
Case-Oriented Alert Correlation

JIDONG LONG and DANIEL G. SCHWARTZ

Department of Computer Science

Florida State University

Tallahassee, Florida 32303

U.S.A.

jidolong@cs.fsu.edu, schwartz@cs.fsu.edu

Abstract: - Correlating alerts is of importance for identifying complex attacks and discarding false alerts.
Most popular alert correlation approaches employ some well-defined knowledge to uncover the connec-
tions among alerts. However, acquiring, representing and justifying such knowledge has turned out to
be a nontrivial task. In this paper, we propose a novel method to work around these difficulties by using
case-based reasoning (CBR). In our application, a case, constructed from training data, serves as an
example of correlated alerts. It consists of a pattern of alerts caused by an attack and the identity of the
attack. The runtime alert stream is then compared with each case, to see if any subset of the runtime
alerts are similar to the pattern in the case. The process is reduced to a matching problem. Two kinds
of matching methods were explored. The latter is much more efficient than the former. Our experiments
with the DARPA Grand Challenge Problem attack simulator have shown that both produce almost the
same results and that case-oriented alert correlation is effective in detecting intrusions.

Key-Words: - Alert Correlation, Case-Based Reasoning, Data Mining, Intrusion Detection

1 Introduction

Intrusion detection has been studied for more
than 20 years. Although many intrusion detec-
tion techniques have been explored, all apply es-
sentially the same methodology, namely, looking
for patterns from a single data source. Typical
such sources are network traffic, the sequence of
system calls on a host, and the sys logs on a
host. Intrusion detection techniques can be clas-
sified into misuse detection or anomaly detection,
based on the types of patterns for which the de-
tector is searching. In misuse detection, one has
a knowledge base of previously observed abnor-
mal behavior (attacks) and searches for matches
of current behavior with records currently in the
knowledge base. In anomaly detection, one has a
knowledge base of records of normal behavior and
determines whether the current behavior fails to
match all the records currently in the knowledge
base (a mismatch indicates a possible attack). In-
trusion detection techniques can also be classified

as being host-based or network-based depending
on the type of data source. Host-based systems
monitor events on a host, such as audit data or
sys logs. Network-based systems monitor packets
flowing through a network.

Different techniques have both advantages
and drawbacks. Misuse detection cannot detect
previously unknown attacks, whereas anomaly
detection tends to generate large quantities of
false alerts. Moreover, neither host-based nor
network-based intrusion detection can provide a
reasonable coverage of all attacks, as some at-
tacks, especially distributed ones, can only be dis-
covered by looking into multiple data sources at
the same time. Consequently, a large number of
false reports (both positives and negatives) has
become a common and critical issue in the intru-
sion detection community.

Traditional intrusion detection systems
(IDSs) are typically limited by using a single in-
trusion detection technique. This inherent imper-

WSEAS TRANSACTIONS on COMPUTERS

Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
98

Issue 3, Volume 7, March 2008

fection makes them more likely to generate false
reports. A practical idea that tries to solve this
problem is to have complementary IDSs working
together. This has been proposed in many works.
However, mainly due to the different formats of
data sources and alerts, most IDSs have been
developed independently and were not intended
to work collaboratively.

To address this issue, a common intrusion
detection framework (CIDF) has been proposed
[1]. This entails a common alert format that can
be used for all intrusion detection environments.
Some ideas in CIDF encouraged the creation of
an intrusion detection working group (IDWG) of
the Internet Engineering Task Force (IETF). Two
important proposals, the intrusion detection mes-
sage exchange format (IDMEF) and the intru-
sion detection exchange protocol (IDXP), have
been increasingly accepted as standards in the in-
trusion detection community. Our work, in par-
ticular, has concentrated on correlating IDMEF
alerts.

A common alert format makes it much easier
to build a system incorporating different IDSs.
Such a system is often referred to as multi-sensor
IDS or meta IDS. In such a system, different
IDSs complementary to each other are strate-
gically deployed at different locations watching
different data sources. In this context, the no-
tion of sensor is more general than that of an
IDS and includes any security device (in hard-
ware of software), such as a firewall or antivirus
system, that can fire alerts. As sensors differ in
many aspects, such as their capabilities, input
data sources, and working environments, alerts
from different sensors can be very different. For
example, alerts from a host sensor may contain
process information that a network sensor oth-
erwise cannot provide. The essential idea is to
make the sensors somehow work together. For
this it is necessary to determine the logical con-
nections between alerts, i.e., to determine which
alerts are being caused by the same attack. If
this can be achieved then one obtains a global
view of attacks and at the same time can reduce
the volumes of false alerts. The general approach
is often referred to as alert correlation.

The effectiveness of an alert correlation ap-
proach determines the effectiveness of the asso-
ciated IDS. For this reason, many approaches

have been explored. Most popular alert correla-
tion approaches employ some well-defined knowl-
edge such as rules or probabilistic models, to un-
cover the deep connections among alerts. How-
ever, acquiring and representing such knowledge
has turned out to be a nontrivial task that re-
quires high quality training data, and such data
is unavailable for most intrusion detection appli-
cations. In addition, the correctness of the re-
sulting model is also difficult to determine, since
some attack behaviors cannot be expressed nat-
urally in rigid terms.

Case-based reasoning (CBR) is a decision-
making technology that can work around these
difficulties. The expertise of a CBR system is
embodied in a library of past cases. A case con-
sists of a description of a problem together with
its solution. The design of a case-based reasoning
system includes two important tasks. One is to
characterize the relevant problems. This amounts
to identifying the features that can be used to
describe the problems. The other task is to de-
fine a similarity measure that can be used to es-
timate the similarity between any two problems.
In contrast with other types of intrusion detection
systems, the CBR methodology makes knowledge
acquisition and presentation much easier. More-
over, a case library can often be built on sparse
training data and still be effective.

A CBR system is assumed to be operating in
the context of some environment that can give
rise to problems. Given such a problem, the sys-
tem applies its similarity measure to locate those
cases in the case library whose problem compo-
nents are most similar to it. Then the solution
parts of those retrieved cases are used to suggest
a solution for the problem.

In our application, problems are attacks.
Each such problem is accordingly represented as a
pattern of alerts from the various sensors. When
dealing with the problem of alert correlation, the
problem component of a case can be viewed as
a concrete example of a set of correlated alerts.
More exactly, our approach can be briefly de-
scribed as follows. From training data, we can
know exactly what true alerts the sensors fire for
certain attacks. All alerts for a particular attack
are aggregated as an alert pattern. That pat-
tern, along with its associated attack type, forms
a single case. Then, given a stream of runtime

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
99

Issue 3, Volume 7, March 2008

alerts as input, if we can find a case whose prob-
lem component closely matches some subset of
the input stream, it is reasonable to believe that
the detected subset constitutes a set of correlated
alerts caused by an attack of the same type as the
case.

Given a set of run-time alerts, however, a
large amount of computation may be required
to determine whether the problem components
of cases in the library match any subsets of this
set. For example, if the input set has 10 alerts,
and the problem component of some case in the
library has 3 alerts, then one has 10-choose-3, or
120, comparisons to determine whether there are
any matchings with that particular case; and this
must be repeated for every case in the library.

Thus arises the issue of how to effectively find
the most likely candidates in the library. Al-
though the relation among alerts may be compli-
cated, alerts can sometimes be correlated simply
through session information, namely, source IP
address and port and destination IP address and
port. In fact, session information has been con-
sidered as key attributes in most intrusion detec-
tion approaches used for building intrusion detec-
tion models. Using session information suggests
what we call explicit alert correlation. Although
it is straightforward, it does have drawbacks. The
important prerequisite to make this approach
work is that the alerts themselves contain the ses-
sion information. Unfortunately, this cannot be
satisfied in the following circumstances.

• The data sources do not contain session in-
formation. If they are used for intrusion de-
tection, sensors are not able to associate at-
tacks with sessions. For example, antivirus
software can act as a host-based sensor. It
works on the binary executables and may
fire alerts when virus patterns are found.
But executables cannot be associated with
sessions. Viruses embedded in executables
can be evoked in an unpredictable man-
ner. Other typical data sources without
session information include application logs
and system logs that only record high-level
data such as user commands.

• The sensors do not provide session infor-
mation. Different sensors have different
capabilities. Depending on the environ-

ment, one may install a lightweight sen-
sor that provides little information in its
alerts, or a more complex sensor that will
have a greater impact on the running sys-
tem but provide more detailed alert infor-
mation. Thus, even though the data source
may have session information, the sensor
may not use it.

• Session information is implicit in the data
sources. Even in network traffic, session in-
formation sometimes is not apparent. IP
packets must include both IP addresses and
ports. However, packets in protocols lower
than the TCP/IP protocol may not have
complete session information. For example,
ICMP packets only have IP addresses. An
attacker may first perform an “IP sweep”
(sending a series of ICMP packets) to find
live machines in a particular network and
then follow with attack sessions to break
into those hosts by exploiting some vulner-
abilities. In such cases, the ICMP packets
can only be associated with sessions from
the attack context.

• Not every intrusion occurs over a network.
The system can be compromised by insid-
ers, such as attacks involving an abuse of
privileges or previously installed backdoor
software.

The drawbacks of explicit alert correlation
drove us to look for a more general approach.
This lead to the idea of the case-oriented alert
correlation. The basic idea is to turn the alert
correlation problem into a matching problem.
More specifically, for each case in the case library,
the task is to find a subset of the set of run-time
alerts that closely match the alerts in that case. If
such a subset of alerts shows sufficient similarity
to the alerts in the case, it is reasonable to believe
that the set of alerts are correlated with respect
the same type of attack as represented by the
case. This amounts to what is known as a max-
imal matching problem, which can be perfectly
solved by the well-known Hungarian algorithm
[13]. But the downside is that the complexity of
the algorithm is too high for it to be a practical
solution. To work around this problem, we intro-
duce the concept of order-preserving matching.

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
100

Issue 3, Volume 7, March 2008

This is based on the observation that alerts are
often fired in a sequential manner. A dynamic
programming solution for the order-preserving
matching is given, which has linear time complex-
ity. Our experiment shows that this is as good as
the Hungarian algorithm in solving the problem
of alert correlation. Our case-oriented alert cor-
relation has also demonstrated great potential in
detecting attacks.

The rest of this paper is organized as follows.
Some related work will be discussed in Section
2. Then some basic data representations em-
ployed in our approach are introduced in Section
3. We discuss case-oriented alert correlation and
the Hungarian algorithm in Section 4. Sections
5 and 6 detail the dynamic programming solu-
tion for order-preserving matching and the asso-
ciated algorithm. Section 7 gives our experimen-
tal results. Section 8 provides some concluding
remarks.

2 Related Work

There have been several proposals that address
the problem of alert correlation. Approaches such
as probabilistic alert correlation [17] and alert
clustering methods [2] and [7] do not use pre-
defined knowledge other than alerts themselves
and are based on the similarity between alert at-
tributes. Although they are effective in finding
similar alerts (e.g., alerts with the same source
and destination IP addresses), approaches of this
type are criticized for not being able to discover
deep logical connections between alerts.

Some approaches, such as [5] and [11], cor-
relate alerts according to the attack scenarios
specified by human users or learned from train-
ing data by knowledge discovery approaches (e.g.,
data mining and machine learning). A limitation
of these methods is that they are restricted to
known attacks or variants of known attacks.

Approaches based on prerequisites and conse-
quences of attacks, such as [3], [14], and [16], may
discover novel attack scenarios. Intuitively, the
prerequisite of an attack is the necessary condi-
tion for the attack to be successful, while the con-
sequence of an attack is the possible outcome of
the attack. However, in practice, it is impossible
to predefine the complete set of prerequisites and
consequences. In fact, some relationships can-
not be expressed naturally with the given set of

terms.
Some approaches, such as [12] and [15], ap-

ply additional information sources, e.g., firewalls
and system state monitors, to facilitate alert cor-
relation. System state information may include
such items as number of users, amount of mem-
ory usage, and amount of CPU usage. In partic-
ular, [12] has proposed a formal model, M2D2,
for alert correlation using such multiple infor-
mation sources. Because of this multiplicity of
sources, their method can potentially lead to bet-
ter results than those that look at alerts only.
However, it invites more human involvement and
makes the development of the intrusion detection
system more time-consuming and error-prone in
practice.

In some relevant fields such as network man-
agement and supervision, CBR has been applied
to alert correlation [10]. In addition, CBR can
also be used as a detection approach for a stand-
alone system [6]. Our approach significantly dif-
fers in that it applies an XML description of prob-
lems and a generic XML distance measure.

3 Problems and Cases

Problems and cases have to be clearly defined for
a specific domain where CBR is applied. Our
domain is meta intrusion detection. For this we
define a problem as a pattern of alerts represent-
ing an attack and a case as a previously known
problem together with information regarding its
identity and possibly some prescribed response.
Normally, an intrusion is a series of attacks. It
seems simpler to let a problem represent the en-
tire intrusion. As the same type of attacks can
be employed to launch different types of intru-
sions, defining a problem at the attack level al-
lows a finer-grained analysis. The conventional
approach to characterize problems is through a
set of predefined features. In other words, a prob-
lem is described by a set of features together with
their values. This is basically the same as the
attribute-value representation employed by other
knowledge or learning systems. Under such a rep-
resentation, data can be put into a single table.

The information the meta IDS can obtain dur-
ing an attack consists of IDMEF alerts from de-
ployed sensors. Alert information is inherently
heterogeneous. Some alerts are defined with very
little information, such as origin, destination,

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
101

Issue 3, Volume 7, March 2008

Figure 1: The XML representations of a case, a problem and an alert.

name, and time of the event. Other alerts pro-
vide much more information, such as ports or ser-
vices, processes, user information, and so on. In
addition, alert information may contain extended
information due to the adoption of new detection
approaches. Thus, predefining a fixed set of fea-
tures that can cover all important information in
alerts is almost impossible. Instead of attempt-
ing this, we choose a more flexible approach to de-
scribe cases in our design. The collection of alerts
generated from different sensors during the at-
tack, which forms a pattern of alerts, constitutes
the description of an attack (or a problem). Since
an alert is an XML object, in order to facilitate
the aggregation of alerts, a problem is also repre-
sented in XML. The alerts comprising a problem
are organized according to the sensors that pro-
duced them, and alerts from the same senor are
sorted in chronological order. As mentioned, a
case consists of the description of an attack and
its identity. Figure 1 shows the representations
and structures of a case, a problem, and an alert.

The XML representation of objects is inher-
ently different from the attribute-value represen-
tation applied by conventional CBR systems. In
an attribute-value representation, an object is de-
scribed by a fixed number of attributes (attribute
names and attribute values; attributes are called
‘features’ in CBR). Although the attribute-value
representation is popular and used in a number of
knowledge systems, it has a limitation when de-
scribing complex objects, such as trees. An XML
document is a tree structure. If an XML object is
transformed into a set of attributes (the process
is called ‘flattening a tree’), some information in

it may be lost. Thus, in our approach, data anal-
ysis is performed directly over the alerts, given
as XML objects, rather than working on a set of
attributes (features) extracted from the original
alerts.

4 The Core Methodology

We have called our approach case-oriented alert
correlation because it makes use of a case library.
We assume that there is a case library that con-
tains descriptions of known attacks, where, as
before, cases are identified by their patterns of
alerts represented in XML. The underlying idea
is, given some collection of alerts raised by the
various sensors during some given time frame, to
find those cases in the case library whose alert
patterns are sufficiently similar to some subset of
the given set to suggest that the attack described
by that case has taken place.

To be more specific, the problem of alert cor-
relation has been reduced to a matching problem
as follows. The pattern of alerts in a given case
and the collection of runtime alerts form two sets
of alerts. An alert in one set can be matched
with up to one alert in the other set. The dis-
tance between these two alerts is associated with
that match. Suppose all the pair-wise distances
between alerts in these two sets are available. A
matching problem can be defined as one of look-
ing for matches with the overall minimal sum of
their distances. The resulting matching deter-
mines a pattern of alerts that can be found from
the runtime alerts and is most similar to one in
the given case. Given a set of runtime alerts, a
matching problem is formulated for each case in

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
102

Issue 3, Volume 7, March 2008

Correlated alerts
(A new pattern of alerts)

<problem>
 <sensor id = “s1”>

 + <IDMRF-message> … A11

 + <IDMRF-message> … A12

 <sensor id = “s2”>
 + <IDMRF-message> … A21

 + <IDMRF-message> … A22

</problem>

+ <IDMRF-message> … B11

+ <IDMRF-message> … B12

+ <IDMRF-message> … B13

+ <IDMRF-message> … B21

+ <IDMRF-message> … B22

+ <IDMRF-message> … B23

 B11 B12 B13

A11 0.30 0.10 0.20

A12 0.25 0.20 0.15

 B21 B22 B23

A21 0.20 0.26 0.35

A22 0.30 0.25 0.31

From sensor 2

From sensor 1

Runtime alertsPattern of alerts in
a given case

<problem>
 <sensor id = “s1”>

 + <IDMRF-message> … B12

 + <IDMRF-message> … B13

 <sensor id = “s2”>
 + <IDMRF-message> … B21

 + <IDMRF-message> … B22

</problem>

Figure 2: An example of case-oriented alert correlation.

the case library.

The manner in which these subsets are identi-
fied and applied is illustrated in Figure 2. A frag-
ment of some given set of alerts is shown in the
middle column, where the alerts are organized ac-
cording to the sensors that produced them. Here
there are 6 alerts, with 3 coming from sensor S1,
denoted B11, B12, and B13, and 3 from sensor
S2, denoted B21, B22, and B23. On the left is
shown the alert pattern from some case in the
case library. For the purposes of the illustration,
this pattern also involves the same sensors, S1
and S2, although in general this need not be the
case. Some cases might involve other sensors, and
might not involve either S1 or S2. The pattern
of alerts in the given case consists of 4 alerts, A11

and A12 from S1, A21 and A22 from S2.

We use the pattern in the case to extract a
subset of the alerts in the given set and build
a new (derived) pattern as shown on the right.
This is done as follows. First, for each sensor,
we compute the pair-wise distance between the
alerts in the case and those in the given set, us-
ing the distance measure described in [8]. These
are then recorded in a distance matrix as shown
at the bottom of Figure 2.

To these matrices we next apply the Hungar-
ian algorithm, to find the optimal matching, i.e.,
the set of alert pairs with the minimum sum of
the distances. These are shown in the boxes in
the matrices. The matched alerts from the given
set are then extracted to form the derived set.
Last we apply the distance measure again to find
the distance between the derived pattern and the

pattern of the case. If this distance is below some
specified threshold, we take this is as meaning
what was explained above, i.e., that alerts ex-
tracted from the given set are correlated in the
same manner as their corresponding alerts in the
case and that the attack represented by the case
is likely to have occurred.

It should be noted that this is done for ev-
ery case in the case library. Thus it is possible
that more than one case will be matched in this
manner, indicating that possibly more than one
attack has taken place.

5 Order-Preserving Correlation

The methodology described in the previous sec-
tion does not consider the temporal ordering of
the sequences of alerts. This, however, can serve
as valuable additional information. Intrusions are
often carried out in phases, through a series of
attacks. An earlier attack normally prepares the
conditions for following attacks. In the different
phases, different types of alerts are generated. As
a result, alerts are fired in a temporal sequence
that corresponds to the attack phases. When
matching two sets of alerts, if the order of alerts
in one set is the same as the order of their matches
in the other set, the matching between these two
sets is said to be order-preserving. A graphical
illustration of this notion is given in Figure 3.
If the elements in the sets are ordered, (a) and
(b) show two matchings where the ordering has
been broken, while (c) and (d) are two matchings
where the ordering is preserved.

By imposing an order constraint on the

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
103

Issue 3, Volume 7, March 2008

Figure 3: Arbitrary matching (a) and (b) and order-preserving matching (c) and (d).

matching, the possible matches for one element
in one set is no longer all the elements in the
other set. As a result, we can significantly reduce
the solution search space by concentrating on a
smaller set of possible matchings.

To illustrate the method, suppose we are
given two sets X = {x1, x2, x3} and Y =
{y1, y2, y3, y4, y5}, with cost matrix C,







2 1 5 4 3
6 7 8 9 10
3 6 4 5 2







where the element ci,j is the cost c(xi, yj) for xi

matching yj, which, in our application, is the dis-
tance between the two alerts. We wish to find a
minimal cost matching of the members of X with
those in Y that preserves their orderings. The
possible matchings for each member of X, given
this ordering constraint, are shown in Figure 4.
The left diagram shows that x1 can be matched
with any of y1, y2, or y3. The reason that x1

cannot be matched with either y4 or y5 is that
then there would be no order-preserving match-
ings for x2 and x3. Similar considerations apply
to give the possible matchings indicated in the
center and right diagrams for x2 and x3.

How one determines this minimal cost is the
crux of dynamic programming (DP). In DP, a
problem is divided into many sub-problems that
can be solved easily. The solutions of those sub-
problems are then used to find the overall solution
of the original problem. Our method will first be
explained in terms of the foregoing example, and
then the general formulation will be presented.
We consider the process of determining a set of

matchings for the xi as progressing through a se-
ries of stages. In the present example, the first
stage is to choose a matching for x1, the second
stage is to choose one for x2, and the third is to
choose one for x3. Each stage s has a possible
cost that is determined by the possible matches
for xs. Thus, in our example, state 1 may have
cost 2, 1, or 5, according to which of, y1, y2, or y3

is matched with x1. In the language of dynamic
programming, if the action at stage s is to match
xs with yk, then that stage is said to be in state
ks. The sum of the costs of all states is the cost of
an order-preserving matching. Our goal is to find
the minimal overall cost. Given these notations,
then the minimum cost of getting to this stage
and state is denoted fs(ks). To illustrate, these
costs for the stages and states in the foregoing
example are determined as follows.

f1(1) = 2, f1(2) = 1, f1(3) = 5

These values are simply the costs of matching x1

respectively with y1, y2, y3, as given by the cost
matrix.

f2(2) = 7 + f1(1) = 7 + 2 = 9

In stage 2, one can match x2 with y2 only if, in
stage 1, x1 was matched with y1. Otherwise order
would not be preserved. Hence the total accumu-
lated cost at this stage and state is the sum of the
earlier choice, given as f1(1), and the cost of the
new matching, as given by the cost matrix.

f2(3) = 8 + min{f1(1), f1(2)}
= 8 + min{2, 1} = 9

Here the reasoning is similar, except if we are
matching x2 with y3, then there were two possi-
ble matchings in stage 1 for x1, namely, with y1

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
104

Issue 3, Volume 7, March 2008

Figure 4: Possible matchings for the xi.

or y2. So the minimum accumulated cost at this
state and stage is determined as the minimum
of the previous two possibilities plus the cost of
the new matching as given by the cost matrix.
The remaining steps are determined in this same
manner.

f2(4) = 9 + min{f1(1), f1(2), f1(3)}
= 9 + min{2, 1, 5} = 10

f3(3) = 4 + f2(2)
= 4 + 9 = 13

f3(4) = 5 + min{f2(2), f2(3)}
= 5 + min{9, 9} = 14

f3(5) = 2 + min{f2(2), f2(3), f2(4)}
= 2 + min{9, 9, 10} = 11

Thus the minimal possible overall cost is deter-
mined to be the minimum of the values for f3,
namely, 11.

The matchings that provide this solution are
not explicitly evident from the computational
process, but can be determined as part of the
implementation of the dynamic programming al-
gorithm. This will be discussed in the section
below.

The general case illustrated by this exam-
ple can now be described as follows. Suppose
we are given two sets X = {x1, x2, ..., xn} and
Y = {y1, y2, ..., ym}. For purposes of this discus-
sion, assume that X is the smaller of the two,
i.e., that n ≤ m. Then an element in X can only
match with m − n + 1 elements in Y ; the candi-
date matches for the ith element in X are the ith
to (i + m − n)th elements in Y .

As in the example, we can envision this prob-
lem as being decomposed along a tree, where here
the tree has n levels. Moreover, again each path
upwards through the tree represents a series of
stages in constructing a complete matching for
the xi. As above, where s is the stage and yk is
the element matched with xs at this stage, the

stage is said to be in state ks, and the minimum
cost of getting to this stage and state is denoted
fs(ks) . The recursion formulas for dynamic pro-
gramming, which compute these costs are:

f1(k1) = c1,k1
(1)

for all possible values of k1, and

fi(ki) = ci,ki
+ min

i−1≤j<ki

fi−1(j), (2)

where 1 < i ≤ n, for all possible values of each
ki. The constraint i − 1 ≤ j < ki on states over
which we minimize in (2) ensures the requirement
for ordered matching. The computation produces
different costs on different states at the final stage
n, namely, fn(n), fn(n+1), . . . , fn(m). The solu-
tion for the overall problem is the minimal cost,
namely, min

n≤kn≤m
{fn(kn)}.

6 The Algorithm for

Order-Preserving Matching

From formulas (1) and (2), it seems natural that
there should be a recursive solution for our algo-
rithm. However, the implementation of our dy-
namic algorithm is by iteration instead of recur-
sion. This is because a recursive solution may
cause many common sub-problems to be com-
puted repeatedly. For example, in order to com-
pute f3(4) and f3(5), some sub-problems, such
as f2(2) and f2(3) have to be computed more
than once, if recursion is applied. As an opti-
mization, however, one can compute such sub-
problems once and then store the results to read
back later. The iteration solution thus is intro-
duced to reduce call overhead. In fact, such iter-
ative implementations of dynamic programming
algorithms are quite common in dynamic pro-
gramming research, cf. [9].

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
105

Issue 3, Volume 7, March 2008

Figure 5: Initialize the cache table

Figure 6: Algorithm of order-preserving matching

The algorithm is presented in Figures 5 and
6, and the result of applying this algorithm to
the 3 by 5 matrix in Section 6 is shown in 7. The
routine ‘initialize’ in 5 is invoked by ‘ordered-min-
cost’ in 6, and has the purpose of extracting the
data of interest from the initial matrix and insert-
ing this into a cache table. In this example, n = 3
and m = 5, and the result of executing the line
“C′ = initialize(C)” is to create the cache table
shown on 7(a). The result of the first iteration
of the outer for loop, i.e., when i = 2 is shown in
7(b). The code is mostly self-explanatory. The
line “Attach idx to C′(i,j)” means to create the
superscript shown in Figure 7. The result of the
second iteration, when i = 2, is shown in Figure
7(c).

This matrix can then be used to determine the
ordered matchings that yield the minimal overall
cost, together with this cost. These are indicated

by the gray boxes in 7(d). First, the minimal
value is selected (grayed). This value (i.e., 11) is
the desired minimal overall cost. Then the super-
script on the value (i.e., 1) is taken as the index
of the cell to be grayed on the immediately pre-
ceding row (i.e., row 2). In turn, the superscript
on this value (i.e., 1) is taken as the index of the
cell to be grayed on its immediately preceding
row (row 1). The interpretation of the grayed
boxes is that the best matching (with cost 11) is
obtained by having x1 match its first candidate
match, namely y1 (see 4), having x2 match its
first candidate match, namely y2, and having x3

match its third candidate match, namely y5.

7 Experiments

We used the DARPA Cyber Panel Grand Chal-
lenge Problem (GCP) program [4], an attack sim-
ulator, to evaluate the case-oriented alert correla-

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
106

Issue 3, Volume 7, March 2008

Figure 7: An example of changes in a cache table

tion methodology. The experiments assume that
a meta IDS is set up to protect a corporation on
the large scale. All the cases and problems for
the experiments came from the attack scenarios
simulated by the program. The experimental re-
sults have shown the enhanced case-oriented alert
correlation is a promising approach.

7.1 The Grand Challenge Problem

Simulator

The GCP models a fictitious shipping company,
called Global, Inc., and allows one to simulate
this company under different kinds of strategic
coordinated attacks. As such, it exhibits the pri-
mary characteristics of many large, network cen-
tric organizations. The GCP scenario describes
three strategic, coordinated cyber attacks that
are conducted against Global. These attacks ex-
emplify typical attack classes: life-cycle, insider,
or distributed denial of service of attacks (de-
noted as A1, A2, and A3, respectively).

The Global corporate structure has 5 differ-
ent types of network sites, namely Headquar-
ters (HQ), Air Planning Center (APC), cor-
porate transport ships (SHIP), Air Transport
Hubs (ATH), and Partner Air Transport Hubs
(PATH). Each site is defended by typical sensors,
as well as postulated high-level sensors. There are
in total 10 types of sensors in the networks. All
the sensors generate the alerts in IDMEF mes-
sages. Simulation tools allow researchers to con-

figure a network of arbitrary size and observe the
alert streams that would be generated by sensors
when attacks are perpetrated.

7.2 Experiment Setup

Running an attack scenario with the GCP simu-
lator requires providing the following inputs:

• Specification of the number of sites of type
SHIP, ATH, and PATH. This sets the size
of the corporation being attacked.

• Three arbitrarily chosen integers, evidently
used as seeds for random number genera-
tors applied during the attack simulation.

• Specification of the type(s) of attack. There
are three choices, A1, A2, and A3. One can
select any combination of these, e.g., one
can simulate having simultaneous attacks
of types A1 and A3.

• Specification of whether the attacks should,
or should not, be accompanied with
randomly generated background attacks
(noise).

We experimented with a number of different
site configurations, represented here as triples.
To illustrate, (1, 1, 1) indicates one site of each
type, SHIP, ATH, and PATH, (1, 5, 10) indicates
one of type SHIP, 5 of type ATH, and 10 of type

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
107

Issue 3, Volume 7, March 2008

PATH. For each such configuration, we built a
simple case library as follows. For each attack
type, A1, A2, A3, we ran one attack of this type
without background noise. The alerts generated
for each attack then became the problem part of
a case, and the identity of the attack type formed
the solution part of the case. Here it should be
noted further that the simulator allows attacks
of type A3 (distributed denial of service) to be
generated only for configurations having one site
of each type. Thus for configuration (1, 1, 1), the
case library has 3 cases, one for each of A1, A2,
A3. For all other configurations, the case library
has only two cases, one for each of A1 and A2.
Different random number seeds were chosen for
each run.

Attacks of combinations of A1, A2 and A3
were then run for each configuration, with back-
ground noise, and the alert streams were col-
lected. These attacks are referred to as “prob-
lems”. The alert streams were then input to our
case-based reasoner, once using the Hungarian al-
gorithm, and once using dynamic programming,
as the underlying matching technique.

7.3 Experimental Results

The results of these experiments are shown in Ta-
bles 1 through 5. In Table 1, the configuration
(1, 1, 1) was used. The column heading C1(A1)
indicates library case 1, created using an attack
of type 1. Similarly for other columns. The sec-
ondary column headings “H” and “D” indicate
results using the Hungarian algorithm and dy-
namic programming, respectively. The row labels
indicate the problems. To illustrate, problem P1
involved an attack of type A1, and problem P4
involved simultaneous attacks of types A1 and
A2.

The numbers in the cells are the computed
distances between the given problem and case as
determined by the indicated matching technique.
Thus, the 0’s for both H and D under case 1,
for problem 1, represent an exact match, i.e., the
problem represented by the case is reported to
have occurred. The other cells in this table, as
well as those in the other tables, are interpreted
similarly.

From these tables, we can draw a few gen-
eral conclusions. The closeness of the results
for the Hungarian algorithm based case-oriented

alert correlation and the dynamic programming
based cased-oriented alert correlation approaches
demonstrate that they are equally good in cor-
relating alerts. However, the dynamic program-
ming approach has much less complexity. The
complexity of the Hungarian algorithm is given
as O((m+n)3) for a m by n cost matrix. In con-
trast, with the same m by n cost matrix (suppose
n < m), the complexity of the dynamic program-
ming approach is O(n × (m − n + 1)) because it
only has to fill a cache table with n× (m−n+1)
cells in order to find the solution. Thus, the dy-
namic programming method is a more efficient
solution for case-based alert correlation.

Given a problem and a case, one of two sit-
uations is possible, either the problem is repre-
sented by the case, or it is not. Whether the prob-
lem is represented by the case can be determined
by means of a threshold on the distance between
that problem and case. If the distance exceeds
the threshold, the problem can be determined as
not matching the case, and if the the distance
is smaller than the threshold, it does match the
case, i.e., the attack represented by the case can
be assumed to have occurred.

One can determine such a threshold for each
case as follows. We illustrate this for case C1
where the matching used the Hungarian algo-
rithm. We scan through all the tables for the
smallest distance between a problem and C1,
where the problem does not match C1. Given the
above tables, this is 0.7798, the distance between
problem P6 and C1 in Table 1. We next scan
through all the tables for the largest distance be-
tween a problem and C1, where the problem does
match C1. This is 0.0588, the distance between
problem P3 and C1 in Table 2.

Thus any value in the range [0.0588, 0.7798]
could be an acceptable threshold. It is desirable,
however to have this be as insusceptible as possi-
ble to noisy data or variants of known attacks. A
straightforward and practical approach is to use
the median of the interval as the threshold. Thus,
for cases representing attack A1, the threshold is
given as (0.7798 + 0.0588)/2 = 0.4193.

Using this same technique one can compute
a threshold for cases representing attack A2 as
(0.5002+0.3283)/2 = 0.4142, and a threshold for
cases representing attack A3 as (0.3078+0.0)/2 =
0.1539. Since the table values corresponding to

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
108

Issue 3, Volume 7, March 2008

Table 1: Experimental results with (1,1,1)

C1(A1) C2(A2) C3(A3)
H D H D H D

P1(A1) 0 0 0.5386 0.5484 0.3078 0.3078

P2(A2) 0.7828 0.7847 0.0185 0.0185 0.3078 0.3078

P3(A3) 0.8126 0.8137 0.5697 0.5697 0 0

P4(A1,A2) 0 0 0.0185 0.0185 0.3078 0.3078

P5(A1,A3) 0 0 0.5002 0.51070 0 0

P6(A2,A3) 0.7798 0.7818 0.0185 0.0185 0 0

P7(A1,A2,A3) 0 0 0.0185 0.0185 0 0

Table 2: Experimental results with (5,5,5)

C1(A1) C2(A2)
H D H D

P1(A1) 0.0577 0.0595 0.5030 0.5047

P2(A2) 0.8943 0.8951 0.3327 0.3327

P3(A1,A2) 0.0588 0.0576 0.3001 0.3018

the dynamic programming matching method are
essentially identical to those based on the Hun-
garian algorithm, we will restrict our discussion
to just those involving the latter.

As can be seen from the tables, these thresh-
old values effectively identify the attacks con-
tained in all the given problems. Thus these re-
sults suggest that the overall technique can be
effective. One could, if one wished, add further
tables based on further network configurations to
the mix, but the present choice of configurations
is sufficiently varied that such further additions
will not significantly change the threshold values
from those computed here.

To further validate our method for computing
thresholds, one can apply the well-known leave-
one-out analysis technique. To illustrate, let us
first leave out problem P1 in Table 1. This means
that we recompute the thresholds using all the
values in the tables except those in the row P1 of
Table 1. We then see if these values can be used to
effectively identify the attack present in P1 of Ta-
ble 1. It will be seen that it does. (Coincidentally,
in this case the new computation gives the same
three threshold values as computed above.) This
is then repeated for every problem (row) in every
table. We found that in all cases the method suc-

ceeds; the newly computed thresholds effectively
identify the attacks present in each problem.

Note that a large threshold tends to make
false positives and a small threshold tends to
make false negatives. Thus, if in some applica-
tion it is determined that false positives are less
desirable than false negatives, one can lower the
threshold values by some appropriate amount.
Conversely, if false negatives are less desirable
that false positives, one can raise the thresholds.

8 Concluding Remarks

Alert correlation is a difficult and critical issue
for any multi-sensor intrusion detection environ-
ment. This paper has presented an approach
using case-based reasoning for alert correlation.
We call this case-oriented alert correlation. The
underlying idea is to transform alert correlation
into a matching problem, using either a maxi-
mal matching or an order-preserving matching.
The Hungarian algorithm provides the solution
for maximal matching, whereas dynamic pro-
gramming is used for order-preserving matching.
These were determined to be equally effective,
while the latter is much more efficient. Exper-
iments with the DARPA Grand Challenge Prob-

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
109

Issue 3, Volume 7, March 2008

Table 3: Experimental results with (10,10,10)

C1(A1) C2(A2)
H D H D

P1(A1) 0.0298 0.0298 0.5002 0.5107

P2(A2) 0.9449 0.9454 0.3282 0.3293

P3(A1,A2) 0.0298 0.0302 0.2973 0.3079

Table 4: Experimental results with (1,5,10)

C1(A1) C2(A2)
H D H D

P1(A1) 0 0 0.5002 0.5107

P2(A2) 0.8596 0.8607 0.3282 0.3293

P3(A1,A2) 0 0 0.2973 0.3079

lem program have shown that our case-oriented
approach is very effective in finding correlated
alerts and the corresponding attacks.

The CBR methodology has several advan-
tages. One is that it does not require exten-
sive training data. This is significant inasmuch as
large amounts of training data often is not avail-
able. In CBR, effective performance can often be
obtained with only a small case library. A second
advantage is that the knowledge acquisition pro-
cess is generally easier. Obtaining case data and
incorporating this into the case library is quite
straightforward, whereas other approaches often
require complex learning techniques. A third ad-
vantage is that the methodology can be applied
to intrusions that occur as a result of a series of
attacks, as well as those occurring in a single at-
tack. This only requires that some expert be able
to identify the relevant attacks in the sequence
and write these into a case for the library, i.e., so
that a case becomes a description of the entire se-
quence of attacks. Since CBR allows for approx-
imate matches between problems and cases, this
has the added benefit that the system can detect
variants of the same attack, as long as the vari-
ance is not too great. A fourth advantage is that
this methodology is easier to learn and use than
approaches which, like the well-known Snort sys-
tem, require that one learn a new special purpose
language. A fifth is that the CBR approach is not
thwarted by false/noisy alerts and quite effective

in detecting multiple attacks, since the presence
of such alerts seldom affects the best-matching
process.

One downside of this approach is the high
computation cost when there is a storm of alerts
in the network. Our experiment used all the avail-
able runtime alerts, i.e., everything in the given
data set. In real applications, however, one realis-
tically can only keep the alerts occurring in some
time window and shift the window over time.
How big the window should be, and whether its
size should be fixed or adjustable, are questions
for future study. Another drawback is that the
effectiveness of the intrusion detection can seri-
ously degrade if one or more of the relevant sen-
sors are removed from the network. This could
cause cases in the library to not be matched, even
though the attacks specified by those cases are
actually occurring. For best performance is it
necessary that all sensors corresponding to the
problem features used in the case library be op-
erational.

References

[1] A. Bundy. Artificial Intelligence Techniques:
A Comprehensive Catalogue. Springer-Verlag
New York, Inc, 4th edition, 1995.

[2] F. Cuppens. Managing alerts in a multi-
intrusion detection environment. In Proceed-
ings of the 17th Annual Computer Security

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
110

Issue 3, Volume 7, March 2008

Table 5: Experimental results with (10,5,1)

C1(A1) C2(A2)
H D H D

P1(A1) 0.0563 0.0576 0.5030 0.5047

P2(A2) 0.9304 0.9311 0.0185 0.0185

P3(A1,A2) 0.0822 0.0949 0.2973 0.3079

Application Conference, page 22. IEEE Com-
puter Society, 2001.

[3] F. Cuppens and A. Miege. Alert correlation in
a cooperative intrusion detection framework.
In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, page 202, Oakland,
CA, 2002. IEEE Computer Society.

[4] DARPA. Cyber panel grand challenge prob-
lem specification version 4.1. Technical re-
port, June 2004.

[5] H. Debar and A. Wespi. Aggregation and cor-
relation of intrusion-detection alerts. In Lec-
ture Notes In Computer Science, Proceedings
of the 4th International Symposium on Re-
cent Advance in Intrusion Detection, pages
85–103. Springer-Verlag, 2001.

[6] M. Esmaili, B. Balachandran, R. Safavi-
Naini, and J. Pieprzyk. Case-based reasoning
for intrusion detection. In ACSAC ’96: Pro-
ceedings of the 12th Annual Computer Secu-
rity Applications Conference, pages 214–137.
IEEE Computer Society, 1996.

[7] K. Julisch. Mining alarm clusters to improve
alarm handling efficiency. In Proceedings of
the 15th Annual Computer Security Applica-
tions Conference, pages 12–21. IEEE Com-
puter Society, 2001.

[8] J. Long, D. G. Schwartz, and S. Stoecklin. An
XML distance measure. In Proceedings of the
2005 International Conference on Data Min-
ing, pages 119–125, 2005.

[9] R. Luus. Iterative Dynamic Programming.
CRC Press, 2000.

[10] L. Lewis. A case-based reasoning approach
to the resolution of faults in communica-
tion networks. In Proceedings of the IFIP

TC6/WG6.6 Third International Symposium
on Integrated Network Management with par-
ticipation of the IEEE Communications Soci-
ety CNOM and with support from the Insti-
tute for Educational Services, pages 671–682.
North-Holland, 1993.

[11] B. Morin and D. Debar. Correlation of in-
trusion symptoms: an application of chroni-
cles. In Lecture Notes In Computer Science,
Proceedings of the 6th International Sympo-
sium on Recent Advance in Intrusion Detec-
tion, pages 94–112. Springer-Verlag, 2003.

[12] B. Morin, L. Me, H. Debar, and M. Ducasse.
Correlation of intrusion symptoms: an appli-
cation of chronicles. In Lecture Notes In Com-
puter Science, Proceedings of the 5th Interna-
tional Symposium on Recent Advance in In-
trusion Detection, pages 115. Springer-Verlag,
2002.

[13] J. Munkres. Algorithms for the assignment
and transportation problems. Journal Of
SIAM, 5(1):32–38, March 1957.

[14] P. Ning, Y. Cui, and D. S. Reeves. Con-
structing attack scenarios through correlation
of intrusion alerts. In Proceedings of the 9th
ACM Conference on Computer and Commu-
nications Security, pages 245–254, Washing-
ton, D.C., November 2002.

[15] M. W. Fong P. A. Porras and A. Valdes. A
mission-impact-based approach to INFOSEC
alarm correlation. In Lecture Notes in Com-
puter Science, Proceedings Recent Advances
in Intrusion Detection, pages 95–114, Zurich,
Switzerland, October 2002.

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
111

Issue 3, Volume 7, March 2008

[16] S. Templeton and K. Levitt. A re-
quires/provides model for computer attacks.
In New Security Paradigms Workshop, Pro-
ceedings of the 2000 workshop on New se-
curity paradigms, Ballycotton, County Cork,
Ireland, October 2001. ACM Press.

[17] A. Valdes and K. Skinner. Probabilistic
alert correlation. In Lecture Notes In Com-
puter Science, Proceedings of the 4th Interna-
tional Symposium on Recent Advances in In-
trusion Detection, number 2212, pages 54–68.
Springer-Verlag, 2001.

WSEAS TRANSACTIONS on COMPUTERS Jidong Long and Daniel G. Schwartz

ISSN: 1109-2750
112

Issue 3, Volume 7, March 2008

