
A Data Centered Approach for Cache Partitioning in Embedded Real-
Time Database System

HU WEI, CHEN TIANZHOU, SHI QINGSONG, JIANG NING

College of Computer Science
Zhejiang University

College of Computer Science, Zhejiang University, Hangzhou, Zhejiang, 310027, P.R.China
P.R.China

ehu@zju.edu.cn http://embedded.zju.edu.cn

Abstract: - Embedded real-time databases become a basic part of the embedded systems in many using
environments. Caches are used for reducing the gap between processor and off-chip memory. But caches
introduce unpredictability in general real-time systems. Although several cache partitioning approaches have
been purposed to tackle this problem, there is no scheme designed for real-time database system up to now. In
this paper, we present a data centered cache partitioning approach that allows different tasks to have a shared
locking partition in cache. The hard real-time tasks will have their own partitions and thus they can perform
high predictability. At the same time, a shared non-locking partition is reserved for the soft real-time tasks. In
this way we can target performance improvements based on the data that are frequently used by many tasks in
the system. Our experiment results show that the miss rate can be reduced by about 10%~18% compared with
that of a statically partitioned cache and by about 24%~40% compared with a dynamic cache using LRU
replacement policy.

Key-Words: - Data sharing, Cache partitioning, Embedded database, Real-time

1 Introduction
With the increase of the capacity of the main
memory, the embedded databases can reside on
faster memory, which are called memory-resident
databases. But the gap between the processor and
the main memory has made it necessary to resort to
the on-chip memory in embedded systems [1]. On-
chip SRAM is used as caches for this purpose.
However, caches introduce unpredictability in
general real-time systems. Thus how to effectively
use the caches is crucial to high performance of the
systems. Unfortunately, relatively few works on
building cache-friendly approaches has been done
embedded real-time database systems [3].

There are two key issues when exploiting caches
utilization for all tasks for an embedded database in
a preemptive, multi-programming environment. The
first one is to exploit data locality (cache behavior)
for the tasks and eliminate the interferences among
them. In fact, it is known that 90% of overall stalls
are introduced by the data cache misses [2]. Another
key issue is the unpredictable cache behavior. This
is a tamper to real-time. The existing approaches on
caches for real-time systems are partitioning [6, 9,
10, 12, 13, 15] and/or locking [4, 5, 8] cache
segments. Some approaches [14, 15] partition using

the modified LRU replacement method or column
caching. These approaches are used to eliminate the
unpredictability for real-time applications by
restricting cache conflictions within the partition
owned by the task. Their experimental results show
that the performance is improved and their
approaches are better than a normal cache adopting
LRU replacement policy. But in there scheme, the
partitioning is fixed and can not be adjusted at run-
time.

In general, we present a data centered cache
partitioning approach that allows different tasks to
share a locking partition defined by the database
manager. In the mean time the hard real-time tasks
have their own private partitions, thus, they can
perform their jobs with high predictability. The soft
real-time tasks will share the non-locking partition
reserved to quicken their running speed. Traditional
partitioning approaches do not consider locking
shared data as a main concern, whereas we target
performance improvements based on the data that
are frequently used by many tasks in the system.

The remainder of the paper is organized as
follows. We describe the data centered cache
partitioning scheme in Section 2. We describe the
experiment setup about the hardware configuration,

WSEAS TRANSACTIONS on COMPUTERS
Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 140 Issue 3, Volume 7, March 2008

the database server architecture and the workload
configuration in Section 3. Experimental results are
presented in Section 4. Conclusions and ongoing
work is the subject of Section 5.

2 Data Centered Cache Partitioning
In this section we will first describe the general
architecture of our data centered cache partitioning
scheme. Then we will explain how to specify the
size of each partition. We will discuss the impact of
low associativity to the system at last.

2.1 General Architecture
The memory architecture model is shown in Fig. 1.

Chip
Processor

Core

Cache

Off-chip
Memory

Block 0

Block 1

Block B-1

...

Set 0

Set 1

Set S-1

...

Fig. 1: Memory architecture model

The cache on chip is a W-way set associative one
interconnection with the processor core. The size of
the cache is Sc and it consists of B blocks whose size
are Sb, i.e. Sc=B*Sb. The B blocks are further divided
into S sets, represented by Si(1≤i≤s) and every set
has W cache blocks (B=S*W), a memory address

 is loaded into set: ad
S

bS
ad mod

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ and it can be put

in any of the W cache blocks.
If there is a memory sequence made up by S

blocks whose size is Sb and they are all mapped into
cache, then it will take up a cache block in every set
of S1, S2,…SS. We define the set of these blocks to
be a partition set, thus a W-way cache will have W
partition sets. Our task is to categorize these
partitions and allocate them to the tasks.

The cache space will be partitioned into three
parts by the data centered partition algorithm: a
shared locking partition, task private partitions and a
shared non-locking partition. All these three
partitions together form what we call the living
condition of the task set. By carefully adjust the
sizes of the partitions; we can get an optimal or sub-
optimal living condition under a certain
configuration of the cache space used by all the
tasks. The system sees a task coming or leaving to

be a mutation, which is the signal that identifies a
turning point for the system to dynamically re-adjust
the partition model to accommodate the new task set.
The system will dynamically re-adjust the sizes of
shared locking partition, task private partition and
shared non-locking partition based on the feature of
the new task set and come to another optimal or sub-
optimal living condition. Figure 2 shows a general
cache partition.

Fig. 2: The Configuration of Cache Partition

2.2 Specifying the Partition Size
The size of shared locking partition is determined by the
sharing data in the system, SHARING. If a data object is
used by two or more tasks in the system, then it is a
sharing object, and in an embedded database system, we
can get the data objects accessed by the tasks through
pre-analysis before the tasks are running and then we can
find the sharing number of a particular data object by
counting the tasks that access the data object. Suppose
there are N data objects in an embedded database system
O1, O2, O3, …, On, after counting the sharing number of
each data object we get N1, N2, N3, …, Nn, the size unit of
every data object is partition set size defined earlier, we
will take them as Sob1, Sob2, Sob3, …, Sobn. Note that Sobi
means that the size of data object Oi is Sobi partition set.
We suppose that N1, N2, N3, …, Nn are ordered from the
largest to the smallest, if they are not, we can re-arrange
the order of the data objects and get such a sorted list.

If N1=1, then there are no sharing data between
the tasks and SHARING=0, the size of the shared
locking partition is zero; if N1>1, there are sharing
data between the tasks, and if Sob1>W, then the size
of the data object O1 is too big for the cache size, so
let SHARING=W, i.e. allocate all cache spaces to O1
or part of O1, we will see from the discussion below
that because the hard real-time tasks need their

WSEAS TRANSACTIONS on COMPUTERS
Manuscript received June 26, 2007; revised March 20, 2008 Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 141 Issue 3, Volume 7, March 2008

private partitions and the soft real-time tasks need
their shared non-locking partitions, the case
SHARING=W only temporarily exists to represent
the shared locking partition. After the second phase
of allocating cache spaces to the tasks,
SHARING=W will normally disappear from such a
system.

If N1>1 and Sob1>W, then data object O1 could be
put into the cache. We will consider the placement
of the second data object O2, if N1=1 then data
object O2 is not shared between tasks, so
SHARING= Sob1, the process is finished. If N2>1,
then we will compare the size of data object O2, Sob2,
with the remaining available cache space W- Sob1,
which is like comparing data object O1 with cache
total partition size W, if Sob2>W-Sob1, then Sob2 is too
much for remaining cache partition, thus,
SHARING=W, the process is finished, or else
Sob2<W-Sob1, then the cache is able to hold data
object O2, so SHARING=Sob1+Sob2，we can continue
to compare data object O3 with remaining cache
space, repeat the above process until some Ni=1 or
SHARING=W, the former means that data object Oi
is not a shared object, the latter means that the size
of shared data object is too much for the cache size.

After computing shared locking partition size
SHARING，there are three possible outcomes，as
showed in Figure 3.

obnobob SSS +++ ...21

Fig. 3: Data Objects Sharing Number.

After computing the shared locking partition size
following the process above, we will specify the
size for task private partitions based on the task
feature. The main factors that feature the tasks are
whether it is a hard real-time task or soft real-time
task, its deadline D, priority P, its period T, and
worst case execution time C. The system chooses
different factors to judge the task requirements for
the partitions. Here we consider an embedded real-
time system in favour of the periodic hard real-time
tasks. We assume there are N hard real-time tasks in
such a system τ1, τ2, τ3,…, τn and their deadlines are
D1, D2, D3, …, Dn. The deadlines are ordered from
the smallest to the largest. The priority of the tasks
is inversely proportional to the deadlines, so it can
be represented by the deadlines. We optimistically

assume that the data requirements are proportional
to the data processing time, i.e. worst case execution
time. It means that the worst case execution time C1,
C2, C3, …, Cn can be used as an approximation for
the data accessed by the task.

Note that the assumption is not applicable to
every situation. We only used the method above to
describe an approach specifying how to divide the
cache spaces into the task private partitions. Another
relatively superior approach is to partition the cache

based on the utilization of the system
∑
=

=
N

i i

i

T
C

1
U

,
with the goal to minimize the CPU utilization. We
can use the dynamic programming algorithm for
cache memory partitioning for real-time systems
proposed in [20]. The following discussion is based
on the assumption we mentioned above.

For the cases in SHARING=0 and
SHARING=Sob1+ Sob2+…+ Sobn, it is easy to specify
the task private partition, the only difference is that
the available cache space after the shared partition
which is calculated is not the same, one has W
partition left, the other has W- Sob1+ Sob2+…+ Sobn
partition left. We will use Cleft to represent the
available cache space. First we calculate the data

cache requirements for every task i

i
iqi D

C
w ×=τ

,
where τqi is the data cache requirements, wi is
weight factor and it is associated with the system,
here we assume wi, Ci is worst case execution time
and it can approximately represent the data cache

requirements, iD
1

 can be viewed as the task priority.
Then we will assign the free partitions left to all

the tasks in the system, and the following equation
gives the size of task private partition for each task

⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢

⎣

⎢

×=

∑
=

leftn

i
qi

qi
ci C

1
τ

τ
τ

Note that τi in this equation takes the lower

bound. It is possible that a few partitions will not be
assigned to any task. It is free and can be used as
shared non-locking partition. And due to the same
reason, it is possible that 0=ciτ , it means that we
do not reserve a task private partition for real-time
task τi. If a task τi must have its private partition,
then we can take back some spaces from the other
two partitions and re-assign them to the task using
the method below.

For SHARING=W, as the shared locking
partitions have taken up all the cache spaces, we

WSEAS TRANSACTIONS on COMPUTERS
Manuscript received June 26, 2007; revised March 20, 2008 Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 142 Issue 3, Volume 7, March 2008

have to replace some of them with the task private
partitions. It is certain that the least amount of
shared data, i.e. the smaller sharing number of the
data objects will be replaced first. Here we put
forward a straight and simple method. We just use a
proportion of 1/2 to split the cache into two equal
parts, one for shared locking partition and the other
for task private partition. This value could be re-
adjusted according to the system workload. For
example, suppose that there are lots of data objects
whose sharing number is 2 or 3, there will be no
significant impact on the system if these data objects
are replaced, and we can allocate more cache spaces
to task private partition. And if the tasks need little
private space of their own and they mainly access
the shared data objects, we can allocate more cache
spaces to shared locking partition and leave fewer
partitions for the tasks of their own.

In order to prevent the cache from thrashing, we
will usually reserve a small space for shared non-
locking partition to be used by all tasks running in
the system. In some embedded processors, like Intel
XScale 27x, the processor itself has a minimum
cache space to be left for such a purpose. There is
1/16 cache space that can not be locked. So in such
a system, we do not have to consider the shared
non-locking space, it is fixed and all the other cache
spaces can be partitioned into shared locking
partitions and task private partitions.

2.3 Low Associativity
This algorithm is the most efficient for a fully
associative cache. A cache partition is a cache block
in a fully associative cache. For example, a 32KB
cache and the cache block size is 32 bytes, then
there are 1KB cache blocks, therefore there are 1KB
cache partitions, and they can be efficiently
partitioned for the task set. For an N-way
associative cache, the number of the cache partitions
is equal to N. If N is relatively large, say N≥32, the
system can still get benefits from such a partitioning
scheme. Although the cache partitions are relatively
small compared with a fully associative cache, we
can still get a nearly optimal configuration
according to the workload of the system. But If N is
quite small, like N≤8, then there are only 8 cache
partitions in the system, and every partition is quite
large. The algorithm mentioned above will not
fulfill a good performance under such a low
associative cache.

What we adopted to solve this problem is to
carefully arrange the memory layout of the data
object so as to let the different parts of the same
object lie in the same mapping area in the cache.
From [7, 11], we get the inspiration for this
approach. The database is responsible for the
assignment of the data object in the memory and it
is a run-time action, whereas the software based
cache partitioning needs additional compiler support
and it is a compile-time action.

As the associativity is very low or a directly
mapped cache is used, the address will compete for
the same block in the cache and it will result in
conflict cache misses. If all the addresses of a data
object could be mapped into the same cache area,
then this cache space will represent a cache partition
set in a virtual way. The database will decompose
the data object into several parts and each part will
reside in the same place in the memory page. Here a
memory page is a continuous memory region that
maps fully into the cache, i.e. it is equal to the cache
size. Figure 4 shows such a direct-mapped cache
that is used this way. If a data object is placed in the
first 1KB area in every page, then the entire data
object will be mapped to the first 1KB space in the
cache.

This approach does solve the problem of
partitioning the direct-mapped cache, but it goes
against the initial purpose of our data centered cache
partitioning scheme. Our approach is meant to
partition the cache by the number of the ways it has
as each way in the set associative cache can be
viewed as a direct-mapped cache and every way can
be mapped to all the memory addresses. In a direct-
mapped cache, however, only a certain area in the
memory will be mapped to the cache, so the data
objects have to be split to accommodate such cases.
So normally we do not use the data centered cache
partitioning approach in a low associative cache.

1KB

Page
(32KB)

Cache (32KB) Memory

Fig. 4: Data object split in a direct-mapped cache.

WSEAS TRANSACTIONS on COMPUTERS
Manuscript received June 26, 2007; revised March 20, 2008 Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 143 Issue 3, Volume 7, March 2008

3 Experimental Setup
In this section, we describe the setup for our
experiments: the simulated hardware platform we
run on, the simple real database system we built,
and the workload of tasks.

3.1 Hardware Platform
We simulated the cache hardware using Verilog as
currently we cannot find a real hardware platform
which supports both locking and partitioning. The
cache can be locked by lines and it also can be
partitioned by its associativity. The smallest
partition unit is defined by the cache blocks in the
same position of every set in the cache altogether.

We will conduct experiments for data caches
commonly used in real-time systems. We will
choose 32B-line data caches, whose sizes vary from
16KB to 64KB. For each cache, we will consider a
set associative cache from 16-way to 64-way. These
are the typical configurations in a modern embedded
processor. For example, The Intel XScale 27x
embedded processor has a data cache which is
32KB and 32-way associative.

We do not use a low associative cache in our
experiment. There is a reason for that. The basic
data centered cache partitioning scheme depends on
highly associative caches to provide sufficiently
small mapping granularities. Highly associative
caches, however, are becoming more common,
especially in embedded processors. Such
associativity is generally implemented with Content
Addressable Memories (CAMs) that require an area
of the size anywhere from twice to four times larger
than the current one but consume less power than
traditional associative structures.

3.2 Task Workload
The task workload here consists of two kinds of
tasks mentioned above: the periodic tasks and non-
periodic tasks.

In our experiments, the number of the periodic
tasks is 8. They have their priority P, deadline D,
worst case execution time estimated C and period T
respectively. We can get the task private partition
size for each periodic task based on these
parameters. And also the data objects they are
accessing are derived. The shared data objects used
by all tasks or some of the tasks are recorded.

The embedded system will synthesize a non-
periodic task sequence randomly at a rate of 10
tasks per second. Every task generated will first go
through the task manager, and meanwhile the proper
access pattern information will be acquired by the
manager. The shared locking partition will be
adjusted if it is needed. If the shared locking
partition is enlarged then the shared non-locking
partition will be shrank into the same size and vice
versa. Each simulation runs for about 10 seconds, so
every time there will be about 100 tasks generated.

4 Experimental Results
We now present results from our studies. We first
discuss the impact of the size of the cache under
certain associativity and compare our scheme with a
non-partitioned cache using standard LRU
replacement policy and a statically partitioned cache.
Then, we show the influence of the associativity of
the cache under a certain size and also compare the
three schemes.

4.1 Cache Size
The simulations compare the miss rate of the
standard LRU replacement policy, the miss rate of
the statically partitioning scheme and the miss rate
of our partitioning scheme.

Figure 5 illustrates the improvements of our
partitioning scheme over the standard LRU
replacement policy and the static partitioning
scheme. The results are shown in various cache
sizes, which range from 16KB to 64 KB. The
associativity of the cache is 32-way in all cases.

16KB 32KB 64KB
0

20

40

60

80

100

N
or

m
al

iz
ed

 M
is

s
R

at
e

Cache Size

 LRUReplacement
 StaticPartitioning
 OurApproach

Fig. 5: Miss rate comparison under different cache
size with 32-way associativity.

The simulation results shown in Figure 5
demonstrate that the data centered cache partitioning

WSEAS TRANSACTIONS on COMPUTERS
Manuscript received June 26, 2007; revised March 20, 2008 Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 144 Issue 3, Volume 7, March 2008

scheme can further decrease the average miss rate
significantly; for a 16KB data cache, the data
centered cache partitioning scheme reduces the miss
rate to 76% of that of the LRU policy and it is also
superior to the static partitioning scheme as the miss
rate is reduced by further 10%. The lower miss rate
will result in lower CPU utilization, higher
predictability and better performance. The system
can hold more periodic hard real-time tasks while
other soft real-time tasks will receive quicker
responses. The main reason for the reduction of the
miss rate is that the last two methods eliminate the
inter-task interference between tasks in such a
preemptive, multitasking environment.

When the cache becomes larger, from 16KB to
32KB, the miss rate will be further reduced. The
static partitioning scheme takes another 6% decrease
and our approach 8%. As the cache becomes larger,
the sizes of the partitions for the hard real-time tasks
increase accordingly, thus, the intra-task
interference will decrease significantly for each task.

However, when the size of the cache changes
into 64KB, the miss rate reduction of static
partitioning scheme almost remains the same as in
the second case, whereas our scheme can further
reduce the miss rate by 8%. It is because this time
the cache contains more shared data objects for all
running tasks and we do not have to reload these
objects into the cache when a task switch happens.

4.2 Cache Associativity
Now we focus on the cache associativity impact on
the miss rate. We also compare the miss rate of the
standard LRU replacement policy, the miss rate of
the statically partitioning scheme and the miss rate
of our partitioning scheme.

16-way 32-way 64-way
0

20

40

60

80

100

N
or

m
al

iz
ed

 M
is

s
R

at
e

Associativity

 LRUReplacement
 StaticPartitioning
 OurApproach

Fig. 6: Miss rate comparison under different cache
associativity with 32KB cache size.

Figure 6 shows the results of the simulation
running with our partitioning scheme, the standard
LRU replacement policy, and the static partitioning
scheme. The results are shown for various cache
associativities, which range from 16-way to 64-way.
The size of the cache remains 32KB in all cases.

First it can be seen that our partitioning scheme
can further decrease the average miss rate
significantly; for a 16-way data cache, the data
centered cache partitioning scheme reduces the miss
rate to 73% of that of the LRU policy and it also has
better performance over the static partitioning
scheme as the miss rate is reduced by further 13%.
It shares the same reason as the one we discussed
above. The inter-task interference is eliminated
between tasks in such a preemptive, multitasking
environment.

We can also see that when the associativity is
increased, the miss rate drops further down. It is
mainly because in a more highly associative cache
the configuration can be more flexible as there are
more basic units to be allocated to each partition.
However, when the associativity is increased, the
speed of the reduction of the miss rate slows down.
For example, from 16-way to 32-way, the miss rate
is reduced by 4%, but from 32-way to 64-way, the
miss rate is only reduced by 2%. The main reason is
that we only have 8 periodic hard real-time tasks in
the system, so a 16-way 32KB cache can satisfy this
set of workload pretty well. Using a more highly
associative cache does not help much in such a
situation.

5 Conclusion
In this paper, we present a data centered cache

partitioning approach that allows different tasks to
share a shared locking partition defined by the
database manager. In the meantime it allows hard
real-time tasks to have a private partition of their
own, thus, hard real-time tasks can perform their
jobs with high predictability. It also reserves a
shared non-locking partition for the soft real-time
tasks to accelerate their running speed. Our
experiment result shows that the miss rate can be
reduced by about 10%~18% compared with the miss
rate of a statically partitioned cache and by about
24%~40% compared with a dynamic cache using
LRU replacement policy if the data centered
partitioning scheme is used in a real-time database
system. The lower miss rate will result in lower

WSEAS TRANSACTIONS on COMPUTERS
Manuscript received June 26, 2007; revised March 20, 2008 Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 145 Issue 3, Volume 7, March 2008

CPU utilization, higher predictability and better
performance.

For our future work, we plan to improve our
approach in several aspects. First, the cache is
partitioned at the granularity of columns, which may
lower the utilization of the cache. We plan to
support partitioning the cache at a lower level of
granularity in order to solve this problem. Second,
we will combine our approach with other
partitioning schemes to achieve a better partition
between the database task and other tasks. Last, we
need to analyze the performance of our approach
when the associativity of the cache is very low.

References:
[1] Wind River Inc, High availability design for

embedded systems, Technical report,
http://www.windriver.com/- whitepapers/high
availability design.html.

[2] J. Pisharath et al, Data windows: a data-centric
approach for query execution in memory-
resident databases, In Proc of the Design,
Automation and Test in Europe Conference and
Exhibition 2004 (DATE’04), 2004, pp. 21352-
21353, IEEE Computer Society.

[3] P. Trancoso and J. Torrellas, Cache
Optimization for Memory-Resident Decision
Support Commercial Workloads, In Proc of the
International Conference on Computer
Design1999 (ICCD’99), 1999, pp. 546-554,
IEEE Computer Society.

[4] I. Puaut and D. Decotigny, Low-complexity
algorithms for static cache locking in
multitasking hard real-time systems, In Proc of
the 23rd IEEE Real-Time Systems Symposium
(RTSS’02), 2002, pp. 114-123.

[5] M. Campoy et al, Static use of locking caches
in multitask premptive real-time systems, In
Proc of IEEE/IEE Real-Time Embedded
Systems Workshop (Satellite of the IEEE Real-
Time Systems Symposium), 2002, pp. 114-123.

[6] X. Vera et al, Data caches in multitasking hard
real-time systems, In Proc of the 24th IEEE
Real-Time Systems Symposium (RTSS03), 2003,
pp. 154-165.

[7] F.Mueller, Compiler support for software-
based cache partitioning, In Proc of ACM
Workshop on Languages, Compilers and Tools
for Real-Time Systems (LCTES’95), 1995, pp.
125-133, ACM Press.

[8] X. Vera et al, Data cache locking for higher
program predictability, In Proc of International
Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS’03), 2003,
pp. 272-282.

[9] G. E. Suh et al, A new memory monitoring
scheme for memory-aware scheduling and
partitioning, In Proc of the 8th International
Symposium on High-Performance Computer
Architecture, 2002, pp. 117-128.

[10] D. B. Kirk, Smart (strategic memory allocation
for real-time) cache design, In Proc of the 10th
IEEE Real-Time Systems Symposium
(RTSS’89), 1989, pp. 229-237.

[11] J. Liedtke et al, OS-controlled cache
predictability for real-time systems, In Proc of
Real-Time Technology and Applications
Symposium, 1997, pp. 213-224.

[12] G. E. Suh et al, Dynamic Partitioning of Shared
Cache Memory, The Journal of
Supercomputing, Vol.28, No.1, 2004, pp. 7-26.

[13] J. E. Sasinowski et al, A Dynamic
Programming Algorithm for Cache Memory
Partitioning for Real-Time Systems, IEEE
Transactions on Computers, Vol.42, No.8,
1993, pp. 997-1001.

[14] L. Rudolph et al, Application-Specific Memory
Management for Embedded Systems Using
Software-Controlled Caches, In Proc of 37th
Conference on Design Automation (DAC'00),
2000, pp. 416-420.

[15] D. Chiou et al, Dynamic Cache Partitioning via
Columnization, Proceedings of Design
Automation Conference, 2000.

WSEAS TRANSACTIONS on COMPUTERS
Manuscript received June 26, 2007; revised March 20, 2008 Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 146 Issue 3, Volume 7, March 2008

	

