 
clusterheads by which avoiding a selection process 
of gateway nodes as regular clustering approach 
[27]. Each clusterhead uses a transmission range of 
r2 for MP [24] and Rule k [25]. Thus, the backbone 
is constructed based on clusterheads using a 
transmission range of r2. A transmission range of r2 
ensures that all neighboring clusterheads (i.e., 
clusterheads within 3 hops) are directly connected 
under a transmission range of 3r. 
 
 
4 Analysis and comparison 
From (1), let Γi, i=1,…, k, denote the respective 
neighborhoods when (1) is violated, i.e. Γi= )(2 ir v

i+
Γ , 

for the collection of neighborhoods {Γ1,…, Γk}, as 
[9], the union D:= forms a dominating set 
for the graph. 

∪k
i iD1 )(= Γ

Lemma 1. Let Dopt denote an optimal solution to 
the Minimum dominating set on G, the D ⊂ V 
computed by the algorithm satisfies |D| ≤ ρ |Dopt|, ρ 
= 1+ε. 

Proof. As proven in [9], the subsets )( ir v
i

Γ , 
i=1,…k, created by the algorithm form a 2- 

separated collection Γ´ in G. Additionally, the 
criterion for stopping expanding the neighborhood 
guarantees that each pair of local dominating sets 
satisfies 

|D(Γi)| ≤ ρ |D( )( ir v
i

Γ )| (i=1,…, k) 

Clearly, |D| = | | ≤ ≤ 
ρ

∪k
i iD1 )(= Γ |)(|1 i

k
i D Γ∑ =

|))((|1 ir
k
i vD

i
Γ∑ = ≤ ρ |D(Γ´)|= ρ|Dopt| 

Lemma2. Let G = (V, E) be a graph of 
(polynomially) bounded growth, I ⊂ V be an 
independent set on G, and c be a constant. Then, the 
maximum degree of the clustergraph G given by the 
clusters Γc(v), v ∈ I, is bounded by O(f(c)). 

Proof: According to the definition of 
neighborhood, for any two vertices u, v ∈ V , we 
denote by d(u, v) the shortest hop-distance between 
u and v. Using this, we call Γr(v) the (closed) r-
neighborhood of v, that is, for any r≥ 0, and v ∈ V , 
Γr(v) :={ u ∈ V | d(u; v) ≤ r}. Since G = (V, E) be a 
graph of (polynomially) bounded growth, I ⊂ V be 
an independent set on G, the size of any independent 
set in the r-neighborhood Γr(v) is at most f(r), for 
cluster graph G with the constant c, obviously, GΔ is 
bounded by O(f(c)). 

The coloring of the cluster graph G , due to its 
bounded degree (Lemma 2), takes O( GΔ log*n) 
rounds [9]. The maximum degree of G  depends on 
the constant c = c(ε), since G has polynomially 
bounded growth, it is GΔ  = O(1/εO(1)), where the 
exponent of 1/ε depends on the polynomial bound of 
the graph itself. In while loop, the algorithm benefits 
from the fact that the different color cluster can be 
done completely parallel by the respective leaders of 
the same colors in the MIS. Note that every action 
performed is limited to the c-neighborhood of the 
respective vertices.  

Theorem 1. Let G = (V, E) be a polynomially 
growth-bounded graph. Then, there exist local, 
distributed (1+ε) approximation algorithms, ε > 0, 
for the Minimum Dominating Set problems on G. 
The number of communication rounds needed for 
the respective construction of the subsets is 
O(TMIS+log*n/εO(1)). 

 Proof: The maximal independent set 
computation can be achieved deterministically in 
TMIS = O(logΔlog*n)[] communication rounds 
[21].The coloring procedure of the cluster graph G , 
due to its bounded degree (Lemma 3), takes 
O( GΔ log*n) rounds as proven in [9]. Since GΔ = 
O(1/εO(1)), we can therefore bound the number of 
communication rounds for the coloring part of the 
algorithm by O(cf(1) GΔ ) = O(1/εO(1)). Thus, the 
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number of communication rounds needed for the 

respective construction of the subsets is O(TMIS 
+log*n/εO(1)). 

Theorem 2. The marking process and the 
restricted versions of Rule k have the 
communication complexity O( GΔ ) and the 
computation complexity O( GΔ

2), where GΔ  is the 
maximum vertex degree in the network. 

Combining theorems and lemmas, we obtain the 
main theorem: 

Theorem 3. Communication complexity of the 
algorithm is O((1+TMIS +log*n)/εO(1)). 

Let G´(V´, E´) be the graph induced by the CDS 
of the (growth-bounded) graph G = (V, E) computed 
by presented algorithm. The backbone graph G´ has 
maximum degree O(1/εO(1)) and guarantees a 
O(1/εO(1)) stretch with G´ as a backbone. 

Lemma 3. Under the growth-bounded graph 
model, a MDS of G(r1) is a MCDS of G(r2), if G(r1) 
is connected and r2 ≥ 3r1. 

Proof: Let V′ be a MDS of G(r1). An alternative 
definition of a MCDS is that any node pair in the 
network is connected via nodes in the MCDS (i.e., 
the backbone nodes). For any two nodes u and v, we 
can construct a path (u,w1,w2,…, wl, v) in G(r2), such 
that wi ∈ V′ for 1≤ i ≤ l. Since G(r1) is connected, a 
path (u = x1, x2, … , xl = v) exists in G(r1). For each 
xi (1≤ i ≤ l), there is a corresponding wi ∈ V′ that is 
either xi itself or a neighbor of xi. The distance 
between xi and wi is d(xi, wi)≤r1. The distance 
between wi and wi+1 is d(wi, wi+1) ≤ d(wi, xi) + d(xi, 
xi+1) +d(xi+1, wi+1) ≤3r1 ≤ r2. Therefore, (u, w1, w2, 
… ,wl, v) is a valid path in G(r2).  

Theorem 4. The clusterhead set V′ , derived 
from G(r) via clustering, is a MCDS of G(3r). 

Let G′(3r) be the subgraph of G(3r) derived from 
V′ . Since MP and Rule k preserve a CDS, we have: 

Corollary 1. V′′ derived from the MP and Rule k 
is a MCDS of G′ (3r). 

In order to show MCDS_GBG algorithm 
efficiency, we compare it with other algorithms.In 
the table I, the columns from left to right correspond 
to the following aspects of the algorithms 

respectively: the name of the algorithm, the time 

complexity of the algorithm, the worst case 
approximation ratio of the size of the CDS, the 
worst case stretch of the CDS, whether the CDS 
algorithm requires the network to be synchronized, 
the graph classes to which the guarantees of the 
CDS algorithm apply, and the information required 
at each node during the execution of the algorithm. 
Hence, it is an important aspect about our result that 
the nodes do not require any position or distance 
information. That is, the only information available 
at a node is the connectivity information to its 
neighbors. Table 1 show that our construction 
algorithm works well. 
 
 
5 Conclusion 
In this paper, we present a distributed algorithm for 
computing minimum connected dominating sets to 
construct a virtual backbone in the growth-bounded 
graph. In different stages of the proposed algorithm, 
we adjust the transmission range of clusterhead 
nodes to avoid selection process of gateway nodes 
for constructing a connected dominating set. This 
approach constructs an MIS by network 
decomposition scheme, computes a minimum 
dominating set for clustering by r transmission 
range and then uses marking process and self-
pruning ruling K to optimize the virtual backbone by 
3r transmission range. The algorithms run locally 
and computer a (1+ε)-approximation MCDS while 
adding the guarantee that the computed CDS has 
constant stretch and constant degree. Especially, the 
nodes only require direct neighborhood information 
The time complexity is O((1+TMIS +log*n)/εO(1)), 
where TMIS is the time required to compute a 
maximal independent set in the graph and n denotes 
the number of nodes. The efficiency of our approach 
is confirmed through both theoretical analysis and 
comparison study.  

Interesting future extensions include designing 
fast distributed and local algorithms which 
incorporate the effect of network dynamics such as 
node mobility[29], node removal and node addition. 

Table 1 Performance comparison of connected dominating sets algorithm for virtual backbone 
Algorithm Time 

Complexity 
Approximation 

Ratio 
Stretch Sync Graph Model Information 

Wan et al. 
Alzoubi et al.  

Dai et al.  
Wu  

Wu et al.  
Kuhn et al.  

Jia et al.  
Dubashi et al.  

CDSColor 
MCDS_GBG 

O(n) 
O(n) 
O(1) 
O(1) 
O(1) 
O(k2) 

O(log n logΔ) 
O(log2 n) 

O(Δlog2 n) 
O((1+TMIS +log*n)/εO(1)) 

O(1) 
O(1) 
O(n) 
O(n) 
O(n) 

O(kΔ2/klogΔ) 
O(logΔ) 
O(log n) 

O(1) 
1+ε 

O(n) 
O(1) 
O(n) 
O(n) 
O(n) 
O(n) 
O(n) 

O(log n) 
O(1) 

O(1/εO(1)) 

no 
no 
no 
no 
no 
yes 
yes 
yes 
yes 
yes 

UDG 
UDG 

undirected 
directed 

undirected 
undirected 
undirected 
undirected 

UDG 
GBG 

D1 
D1 
D2 
D2 
D2 
Dk 
D1 
D1 

N, Δ 
D1 
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Both these extensions present fundamental 
analytical challenges and has tremendous practical 
significance for large scale ad hoc wireless sensor 
networks. 
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