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Abstract: - Embedded real-time databases become a basic part of the embedded systems in many using 
environments. Caches are used for reducing the gap between processor and off-chip memory. But caches 
introduce unpredictability in general real-time systems. Although several cache partitioning approaches have 
been purposed to tackle this problem, there is no scheme designed for real-time database system up to now. In 
this paper, we present a data centered cache partitioning approach that allows different tasks to have a shared 
locking partition in cache. The hard real-time tasks will have their own partitions and thus they can perform 
high predictability. At the same time, a shared non-locking partition is reserved for the soft real-time tasks. In 
this way we can target performance improvements based on the data that are frequently used by many tasks in 
the system. Our experiment results show that the miss rate can be reduced by about 10%~18% compared with 
that of a statically partitioned cache and by about 24%~40% compared with a dynamic cache using LRU 
replacement policy. 
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1 Introduction 
With the increase of the capacity of the main 
memory, the embedded databases can reside on 
faster memory, which are called memory-resident 
databases. But the gap between the processor and 
the main memory has made it necessary to resort to 
the on-chip memory in embedded systems [1]. On-
chip SRAM is used as caches for this purpose. 
However, caches introduce unpredictability in 
general real-time systems. Thus how to effectively 
use the caches is crucial to high performance of the 
systems. Unfortunately, relatively few works on 
building cache-friendly approaches has been done 
embedded real-time database systems [3]. 

There are two key issues when exploiting caches 
utilization for all tasks for an embedded database in 
a preemptive, multi-programming environment. The 
first one is to exploit data locality (cache behavior) 
for the tasks and eliminate the interferences among 
them. In fact, it is known that 90% of overall stalls 
are introduced by the data cache misses [2]. Another 
key issue is the unpredictable cache behavior. This 
is a tamper to real-time. The existing approaches on 
caches for real-time systems are partitioning [6, 9, 
10, 12, 13, 15] and/or locking [4, 5, 8] cache 
segments. Some approaches [14, 15] partition using 

the modified LRU replacement method or column 
caching. These approaches are used to eliminate the 
unpredictability for real-time applications by 
restricting cache conflictions within the partition 
owned by the task. Their experimental results show 
that the performance is improved and their 
approaches are better than a normal cache adopting 
LRU replacement policy. But in there scheme, the 
partitioning is fixed and can not be adjusted at run-
time. 

In general, we present a data centered cache 
partitioning approach that allows different tasks to 
share a locking partition defined by the database 
manager. In the mean time the hard real-time tasks 
have their own private partitions, thus, they can 
perform their jobs with high predictability. The soft 
real-time tasks will share the non-locking partition 
reserved to quicken their running speed. Traditional 
partitioning approaches do not consider locking 
shared data as a main concern, whereas we target 
performance improvements based on the data that 
are frequently used by many tasks in the system.  

The remainder of the paper is organized as 
follows. We describe the data centered cache 
partitioning scheme in Section 2. We describe the 
experiment setup about the hardware configuration, 

WSEAS TRANSACTIONS on COMPUTERS 
Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 140 Issue 3, Volume 7, March 2008



the database server architecture and the workload 
configuration in Section 3. Experimental results are 
presented in Section 4. Conclusions and ongoing 
work is the subject of Section 5. 
 
 
2 Data Centered Cache Partitioning 
In this section we will first describe the general 
architecture of our data centered cache partitioning 
scheme. Then we will explain how to specify the 
size of each partition. We will discuss the impact of 
low associativity to the system at last. 

 
 

2.1 General Architecture 
The memory architecture model is shown in Fig. 1. 
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Fig. 1: Memory architecture model 

The cache on chip is a W-way set associative one 
interconnection with the processor core. The size of 
the cache is Sc and it consists of B blocks whose size 
are Sb, i.e. Sc=B*Sb. The B blocks are further divided 
into S sets, represented by Si(1≤i≤s) and every set 
has W cache blocks (B=S*W), a memory address 
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in any of the W cache blocks.  
If there is a memory sequence made up by S 

blocks whose size is Sb and they are all mapped into 
cache, then it will take up a cache block in every set 
of S1, S2,…SS. We define the set of these blocks to 
be a partition set, thus a W-way cache will have W 
partition sets. Our task is to categorize these 
partitions and allocate them to the tasks. 

The cache space will be partitioned into three 
parts by the data centered partition algorithm: a 
shared locking partition, task private partitions and a 
shared non-locking partition. All these three 
partitions together form what we call the living 
condition of the task set. By carefully adjust the 
sizes of the partitions; we can get an optimal or sub-
optimal living condition under a certain 
configuration of the cache space used by all the 
tasks. The system sees a task coming or leaving to 

be a mutation, which is the signal that identifies a 
turning point for the system to dynamically re-adjust 
the partition model to accommodate the new task set. 
The system will dynamically re-adjust the sizes of 
shared locking partition, task private partition and 
shared non-locking partition based on the feature of 
the new task set and come to another optimal or sub-
optimal living condition. Figure 2 shows a general 
cache partition. 

 

 
Fig. 2: The Configuration of Cache Partition 
 
 
2.2 Specifying the Partition Size 
The size of shared locking partition is determined by the 
sharing data in the system, SHARING. If a data object is 
used by two or more tasks in the system, then it is a 
sharing object, and in an embedded database system, we 
can get the data objects accessed by the tasks through 
pre-analysis before the tasks are running and then we can 
find the sharing number of a particular data object by 
counting the tasks that access the data object. Suppose 
there are N data objects in an embedded database system 
O1, O2, O3, …, On, after counting the sharing number of 
each data object we get N1, N2, N3, …, Nn, the size unit of 
every data object is partition set size defined earlier, we 
will take them as Sob1, Sob2, Sob3, …, Sobn. Note that Sobi 
means that the size of data object Oi is Sobi partition set. 
We suppose that N1, N2, N3, …, Nn are ordered from the 
largest to the smallest, if they are not, we can re-arrange 
the order of the data objects and get such a sorted list.  

If N1=1, then there are no sharing data between 
the tasks and SHARING=0, the size of the shared 
locking partition is zero; if N1>1, there are sharing 
data between the tasks, and if Sob1>W, then the size 
of the data object O1 is too big for the cache size, so 
let SHARING=W, i.e. allocate all cache spaces to O1 
or part of O1, we will see from the discussion below 
that because the hard real-time tasks need their 

WSEAS TRANSACTIONS on COMPUTERS 
Manuscript received June 26, 2007; revised March 20, 2008 Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 141 Issue 3, Volume 7, March 2008



private partitions and the soft real-time tasks need 
their shared non-locking partitions, the case 
SHARING=W only temporarily exists to represent 
the shared locking partition. After the second phase 
of allocating cache spaces to the tasks, 
SHARING=W will normally disappear from such a 
system. 

If N1>1 and Sob1>W, then data object O1 could be 
put into the cache. We will consider the placement 
of the second data object O2, if N1=1 then data 
object O2 is not shared between tasks, so 
SHARING= Sob1, the process is finished. If N2>1, 
then we will compare the size of data object O2, Sob2, 
with the remaining available cache space W- Sob1, 
which is like comparing data object O1 with cache 
total partition size W, if Sob2>W-Sob1, then Sob2 is too 
much for remaining cache partition, thus,  
SHARING=W, the process is finished, or else 
Sob2<W-Sob1, then the cache is able to hold data 
object O2, so SHARING=Sob1+Sob2，we can continue 
to compare data object O3 with remaining cache 
space, repeat the above process until some Ni=1 or 
SHARING=W, the former means that data object Oi 
is not a shared object, the latter means that the size 
of shared data object is too much for the cache size.  

After computing shared locking partition size 
SHARING，there are three possible outcomes，as 
showed in Figure 3. 

obnobob SSS +++ ...21

 

  
Fig. 3: Data Objects Sharing Number.  

After computing the shared locking partition size 
following the process above, we will specify the 
size for task private partitions based on the task 
feature. The main factors that feature the tasks are 
whether it is a hard real-time task or soft real-time 
task, its deadline D, priority P, its period T, and 
worst case execution time C. The system chooses 
different factors to judge the task requirements for 
the partitions. Here we consider an embedded real-
time system in favour of the periodic hard real-time 
tasks. We assume there are N hard real-time tasks in 
such a system τ1, τ2, τ3,…, τn and their deadlines are 
D1, D2, D3, …, Dn. The deadlines are ordered from 
the smallest to the largest. The priority of the tasks 
is inversely proportional to the deadlines, so it can 
be represented by the deadlines. We optimistically 

assume that the data requirements are proportional 
to the data processing time, i.e. worst case execution 
time. It means that the worst case execution time C1, 
C2, C3, …, Cn can be used as an approximation for 
the data accessed by the task. 

Note that the assumption is not applicable to 
every situation. We only used the method above to 
describe an approach specifying how to divide the 
cache spaces into the task private partitions. Another 
relatively superior approach is to partition the cache 

based on the utilization of the system 
∑
=

=
N

i i

i

T
C

1
U

, 
with the goal  to minimize the CPU utilization. We 
can use the dynamic programming algorithm for 
cache memory partitioning for real-time systems 
proposed in [20]. The following discussion is based 
on the assumption we mentioned above. 

For the cases in SHARING=0 and 
SHARING=Sob1+ Sob2+…+ Sobn, it is easy to specify 
the task private partition, the only difference is that 
the available cache space after the shared partition 
which is calculated is not the same, one has W 
partition left, the other has W- Sob1+ Sob2+…+ Sobn 
partition left. We will use Cleft to represent the 
available cache space. First we calculate the data 

cache requirements for every task i

i
iqi D

C
w ×=τ

, 
where τqi is the data cache requirements, wi is 
weight factor and it is associated with the system, 
here we assume wi, Ci is worst case execution time 
and it can approximately represent the data cache 

requirements, iD
1

 can be viewed as the task priority.  
Then we will assign the free partitions left to all 

the tasks in the system, and the following equation 
gives the size of task private partition for each task 
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Note that τi in this equation takes the lower 

bound. It is possible that a few partitions will not be 
assigned to any task. It is free and can be used as 
shared non-locking partition. And due to the same 
reason, it is possible that 0=ciτ , it means that we 
do not reserve a task private partition for real-time 
task τi. If a task τi must have its private partition, 
then we can take back some spaces from the other 
two partitions and re-assign them to the task using 
the method below.  

For SHARING=W, as the shared locking 
partitions have taken up all the cache spaces, we 
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have to replace some of them with the task private 
partitions. It is certain that the least amount of 
shared data, i.e. the smaller sharing number of the 
data objects will be replaced first. Here we put 
forward a straight and simple method. We just use a 
proportion of 1/2 to split the cache into two equal 
parts, one for shared locking partition and the other 
for task private partition. This value could be re-
adjusted according to the system workload. For 
example, suppose that there are lots of data objects 
whose sharing number is 2 or 3, there will be no 
significant impact on the system if these data objects 
are replaced, and we can allocate more cache spaces 
to task private partition. And if the tasks need little 
private space of their own and they mainly access 
the shared data objects, we can allocate more cache 
spaces to shared locking partition and leave fewer 
partitions for the tasks of their own. 

In order to prevent the cache from thrashing, we 
will usually reserve a small space for shared non-
locking partition to be used by all tasks running in 
the system. In some embedded processors, like Intel 
XScale 27x, the processor itself has a minimum 
cache space to be left for such a purpose. There is 
1/16 cache space that can not be locked. So in such 
a system, we do not have to consider the shared 
non-locking space, it is fixed and all the other cache 
spaces can be partitioned into shared locking 
partitions and task private partitions. 

 
 

2.3 Low Associativity 
This algorithm is the most efficient for a fully 
associative cache. A cache partition is a cache block 
in a fully associative cache. For example, a 32KB 
cache and the cache block size is 32 bytes, then 
there are 1KB cache blocks, therefore there are 1KB 
cache partitions, and they can be efficiently 
partitioned for the task set. For an N-way 
associative cache, the number of the cache partitions 
is equal to N. If N is relatively large, say N≥32, the 
system can still get benefits from such a partitioning 
scheme. Although the cache partitions are relatively 
small compared with a fully associative cache, we 
can still get a nearly optimal configuration 
according to the workload of the system. But If N is 
quite small, like N≤8, then there are only 8 cache 
partitions in the system, and every partition is quite 
large. The algorithm mentioned above will not 
fulfill a good performance under such a low 
associative cache. 

What we adopted to solve this problem is to 
carefully arrange the memory layout of the data 
object so as to let the different parts of the same 
object lie in the same mapping area in the cache. 
From [7, 11], we get the inspiration for this 
approach. The database is responsible for the 
assignment of the data object in the memory and it 
is a run-time action, whereas the software based 
cache partitioning needs additional compiler support 
and it is a compile-time action.  

As the associativity is very low or a directly 
mapped cache is used, the address will compete for 
the same block in the cache and it will result in 
conflict cache misses. If all the addresses of a data 
object could be mapped into the same cache area, 
then this cache space will represent a cache partition 
set in a virtual way. The database will decompose 
the data object into several parts and each part will 
reside in the same place in the memory page. Here a 
memory page is a continuous memory region that 
maps fully into the cache, i.e. it is equal to the cache 
size. Figure 4 shows such a direct-mapped cache 
that is used this way. If a data object is placed in the 
first 1KB area in every page, then the entire data 
object will be mapped to the first 1KB space in the 
cache. 

This approach does solve the problem of 
partitioning the direct-mapped cache, but it goes 
against the initial purpose of our data centered cache 
partitioning scheme. Our approach is meant to 
partition the cache by the number of the ways it has 
as each way in the set associative cache can be 
viewed as a direct-mapped cache and every way can 
be mapped to all the memory addresses. In a direct-
mapped cache, however, only a certain area in the 
memory will be mapped to the cache, so the data 
objects have to be split to accommodate such cases. 
So normally we do not use the data centered cache 
partitioning approach in a low associative cache. 

1KB

Page 
(32KB)

Cache (32KB) Memory

 
Fig. 4: Data object split in a direct-mapped cache. 

 

WSEAS TRANSACTIONS on COMPUTERS 
Manuscript received June 26, 2007; revised March 20, 2008 Hu Wei, Chen Tianzhou, Shi Qingsong, Jiang Ning

ISSN: 1109-2750 143 Issue 3, Volume 7, March 2008



 
3 Experimental Setup 
In this section, we describe the setup for our 
experiments: the simulated hardware platform we 
run on, the simple real database system we built, 
and the workload of tasks. 

 
 

3.1 Hardware Platform 
We simulated the cache hardware using Verilog as 
currently we cannot find a real hardware platform 
which supports both locking and partitioning. The 
cache can be locked by lines and it also can be 
partitioned by its associativity. The smallest 
partition unit is defined by the cache blocks in the 
same position of every set in the cache altogether.  

We will conduct experiments for data caches 
commonly used in real-time systems. We will 
choose 32B-line data caches, whose sizes vary from 
16KB to 64KB. For each cache, we will consider a 
set associative cache from 16-way to 64-way. These 
are the typical configurations in a modern embedded 
processor. For example, The Intel XScale 27x 
embedded processor has a data cache which is 
32KB and 32-way associative.  

We do not use a low associative cache in our 
experiment. There is a reason for that. The basic 
data centered cache partitioning scheme depends on 
highly associative caches to provide sufficiently 
small mapping granularities. Highly associative 
caches, however, are becoming more common, 
especially in embedded processors. Such 
associativity is generally implemented with Content 
Addressable Memories (CAMs) that require an area 
of the size anywhere from twice to four times larger 
than the current one but consume less power than 
traditional associative structures. 

 
 

3.2 Task Workload 
The task workload here consists of two kinds of 
tasks mentioned above: the periodic tasks and non-
periodic tasks. 

In our experiments, the number of the periodic 
tasks is 8. They have their priority P, deadline D, 
worst case execution time estimated C and period T 
respectively. We can get the task private partition 
size for each periodic task based on these 
parameters. And also the data objects they are 
accessing are derived. The shared data objects used 
by all tasks or some of the tasks are recorded.  

The embedded system will synthesize a non-
periodic task sequence randomly at a rate of 10 
tasks per second. Every task generated will first go 
through the task manager, and meanwhile the proper 
access pattern information will be acquired by the 
manager. The shared locking partition will be 
adjusted if it is needed. If the shared locking 
partition is enlarged then the shared non-locking 
partition will be shrank into the same size and vice 
versa. Each simulation runs for about 10 seconds, so 
every time there will be about 100 tasks generated. 

 
 

4 Experimental Results 
We now present results from our studies. We first 
discuss the impact of the size of the cache under 
certain associativity and compare our scheme with a 
non-partitioned cache using standard LRU 
replacement policy and a statically partitioned cache. 
Then, we show the influence of the associativity of 
the cache under a certain size and also compare the 
three schemes. 

 
 

4.1 Cache Size 
The simulations compare the miss rate of the 
standard LRU replacement policy, the miss rate of 
the statically partitioning scheme and the miss rate 
of our partitioning scheme.  

Figure 5 illustrates the improvements of our 
partitioning scheme over the standard LRU 
replacement policy and the static partitioning 
scheme. The results are shown in various cache 
sizes, which range from 16KB to 64 KB. The 
associativity of the cache is 32-way in all cases. 
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Fig. 5: Miss rate comparison under different cache 
size with 32-way associativity. 

The simulation results shown in Figure 5 
demonstrate that the data centered cache partitioning 
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scheme can further decrease the average miss rate 
significantly; for a 16KB data cache, the data 
centered cache partitioning scheme reduces the miss 
rate to 76% of that of the LRU policy and it is also 
superior to the static partitioning scheme as the miss 
rate is reduced by further 10%. The lower miss rate 
will result in lower CPU utilization, higher 
predictability and better performance. The system 
can hold more periodic hard real-time tasks while 
other soft real-time tasks will receive quicker 
responses. The main reason for the reduction of the 
miss rate is that the last two methods eliminate the 
inter-task interference between tasks in such a 
preemptive, multitasking environment.  

When the cache becomes larger, from 16KB to 
32KB, the miss rate will be further reduced. The 
static partitioning scheme takes another 6% decrease 
and our approach 8%. As the cache becomes larger, 
the sizes of the partitions for the hard real-time tasks 
increase accordingly, thus, the intra-task 
interference will decrease significantly for each task.  

However, when the size of the cache changes 
into 64KB, the miss rate reduction of static 
partitioning scheme almost remains the same as in 
the second case, whereas our scheme can further 
reduce the miss rate by 8%. It is because this time 
the cache contains more shared data objects for all 
running tasks and we do not have to reload these 
objects into the cache when a task switch happens. 

 
 

4.2 Cache Associativity 
Now we focus on the cache associativity impact on 
the miss rate. We also compare the miss rate of the 
standard LRU replacement policy, the miss rate of 
the statically partitioning scheme and the miss rate 
of our partitioning scheme. 
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Fig. 6: Miss rate comparison under different cache 
associativity with 32KB cache size. 

Figure 6 shows the results of the simulation 
running with our partitioning scheme, the standard 
LRU replacement policy, and the static partitioning 
scheme. The results are shown for various cache 
associativities, which range from 16-way to 64-way. 
The size of the cache remains 32KB in all cases. 

First it can be seen that our partitioning scheme 
can further decrease the average miss rate 
significantly; for a 16-way data cache, the data 
centered cache partitioning scheme reduces the miss 
rate to 73% of that of the LRU policy and it also has 
better performance over the static partitioning 
scheme as the miss rate is reduced by further 13%. 
It shares the same reason as the one we discussed 
above. The inter-task interference is eliminated 
between tasks in such a preemptive, multitasking 
environment.  

We can also see that when the associativity is 
increased, the miss rate drops further down. It is 
mainly because in a more highly associative cache 
the configuration can be more flexible as there are 
more basic units to be allocated to each partition. 
However, when the associativity is increased, the 
speed of the reduction of the miss rate slows down. 
For example, from 16-way to 32-way, the miss rate 
is reduced by 4%, but from 32-way to 64-way, the 
miss rate is only reduced by 2%. The main reason is 
that we only have 8 periodic hard real-time tasks in 
the system, so a 16-way 32KB cache can satisfy this 
set of workload pretty well. Using a more highly 
associative cache does not help much in such a 
situation. 

 
 

5 Conclusion 
In this paper, we present a data centered cache 

partitioning approach that allows different tasks to 
share a shared locking partition defined by the 
database manager. In the meantime it allows hard 
real-time tasks to have a private partition of their 
own, thus, hard real-time tasks can perform their 
jobs with high predictability. It also reserves a 
shared non-locking partition for the soft real-time 
tasks to accelerate their running speed. Our 
experiment result shows that the miss rate can be 
reduced by about 10%~18% compared with the miss 
rate of a statically partitioned cache and by about 
24%~40% compared with a dynamic cache using 
LRU replacement policy if the data centered 
partitioning scheme is used in a real-time database 
system. The lower miss rate will result in lower 
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CPU utilization, higher predictability and better 
performance. 

For our future work, we plan to improve our 
approach in several aspects. First, the cache is 
partitioned at the granularity of columns, which may 
lower the utilization of the cache. We plan to 
support partitioning the cache at a lower level of 
granularity in order to solve this problem. Second, 
we will combine our approach with other 
partitioning schemes to achieve a better partition 
between the database task and other tasks. Last, we 
need to analyze the performance of our approach 
when the associativity of the cache is very low. 
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