
CORAL - Online Monitoring in Distributed
 Applications: Issues and Solutions

IVAN ZORAJA, IVAN ZULIM, and MAJA ŠTULA
 Department of Electronics and Computer Science

FESB - University of Split
R. Boškovića b.b., 21000 Split, CROATIA

{zoraja|zulim|kiki}@fesb.hr
 www.fesb.hr

Abstract: - In this paper we describe and evaluate issues that come up in the development of online monitoring
systems which connect software tools to a running distributed application. Our primary intension was to
elaborate how to deal with complex middleware mechanisms that cater for the middleware functionality in a
way transparent to the users and tools. Our current implementation, called Coral, manages DSM mechanisms
that provide an abstraction of shared memory on loosely coupled hardware, and allows multiple tools to
perform consistent yet efficient operations on the entities being monitored. Since our primary design choice
with Coral was portability we will port Coral to distributed environments based on the SOA technology.

Key-Words: - Online Monitoring, DSM, Tools, Process migration, Performance analysis, Checkpointing

1 Introduction
Rapid technology transitions in conjunction with
growing complexity of distributed applications
make software development in such environments
increasingly difficult mostly because the
applications have become more parallel, distributed,
and heterogeneous. In addition, such classes of
applications provide complex usages scenarios and
ways of interactivity.

While distributed applications are widely used in
many business domains, sophisticated tools that are
capable of observing and manipulating running
distributed applications in a transparent yet
consistent way have not been developed. This is
primarily caused by the competitive pressures
imposed on vendors which ship new systems
prematurely without an appropriate tool support.
The vendors usually prioritize development of new
technologies and programming models, and develop
either rudimentary tools or tools with limited
functionality.

Online monitoring refers to a set of techniques
and mechanisms needed to control the system being
monitored, hence allowing software tools to gather
information from the system as well as to
manipulate its runtime behavior. It is contrasted to
off-line monitoring [5] where the manipulation
capability fails and the observation is done after the
application finishes the execution.

Currently, online monitoring systems that can
fully support parallel tools such as OMIS [2], OCM
[3] and OCM-G [11] are implemented for the
message passing programming paradigm and can
not, without modifications, be used for distributed
applications based on other paradigms. For example,
they can not transparently manage the underlying
mechanisms that provide an abstraction of shared
memory in software for distributed applications
built on the DSM (Distributed Shared Memory)
middleware.

In this paper, we present our online monitoring
system called Coral [1] [8]. It manipulates DSM
applications thereby providing an abstraction of
shared memory to the parallel tools via a transparent
management of underlying mechanisms that cater
for the DSM functionality. Particular emphasis is
placed on the management of complex interaction
patterns among DSM processes during process
migration and checkpointing. We validate our
implementation in terms of functionality,
effectiveness, architecture and portability, and
provide an insight into how Coral can be reused to
support SOA-based applications.

2 Distributed Middleware
Distributed middleware systems are used to simplify
parallel and distributed computing on diverse and

WSEAS TRANSACTIONS on COMPUTERS

Ivan Zoraja, Ivan Zulim, and Maja Štula

ISSN: 1109-2750 113 Issue 3, Volume 7, March 2008

heterogeneous computing platforms by reducing the
complexity on benefit of both the application users
and developers.

In the message passing programming paradigm,
processes reside in different address spaces and
communicate by explicitly sending messages to one
another using two primitives send and receive, with
several parameters that specify peers and interaction
semantics. The message passing libraries such as
PVM [7] and MPI are built for dedicated distribute
memory machines and workstation clusters.

Distributed shared memory denotes both
computing systems that provide an abstraction of
shared memory on loosely coupled hardware. The
DSM paradigm is aimed at hiding complex
communication patterns provided by the message
passing paradigm from the developer and, at the
same time, reducing overall memory access
latencies. The DSM libraries such as IVY, Orca, and
TreadMarks [4] provide primitives in a conventional
shared memory style for the allocation and release
of shared memory as well as for the synchronization
and coordination among shared accesses.

Distributed Object Computing (DOC) integrates
object-orientation and the DSM paradigm providing
functionality by means of services offered by
servers or containers. Services are described by
defining interfaces using an interface definition
language such as IDL and WSDL. The basic
communication mechanisms in DOC-s can be
viewed as an interaction between the proxy and the
broker patterns. Typical representatives in this
category are: CORBA, .NET Remoting, EJB,
Globus, and SOA-based approaches such as WCF
and SCA.

3 CORAL Requirements
Monitoring systems can be implemented at various
levels usually combining hardware and software
solutions.

With reference to Fig 1, a software-based
monitoring environment embraces a group of
external actors that via a set of monitoring actions,
provided by the monitoring system, can interact
with one another. Via requests from tools,
monitoring actions can be invoked conditionally and
unconditionally. Unconditional actions are
immediately executed after the request has been
received while the conditional ones wait for other
actors or the system being monitored to generate
requested events.

Monitoring functionality is specified by a set of
actions that are provided by the monitoring system
and made available to multiple tools used for later

phases of the software development process.
Because monitoring actions can be invoked
concurrently, the Coral is designed to resolve
concurrency conflicts. In addition, Coral provides
actions for all the tools that can observe and
manipulate all the entities being monitored without
deadlocks and races.

Fig.1. Online Monitoring Environment

Software tools could be able to dynamically
combine monitoring actions and events and
cooperate through Coral to gain improved
functionality. Finally, Coral can transparently
manage the underlying mechanisms that cater for
the programming abstraction exposed by the
middleware.

3.1 Entities and Actions
Coral can observe and manipulate the following
categories of objects (entities) being monitored:
processing nodes, processing activities, services,
middleware mechanisms, and internal middleware
entities.

Processing nodes can host processing activities.
Active nodes represent nodes on which activities
run and where monitoring components control
application processes and measure load while
passive nodes are without running activities and
monitoring components only measure the load.
Manipulation actions for those entities include
adding and remove processing nodes while
information actions return various hardware and OS
parameters such as the length of the process running
queue.

Processing activates include OS processes and
threads running on active nodes. Manipulation

WSEAS TRANSACTIONS on COMPUTERS Ivan Zoraja, Ivan Zulim, and Maja Štula

ISSN: 1109-2750 114 Issue 3, Volume 7, March 2008

actions for processing activities include actions for
attaching and detaching to/from activities, stopping
and resuming activities, migrating activities, and
checkpointing and restoring activities. Information
actions include information such as activity
identifiers, scheduling parameters, and memory
usage. Notification actions include information
about changing in an activity such as activity
stopped or migrated.

Services include entities that are transparently
managed by the middleware. In DSM, to this
category belong shared data, data access routines,
and synchronization routines. Manipulation actions
include information such modifications of shared
data, information actions return information about
shared data and routines, while notification actions
inform about changes performed on shared data and
routines. For instance, a notification can be “a
particular lock has been obtained or released”.

Middleware mechanisms are used to provide the
transparency of the middleware to the application
programmer. In DSM, to this category belong
communication and virtual memory mechanisms
usually implemented as handlers. Modification
actions can install and remove handlers, information
actions can obtain information about handlers such
as frequency and number of calls, while notification
actions deal with events from handlers.

Internal middleware entities refer to particular
implementation aspects of the middleware that can
not be accessed through its API. Coral does not
support this type of entities since they can only be
useful for the developers of middleware.

4 Coral Architecture
As shown in Figure 2, Coral consists of three logical
parts: the coordination component, local monitors,
and intruders. The actual monitoring code is divided
between local monitors and intruders. Local
monitors control activities on nodes. Intruders
represent code injected into the middleware libraries
and control middleware services. The interaction
and coordination among monitoring activities is
implemented via the coordination component.

4.1 Coral Components
The Coral coordination component (C3) is a single
process responsible for distribution and parallelism
since it splits requests from tools and sends them to
local monitors for further processing. Other main
tasks of C3 include enforcing consistency of issued
requests, binding events to actions, gathering results

from local monitors, and sending replies to the tools.
The main monitoring loop waits for requests that
can come up from two sources: tools and local
monitors.

Coral
Cordination Componenet

Distributed Application

Local Monitors

Intruders

CCL

CCL

Fig. 2. Coral Monitoring Architecture

 Coral local monitors are processes that run on
each node being monitored and implement
monitoring actions that can be applied to processing
nodes and processing activities.

Fig. 3. Source Code Wrapping

Action to be performed on monitoring activities
can not be implemented inside the process being
monitored since we would not be able to detect
requests and events independently of the state of the
process being monitored. Some actions applied to
services and middleware mechanisms, such as

WSEAS TRANSACTIONS on COMPUTERS Ivan Zoraja, Ivan Zulim, and Maja Štula

ISSN: 1109-2750 115 Issue 3, Volume 7, March 2008

process migration, are spread among local monitors
and intruders while the others, such as measuring
performance of shared routines, are completely
implemented in intruders.

Coral intruders are implemented by inserting
monitoring code that intercepts client calls to the
middleware. Coral wraps the DSM libraries at
source code level and supports two types of
wrappers: wrappers for services and for middleware
mechanisms. With reference to Fig. 3, Coral
wrappers provide the same interface to the clients
and delegate calls to the new API added to the
middleware. This approach allows monitoring code
to be executed without recompiling clients – they
must be linked again. We refrained from binary
wrapping techniques since they produce too much
name collisions for middleware of choice.

4.2 Coral Communication Library
In Coral, we do not use communication mechanisms
provided by the middleware being monitored for
internal monitoring communication because such
sharing could be disruptive to the middleware being
monitored and would potentially diminish both
application and monitoring performance.
 Therefore, we implemented a communication
library called CCL (Coral Communication Library)
which makes use of TCP/IP sockets and UNIX
shared memory segments to exchange internal
monitoring messages. To lesson the impact on local
computing, potentially caused by execution of
monitoring actions, and still preserve the effectives
of the monitoring functionality, CCL supports
interrupt-driven communication, buffering of early
messages, and multiplexing among multiple
senders.
 To distinguish among different communication
parties and various message types, Coral makes use
of monitor and message identifiers.

5 Implementation and Testing
In this section we present implementation solutions
as well as core Coral use cases and test scenarios
including load management, process migration,
performance measurement, visualization,
checkpointing, and debugging. The potential of
Coral monitoring approach has been explored using
the TreadMarks DSM UNIX library and the
application suite consisting of eight applications that
accompany the library. The tested for the
development and evaluations consists of a set of
interconnected of Solaris machines.

5.1 Starting Monitoring
Since Coral utilizes source code wrapping and
processing nodes for TreadMarks processing
activities are statically specified at startup we first
start the monitoring system and then the application
being monitored which then attaches to the
monitoring system.

The C3 process is started manually. It reads the
application configuration file and subsequently
starts a local monitor on each specified node using a
CCL routine. It also starts local monitors on other
nodes since they will be used for load balancing
purposes. Each local monitor prepares two types of
communication routes: shared memory segments for
communication with intruders and sockets for the
communication with other local monitors.
Information about both communication routes are
sent back to C3 which uses that information to
connect local monitors to each others and to attach
application being monitored – via intruders – to
local monitors.

After the monitoring system is up and running
the application being monitored can be started.
Since the middleware linked with application is
instrumented the intruder in the client reads
information about communication routes and uses it
to attach to local monitors.
 After both the monitoring system and the
application being monitored are started tools can be
started and connected to C3.

5.2 Load Measurement
Load management in Coral is implemented using
the /dev/kmem file that contains an image of the
kernel memory on the processing node. Local
monitors perform the actual measurement in regular
intervals and send the measured load data to the C3

which forwards the data to the load balancer for
evaluation. To economize messages, load balancers
may also request direct communication over CCL to
local monitors from the C3.

5.3 Process Migration
Coral provides an even usage of computational
resources via the process migration technique that
takes care of (1) process states, (2) shared memory
pages, (3) communication mechanisms, and (4)
internal monitoring data structures about the entries
being monitored. The state of single process is
saved and restored utilizing the Condor [10] library.

To start the migration, C3 sends a message to the
appropriate local monitor which becomes the
migration manager. For instance, to migrate process
PA from node Ni to node Nj, local monitor Mi

WSEAS TRANSACTIONS on COMPUTERS Ivan Zoraja, Ivan Zulim, and Maja Štula

ISSN: 1109-2750 116 Issue 3, Volume 7, March 2008

becomes the migration manager. Mi forwards the
message to all other monitors (Mk) which wait for
the application to reach a safe point for migration.

The safe point in Coral is reached when all
synchronization routines have been completed.
After the safe points in all intruders are reached, the
intruder (Ii) in the process being migrated, stores the
necessary information required for the resurrection
while other intruders (Ik) wait in the safe point until
the process is migrated. Mi then terminates PA and
sends a message to Mj to restore the process PA in
PA’ and rebuild the communication routes and
shared pages. New communication points and
information about shared pages are sent to all
intruders Ik to update that information in their
processes. After all processes are updated the
application is allowed to continue execution.

In Fig 4., we show average times required to
migrate the DSM mechanisms for the previously
mentioned application suite varying number of
processing nodes. The curve marked Messaging
refers to the time spent to migrate communication
routes and to transfer monitoring data while the
curve marked Mapping shows times needed to
migrate shared pages.

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

Mapping Messaging

Fig. 4. Migration Times

5.4 Performance Measurement
We used the Coral measurement capabilities to find
out where an application spends most of its running
time. Total running time for a DSM application can
be divided into a series of busy and idle intervals: tc
is time spent for useful computation to accomplish
the user algorithm, tr is time spent handling remote
requests to ensure DSM coherence, tl is time spent
to detect shared accesses and handle local data
misses, and ts is time spent waiting when
synchronizing. We defined the efficiency of a DSM
middleware ηi as:

slrc

c
i tttt

t
+++

=η

The application suite used to test the efficiency

of DSM middleware consists of the following
programs: Barnes-Hut, FFT, QSort, IS, Gauss, SOR,
TSP, and Water. The Barnes-Hut is a gravitational
N-body problem, the FFT solves partial differential
equations, the QSort is a recursive sorting
algorithm, the IS ranks an unsorted sequence of
keys, the Gauss implements the Gaussian
elimination, the SOR solves partial differential
equations using successive over–relaxation
approach, the TSP finds the shortest path, and
finally the Water solves dynamic molecular
solutions.

In addition to ηi, in Table 1, we show η’i which
does not take into account startup and initialization
times.

Program ηi (%) η’i (%)
Barnes-Hut 85.0 64.4

FFT 57.6 1.89
Quick Sort 64.2 15.9

IS 87.2 67.3
Gauss 72.5 46.7
SOR 94.7 15.4
TSP 86.7 46.6

Water 75.8 44.3

Table 1. Migration Times

 For short running applications such as FFT and
SOR the startup and initialization times dominate.

5.5 Visualizing
Coral supports lifetime events about the entities
being monitored such as a barrier has been reached
or a process has been migrated. Visualization tools
[6] can register themselves to be notified when
events of interest occur. The order of events is
supported via vector timestamps.

5.6 Checkpointing and Debugging
Apart from process migration, the ability to save
and restore the state of distributed applications is
very useful for several other purposes: e.g. fault
tolerance, rescheduling, and debugging. In contrast
to the Coral process migration, checkpointing saves
states of all processes and restores them on the same

WSEAS TRANSACTIONS on COMPUTERS Ivan Zoraja, Ivan Zulim, and Maja Štula

ISSN: 1109-2750 117 Issue 3, Volume 7, March 2008

nodes where they had been running before the
checkpointing. Since there is no guarantee for a
process to obtain the same communication points as
the ones used before the checkpointing, after
restarting, all communication routes are rebuilt.

6 … to SOA Monitoring
While our results and experience from lessons
learned during the designing and implementation of
the online monitoring for DSM applications have
proven to be very useful and enlightening we have
started porting Coral to SOA [9] environments.

To fulfill the maturity level 4–Value that requires
the usage of sophisticated tools; we will monitor
services for the purpose of visualization and
connections to the workflows and business
processes. Performance analysis will be useful for
checking the health of an application measuring the
frequency of calls, the duration of calls, and amount
of data exchanged. Execution replay will be useful
to support distributed debugging and our load
measurements techniques can be useful for
balancing and redirecting the load in a farm. We
will also monitor transactions, especially the long-
running ones, and provide online security control.

Coral is currently being ported to the WCF
(Windows Communication Foundation) and JAX-
WS (Java API for XML-Based Web Services)
middleware that support SOAP based and RESTful
based distributed applications.

7 Conclusion
In this paper we elaborate the design and
implementation decisions for an online monitoring
system that supports DSM applications. The
requirements for the monitoring functionality are
driven by the perceived needs of the application
programmers. To hide the complexity as well as the
diversity of DSM design and implementation
choices, Coral transparently manages resources that
cater for the DSM functionality, giving the tools an
abstraction of shared memory on loosely coupled
machines.

During the course of this research we resolve
several important issues concerning the
development of online monitoring system for
distributed applications and will use that experience
to port Coral to the most prevailing and promising
distributed technology – SOA.

References:
[1] I. Zoraja, Online Monitoring is Software DSM

Systems, Shaker Verlag 2000.
[2] T. Ludwig, R. Wismüler, V. Sunderam, A.

Bode. OMIS – Online Monitoring Interface
Specification, Version 2.0, Technical report 9,
LRR-TUM, München 1997.

[3] R. Wismueller, J. Trinitis, and T. Ludwig.
OCM – A Monitoring System for Interoperable
Tools. In the Proceedings of 2nd SIGMETRICS
Symposium on Parallel and Distributed Tools
SPDT98, pages 1-9, ACM press, August 1998.

[4] C. Amza, A. L. Cox, S. Dwarkadas, P. Keheler,
H. Lu, R. Rajamony, W. Yu, and W.
Zwaenepoel, TreadMarks: Shared Memory
Computing on Networks of Workstations. IEEE
computer, 29(2):18-28, February 1996.

[5] Microsoft Corporation, BizTalk Server 2006:
Business Activity Monitoring, Whitepaper,
2005.

[6] A. Bode. Parallel Program Performance
Analysis and Visualization. In Dongara and
Tourancheau, editor, Environments and Tools
for Parallel Scientific Computing, SIAM, pages
246/253, 1994.

[7] V. S. Sunderam, PVM: A Framework for
Parallel Distributed Computing. Concurrency:
Practice and Experience, 2(4):315/339,
December 1990.

[8] I. Zoraja, A. Bode, and V. Sunderam. A
Framework for Process Migration in Software
DSM Environments. In Proceedings of the 8th
Euromicro Workshop on Parallel and
Distributed Processing, pages 158-165, IEEE
Computer Society, 2000.

[9] Hewlett-Packard Company: Operational
Management and Monitoring of Business
Processes in the SOA World, Whitepaper,
2006.

[10] M. Litzkov, T. Tannenbaum, J. Basney, and M.
Livny. Checkpoint and Migration of UNIX
Processes in the Condor Distributed
Processing System. Technical report 1346,
University of Wisconsin-Madison, April 1997.

[11] B. Balis, M. Bubak, M. Radecki, T. Szepieniec,
and R. Wismüller. Application Monitoring in
CrossGrid and Other Grid Projects. In Proc.
European Across Grids Conference 2004,
Nicosia, Cyprus, January 2004.

WSEAS TRANSACTIONS on COMPUTERS Ivan Zoraja, Ivan Zulim, and Maja Štula

ISSN: 1109-2750 118 Issue 3, Volume 7, March 2008

	

