
An Efficient A* Algorithm for the Directed Linear Arrangement
Problem

DERCHIAN TSAIH
Nanhua University

Department of E-Commerce
32 Chung Keng Li, Dalin

Chiayi, TAIWAN
dtsaih@mail.nhu.edu.tw

GUANGMING WU
Nanhua University

Department of Information Management
32 Chung Keng Li, Dalin

Chiayi, TAIWAN
gmwu@mail.nhu.edu.tw

CHIEHYAO CHANG
Nanhua University

Department of E-Commerce
32 Chung Keng Li, Dalin

Chiayi, TAIWAN
cychangs@mail.nhu.edu.tw

SHAOSHIN HUNG
Wufeng Institute of Technology

Department of CS
117 Jianguo Rd, Minsyong

Chiayi, TAIWAN
hss@cs.ccu.edu.tw

CHINSHAN WU
Wufeng Institute of Technology

Department of E-Commerce
117 Jianguo Rd, Minsyong

Chiayi, TAIWAN
jackwu@mail.wfc.edu.tw

HUILING LIN
Ling Tung University

Department of International Business
1 Ling Tung Rd

Taichung, TAIWAN
ljoyce@mail.ltu.edu.tw

Abstract: In this paper we present an efficient A* algorithm to solve the Directed Linear Arrangement Problem.
By using a branch and bound technique to embed a given directed acyclic graph into a layerwise partition search
graph, the optimal directed ordering is then be identified through a A* shortest path search in the embedding
graph. We developed a hybrid DC+BDS algorithm to approximate the optimal linear arrangement solution, which
includes directed clustering and bidirectional sort technique. Along with a lower bound based on the maximum
flow technique, this approximation solution is used as an upper bound to prune the state space during the A* search.
In order to reduce the memory requirement of the A* search, we also discuss a implementation of the relay node
technique from Zhou and Hansen [22].

Key–Words: Directed Linear Arrangement, Directed Clustering, A* Search

1 Introduction
Broadcasting data becomes a widely studied problem
in the wireless environment due to its practical im-
portance. Nowadays researchers are becoming in-
creasingly interested in the study of correlated data
broadcasting, which leading to a requirement to de-
vise an efficient and effective scheduling algorithm for
the correlated data. Applications are generally repre-
sented by directed acyclic graphs (DAGs), and solved
via a Directed Linear Arrangement. Like the undi-
rected correlated data broadcasting, for which many
heuristic solutions have been proposed [20][4], this
problem is hard in general, but has been solved in the
case with a single root vertex, in which every other
vertex either has a path directly to this root vertex, or
can be reached from it [2].

Many heuristics had been proposed for the
scheduling problem. By taking into account the sys-
tem heterogeneity, Lai [12] proposed a duplication-
based heuristic for scheduling tasks in a distributed
heterogeneous environments. Liu [13] proposed a
scheduling algorithm for an out-tree DAG based on

task duplication. Adelson-velsky [1] proposed a poly-
nomial time algorithm for scheduling tasks in AND-
OR graphs. Wang [21] proposed a dynamic task
scheduling algorithm in grid computing environment.
Pan [15] adopted a heuristic method to schedule the
resource constrained projects by incorporating fuzzy
set theory to model the uncertain activity duration
times.

Kaji presented a simulated annealing method for
sequential partitioning of directed acyclic graphs [9],
which is a variation of the scheduling problem dis-
cussed herein. Although the proposed algorithm is
effective and efficient, it cannot guarantee to find an
optimal solution, and is hard to fine-tune the cool-
ing factors to specific problems. In a recent study for
scheduling dependent tasks in a heterogeneous sys-
tem, Sakellariou [17] presented a partition-based al-
gorithm that determines the optimal vertex order by
sorting all nodes with its rank value and additional lo-
cal group optimization. However, the effectiveness in
solving the directed ordering problem depends mainly
on an optimal order of subset nodes within each local

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1958 Issue 12, Volume 7, December 2008

group.
The structure of this paper is as follows. Sec-

tion 2 presents the Directed Linear Arrangement Prob-
lem, and introduces a lower bound of cut before each
placed vertex by the Max-Flow theorem. The third
section presents a hybrid DC+BDS heuristic to ap-
proximate the DLA problem. Sections 4 presents a
technique to solve the DLA problem using the A*
search in an induced partition search graph. Section 5
presents the experimental results, and Section 6 con-
cludes this study.

2 Directed Linear Arrangement
Problem

Given a directed acyclic weighted graph G=(V ,E,w)
with non-negative weights, the directed linear ar-
rangement problem is to determine a surjection f :
V 7−→ {0,1,2,....|V |-1} such that (u,v) ∈ E =⇒ f (u)
< f (v), i.e. f is a topological order which mini-
mize the total weighted latency of edges. The total
weighted latency of edges in the arrangement f can
be considered as follows:

W (f) =
∑

(u,v)∈E

wu,v(f(v)− f(u)) (1)

where wu,v denotes the weight of the edge from u to
v. Let n = |V |, m = |E| and Wi(f) denote the edge
cut across between vertex in position i and position
i + 1 from f . Equation 1 can be rewritten as follows:

W (f) =
n−1∑

i=1

Wi(f)

=
n−1∑

i=1

∑

u,v∈V && f(u)≤ i<f(v)

wu,v (2)

Let Scut(A,B)=
∑

u∈A,v∈B wu,v denote the total cut
weight from vertex in A to vertex in B. Since a valid
topological order of vertex in a DAG has no backward
edge, from Equation 2, for a valid topological order of
vertex arrangement f , Wi(f) is the cut weight from
{j|f(j) ≤ i} to {j|i < f(j)}, which is given by

Wi(f) = Scut({j|f(j) ≤ i}, {j|i < f(j)})

Thus, under a topological order f , the cut weight
across vertex in position i and in position i + 1 is the
cut weight from vertices arranged before position i,
vertex in position i, to vertices arranged after position
i.

Example 1. Consider a directed acyclic graph

from Figure 1a, and one of its topological sort graph
from Figure 1b, f (1)=3, f (2)=1, f (3)=4, f (4)=2 and
f (5)=5. The cut weight between the first and second
vertices is W1(f) = SCut({2}, {4,1,3,5})=12; the
cut weight between the second and third vertices is
W2(f) = Scut({2,4}, {1,3,5})=8, and so on. The
total weighted latency of edges is thus 74.

m1

m2

m3

m4

m5-13

-
4

´
´

´́3
8

-3 s

15

(a)

m2 m4 m1 m3 m5- - -4 13 3

8

15
(b)

s

3

Figure 1. (a) A simple directed acyclic graph and (b)
one of its corresponding TSG.

2.1 The Lower/Upper Vertex Set
Let x ≺ y denote the existence of a path from x to y.
The following definition is then introduced:

Definition 1 The partition of V between two disjoint
set of vertices, V l and V u, is called a graph cut of
acyclic directed graph G(V,E). If no x ≺ y exists for
x ∈ V u, y ∈ V l and V u = V \ V l, then (V l,V u) is a
directed vertex set pair and V l and V u are the lower
and upper vertex sets of (V l,V u), respectively.

For a directed pair (V l, V u) with nonempty V u, if a
vertex x ∈ V u exists such that (V l ⋃{x}, V u \{x}) is
also a directed pair, then x is called a split vertex of
V u. For detaching x from V u to form another directed
pair (V l ⋃{x}, V u \ {x}), x must be in the minimum
source set of V u.

Definition 2 Define M (U) as the minimum source set
of U that itself is the subset of U , where either each
vertex in U is in this subset, or a path exists from ver-
tices in this subset to rest of vertices in U .

2.2 Max-Flow/Min-Cut Lower bound
Let w

(1)
u ≥ w

(2)
u ≥ w

(3)
u ≥ ... denote the weights of

the outgoing edges from u. Thus, X+(u) =
∑

i iw
(i)
u

gives the minimum total weight of latency of outgoing

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1959 Issue 12, Volume 7, December 2008

edges from u. Similarly, let X−(u) denote the min-
imum total weight of latency of the incoming edges
from u. Ganapathy[7] provide a lower bound for the
directed linear arrangement problem as follows:

W (f) ≥ max

(∑

u∈V

X+(u),
∑

u∈V

X−(u)

)
∀f

This technique is very efficient, since it only considers
the order and weights of edges entering and leaving
each vertex. However, instead of simply adding the
edge weight for each vertex, the minimum cut weight
before each vertex can be derived through the max-
flow-min-cut theorem.

For each u within a topological arrangement of
vertex set, if the vertices before u are represented as
V l, and u and vertices after u are represented as V u,
then the cut before u in this topological arrangement is
given by the set cut between V l and V u. Let Mcut(u)
denote the minimum weight cut before u in any topo-
logical arrangement. Obviously, the minimum cut be-
fore u for any topological order is the minimum set cut
between any directed (V l, V u) pair with u ∈ M(V u),
i.e.,

Mcut(u) = min
u∈M(V u)

Scut(V l, V u) (3)

For u ∈ M(V u) it is seen that the vertices which have
a path to u must in subset V l, and the vertices which
are reachable from u must in subset V u. By using the
same approach for hypergraph partition from Patkar
[16], the solution of this minimum cut problem can be
found through maximum flow problem with sources
as the vertices which have at least one path to u, sinks
as u and vertices which are reachable from u. That
is, under u in M(V u), the minimum set cut between
(V l, V u) pair of V is equal to the maximum flow be-
tween {v|v ≺ u} and {u}⋃{v|u ≺ v}.

The problem of maximum flow between multi-
ple sources and multiple sinks can be reduced to sin-
gle source/single sink case by adding a super source
which has one ∞ capacity outgoing edge to each
source and adding a super sink which has one ∞ ca-
pacity incoming edge from each sink. Hence for each
vertex u, Mcut(u) can be found through the maxi-
mum flow between the super source s and super sink
t, where the super source s has one∞ capacity outgo-
ing edge to each vertex which have a path to u and the
super sink t has one ∞ capacity incoming edge from
u and from each vertex which u has a path to it.

With minimum cut before vertex u in any topo-
logical order as Mcut(u), the summation of all min-
imum cut will give a better lower bound to directed
linear arrangement problem as following.

W (f) ≥
∑

u∈V

Mcut(u) ∀f

For each vertex in Example 1, after adding super
source s and super sink t, the minimum weight
cut before the vertex can be discovered through the
max-flow-min-cut theorem, which are Mcut(3)=36,
Mcut(4)=4, Mcut(5)=18 and zero for all other. Fig-
ure 2 shows the flow network for vertex 3.

ms
m1

m2

m3 m5
mt³³³³1∞

PPPPq∞

PPPPq
∞

1∞

-13

´
´

´́3
8

-3 s

15

Figure 2. The flow network for minimum cut before
vertex 3.

3 Composite Approximation Solu-
tion

3.1 Bidirectional Greedy Zero In-Degree
Sort

The topological order of vertex can be computed
efficiently either by depth-first sorting algorithm or
zero in-degree sorting, which is based on breadth
first traversal algorithm [3]. The greedy strategy can
also used to find a topological order for the directed
linear arrangement problem, by either depth-first or
breadth-first traversal.

For a greedy strategy used in depth-first traversal
algorithm, Sakellariou[17] proposed finding the
vertex order by sorting vertices based on rank value.
The rank value, ri , of a vertex i is recursively defined
as follows:

ri = max
(i,j)∈E

(wi,j + rj) (4)

All the rank value can be found through Equation 4
with only a single depth-first traversal. Limited by its
depth-first nature, the quality of this heuristic solution
is greatly depend on the hierarchical structure of
directed graph. Therefore, this work propose a
breadth-first greedy algorithm based on the zero
in-degree sort process.

Each step of the zero in-degree sort consists
of two phases. The first phase is a vertex selection
phase, in which a vertex u with zero incoming edges
is randomly selected and reported. The second phase
is a vertex deletion phase, where vertex u and all
its outgoing edges are deleted from the graph. The
optimum vertex order can then be built by selecting
the optimum vertex at each vertex selection phase.

There are two heuristics for the selection of
vertex during each step of the zero in-degree sorting

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1960 Issue 12, Volume 7, December 2008

processes, which are maximum-incident heuristic and
least-cost heuristic.

• Maximum-Incident Heuristic

Let Fin(u) =
∑

(v,u)∈E wv,u denote the total
weight of edges which incident on u. By maximizing
the total edge weight incident on the select vertex,
the edge weight extended to the following vertices in
the list is minimized. This leads to a simple greedy
strategy, in which each zero in-degree sort selects the
vertex with the largest Fin(u).

• Least-Cost Heuristic

For a given partition pair (V l, V u), the total cut
weight between V l and V u is

∑
v∈M(V u) Fin(v), and

the minimum total cut weight for placing V u is as
follows.

R(V u)=
∑

v∈M(V u)

Fin(v) + min
u

∑

v∈V u,v 6=u

Mcut(v)

=
∑

v∈M(V u)

Fin(v) +
∑

v∈V u

Mcut(v)

−max
u

Mcut(u) (5)

As shown in Equation 5, the selection with vertex with
largest Mcut(u) will minimize estimated remaining
cost of finishing the ordering. This leads to the sec-
ond greedy strategy, in which each zero in-degree sort
selects the vertex with the largest Mcut(u).

During the vertex selection phase of zero in-
degree sort, the maximum-incident heuristic picks
the vertex u with largest Fin(u), while the least-cost
heuristic picks the vertex u with largest Mcut(u).
From Equation 3, the minimum cut weight before ver-
tex u can be rewritten as follows.

Mcut(u) = Fin(u) + min
u∈M(V u)

∑

x∈V l,y∈V u,y 6=u

wx,y

(6)
Therefore, although both heuristics use the similar
greedy approach to select the zero in-degree vertex,
the maximum-incident heuristic is a locally optimum
approach which considers only the cut weight into the
selected vertex, and the least-cost heuristic considers
both the cut weight into and across the selected
vertex. The effectiveness of both heuristics may vary
with different structure of the directed graph. Thus,
we can establish a greedy zero in-degree sort by
applying either vertex selection heuristics, or both
vertex selection heuristics and pick the better result
from applying both heuristics.

While zero in-degree sort picks the vertex from
the zero in-degree vertices and place each selected

vertex into ordered list from the beginning of list,
there is also a backward version of zero in-degree
sort (considering the original zero in-degree sort as
a forward version). The backward version of zero
in-degree sort first reverses all its directed edges, then
picks a vertex from the zero in-degree vertices, and
places the selected vertex into the ordered list from
end of list.

The maximum-incident and least-cost heuristic
can also be applied in backward zero in-degree
sorting, such that the backward zero in-degree sort
with maximum-incident or least-cost heuristics forms
the backward greedy zero in-degree sort.

Either by multiple zero in-degree vertices in a
DAG (or multiple zero out-degree vertices in back-
ward greedy zero in-degree sort) or sorting vertices
with same Fin(u)(or Mcut(u)), the forward or
backward greedy zero in-degree sort may randomly
pick the vertex, leading to a less optimal vertex
selection. However, the forward and backward sort
can adopt each other as a tie breaking strategy, and
the solution from the forward sort and the solution
from the backward sort can be used as a preference
list for each other.

The bidirectional sort algorithm iterating the
back to back forward and backward greedy zero
in-degree sort. Starting with random ordering as
a preference list, the algorithm keep using results
from other as a preference list, and the algorithm
ends when the vertex order from both forward sort
and backward sort are identical, or the solution is no
longer improved. Thus, better heuristic than applying
the forward or backward alone is provided. The next
example is used to explain the details of bidirectional
sort algorithm.

Example 2. Consider a directed acyclic graph
from Figure 3, and an initial random reference list
f =[1, 2, 3, 4, 5, 6] with cost of 71. In the first
round of algorithm, after the forward sort, both
maximum-incident heuristic and least-cost heuristic
report the same order of f =[1, 2, 3, 4, 6, 5] with cost
of 66. Since the vertex order is changed and solution
is improved, f is reversed and used as the preference
list in the backward sort. After the backward sort both
greedy heuristics report the same order of f =[5, 4, 1,
6, 3, 2] with cost of 33. The f is then reversed into
[2, 3, 6, 1, 4, 5], in which the vertex order is changed
and solution improved. Thus, the bidirectional sort
algorithm enters the second round with new f as the
preference list. In this case, both greedy heuristics in
the forward sort report the same order of f =[2, 3, 6,
1, 4, 5], in which the vertex order is the same as the
preference list. Therefore, the algorithm ends, and
reports f =[2, 3, 6, 1, 4, 5].

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1961 Issue 12, Volume 7, December 2008

m m m

m m m

1

3

5

2

4

6

10 5

5 10

1
- -

- -

?

Figure 3. Directed acyclic graph of Example 2.

3.2 Hierarchical Agglomerative Clustering
with Directed Merge

Agglomerative hierarchical clustering is a bottom-up
clustering method where clusters have sub-clusters,
which in turn have sub-clusters, etc. The algorithm
computes a complete hierarchy of clusters and does
not require the number of clusters to be known in ad-
vance. Start with every single vertex in a single clus-
ter. Then, in each successive iteration, it merges the
closest pair of clusters by satisfying some similarity
criteria, until all of the vertices are in one cluster [11].

Hierarchical agglomerative clustering with di-
rected merge is the directed version of HAC, or di-
rected HAC. It concerns grouping vertices in pairs
based on their similarity and/or their proximity. Di-
rected merge links two sequential vertex sets in the
source and end clusters to form a new sequential set
of vertices in the source cluster before the vertices in
the end cluster in the ordering.

As with the unordered HAC, each cluster can be a
source or end cluster for directed merging. However,
for each source/end cluster pair, there shall not ex-
ist any edges starting from end cluster to source clus-
ter, and shall not exist any path starting from vertex
in source cluster through other cluster and destined to
the vertex in the end cluster.

To determine whether one source/end cluster pair
can be directed merged without compromising the
acyclicity, these two clusters are first test-merged, and
the topological sort (either with depth first search or
zero in-degree sort) is used to validate the acyclicity
after the test merge. If the acyclicity is not violated
after this test merge, then these source/end cluster
pair is considered as directed-mergeable, and not oth-
erwise.

In each iteration, the pair of clusters with the
highest cohesion is merged by average-link clustering
[8][6]. The similarity between each pair of clusters
is measured according to the group average directed
weight between them, which is an objective function
based on the sizes of the clusters being merged, along
with the directed edge weight from source cluster to
end cluster [10]. The group average directed weight

from cluster Γ to ∆ is defined as follows.

Wc(Γ,∆) =
1

|Γ||∆|
∑

u∈Γ,v∈∆

wu,v

Starting with each vertex as a singleton cluster, the
directed-mergeability and group directed weight of
each source/end cluster pair are pre-validated and
computed. All cluster pairs are then sorted with
a heap. The cluster pair which are not directed-
mergeable is always on the bottom of heap, and the
directed-mergeable cluster pair with the largest group
directed weight is always on the top of heap. At each
merging process, the directed-mergeable cluster pairs
with largest group directed weight between them, is
linked and directed merged into a new cluster with a
linked vertex list from the joining of linked vertex lists
of source and end clusters[5].

After the cluster pair is merged, the end cluster
is removed, and the source cluster is rewritten by the
new cluster created by merging. Then, each clus-
ter x/removed cluster pair will merged into cluster
x/new cluster pair, and each removed cluster/cluster
x pair will merged into new cluster/cluster x pair.
With all source/end cluster pairs pre-sorted into a
heap, each merging process consists of the following
steps:

1. Directed merge the source/end cluster pair from
top of heap.

2. Remove the merged source/end cluster pair from
the heap.

3. Update the heap.

After n − 1 directed merges, all clusters are then
merged into one single cluster, and the directed clus-
tering solution is determined from the linked vertex
list of the last remaining cluster.

3.3 Hybrid Algorithm of Directed HAC and
Bidirectional Sort

The clustering algorithm suffers from their inability
to perform adjustments once the merging decision is
made. However, several studies have reported that the
clustering process can increase the average degree of
vertices (or graph density), and improve the approxi-
mation solution from iterative partition heuristic [18]
and simulated annealing placement [19].

The hybrid algorithm of directed clustering and
bidirectional sort, called the DC+BDS, iteratively ap-
plied the directed clustering to the input graph, while
between each pair of clustering processes the process-
ing graph was duplicated and the bidirectional sort
was applied on the duplicated graph to explore each
vertex order solution.

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1962 Issue 12, Volume 7, December 2008

Using this exhaustive search the DC+BDS algo-
rithm returned the best vertex order after the end of
last clustering process. By fully combining all ben-
efits of directed clustering and bidirectional sort, the
total weighted latency of edges can be minimized.

4 The Partition Search Graph
4.1 Mapping from a Directed Acyclic Graph
A partition search graph G̃(Ṽ ,Ẽ,w̃) is a di-
rected acyclic graph induced from another directed
acyclic graph G(V ,E,w), where Ṽ represents a node
set(comparable to vertex set V); Ẽ represents an arc
set(comparable to edge set E), and w̃ represents the
node weight, such that each node from Ṽ is mapped
to a lower/upper partition pair of V ; each arc from Ẽ
is mapped to one state transition between two ordered
partition pairs, and the node weight is mapped to the
set cut between this ordered partition.

Let ñ=|Ṽ |, m̃=|Ẽ|, and Fout(u) =
∑

(u,v)∈E wu,v

denote the total weights of edges which incident out
from u. A partition search graph has the following
properties:

1. The graph has only a source node, de-
noted as root, that mapped to partition
pair (∅,V) and a sink node, denoted as
goal, that mapped to partition pair (V ,∅).

2. Each node in Ṽ mapped to a
lower/upper partition pair of V and
each arc in Ẽ mapped to a split vertex

from node in Ṽ . Hence, ñ=
∑

(V l,V u) 1
and m̃ =

∑
(V l,V u) |M(V u)|.

3. The node which mapped to a partition
pair (V l, V u) can be classified into a
layer−|V u| group, such that all arcs that
start from node in the layer−k group
must end in a node in the layer−k+1
group.

4. The node weight for a node which
mapped to the partition pair (V l, V u) is
Scut(V l, V u). The node weight for a
node mapped to (V l ⋃{a}, V u\{a}) can
be determined through Scut(V l, V u) as
follows.

Scut(V l ⋃{a}, V u\{a})=Scut(V l, V u)
−Fin(a) + Fout(a).

5. The minimum cost of a path, start-
ing from a node which mapped to
partition pair (V l, V u) to goal, is∑

u∈V u Mcut(u).

The optimal order of V then depends on every nodes
mapped to (V l, V u) ordering its lower vertex set
V l perfectly. The perfect ordering vertices of V l in
the layer−k+1 group nodes requires perfectly ordered
vertices of V l in the layer−k group node. Starting
from the layer−0 root up to the layer−n goal, the op-
timum linear order of vertices can be found through
the shortest path between root and goal. The DLA
problem can thus be solved by a shortest path prob-
lem in this layered graph, with the cost function given
by the sum of set cut along each path.

If all node layers fit in memory, then the
partition search graph can be constructed through
the depth first traversal algorithm with a complexity
of O(ñ + m̃). Figure 4 shows the induced partition
search graph from Example 1. The M(V u) is shown
inside each node; the split vertex of each node is
shown beside each arc, and the node weight for each
partition cut is shown beside each node.

m

m m

m m

m m

m m

m

layer 5 —>

layer 4 —>

layer 3 —>

layer 2 —>

layer 1 —>

layer 0 —>

φ

5 4

4,5 3

3,4 1

2 1,4

1,2

0

18 4

22 36

40 8

28 12

0

S
Sw

¶
¶/

S
Sw

S
Sw

¶
¶/

S
Sw

¶
¶/

¶
¶/

?
Q

Q
Qs
´

´
+́

S
Sw

¶
¶/

1 2

2 1 4

3 4 1

4 3
5

5 4

Figure 4. Partition search graph from Example 1.

Let hpath denote the number of vertex pairs (x, y)
with x ≺ y. For each (V l, V u) pair there exists one
corresponding M (V u), and if x ≺ y, then x and y
do not coexist in the same M (V u). Therefore, the
number of single element M (V u) is n, and for i ≥ 2,
the number of i elements M (V u), under the general

independent assumption, is
(n

i

)
(1 − (n−2

i−2)
(n

i)
)hpath . The

average number of valid (V l, V u) pair, denoted by
ñavg, is given by

ñavg = n +
n∑

i=2

(
n

i

) (
1−

(n−2
i−2

)
(n

i

)
)hpath

= n +
n∑

i=2

(
n

i

) (
1− i(i− 1)

n(n− 1)

)hpath

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1963 Issue 12, Volume 7, December 2008

4.2 A* Search with Divide-and-Conquer So-
lution Reconstruction

A* is a best-first search algorithm that finds the least-
cost path from a given initial node to one goal node.
The basic idea of A* algorithm is to systematically go
through a list of nodes which is ordered according to
their estimated total cost to goal node.

There are four node variables in each node x
which mapped to the (V l, V u) partition pair: pred(x)
denotes the backtrack pointer to the upper layer of
node x, s(x) denotes the node weight of x, g(x) de-
notes the minimum cost of path from the root to x(not
include s(x)) and h(x) denotes the minimum cost of
path from x to goal. For a node x which mapped to
the (V l, V u) partition pair, pred(x) is used for back-
tracking shortest path to root, and s(x), g(x), h(x)
are used to record values of follows.

s(x) = Scut(V l, V u)

g(x) =
∑

y 6=x,y∈sp(x)

s(y)

h(x) =
∑

a∈V u

Mcut(a)

where sp(x) denotes the shortest path from root to x.
Starting from the layer−0 root with s(root)= g(root)
=0, h(root) =

∑
u∈V Mcut(u), for a layer−k node x

which mapped to (V l, V u) pair, a layer−k+1 node y
which mapped to (V l ⋃{a}, V u \ {a}) pair, node x
updates node y with follows.

1. s(y) = s(x)− Fin(a) + Fout(a)

2. h(y) = h(x)−Mcut(a)

3. If s(x) + g(x) < g(y) then g(y) is updated with
g(x) = s(x)+g(x), and pred(y) is updated with
pred(y) = x

The admissible function h(x) is used as the heuristic
estimate of cost starting from x to reach goal. Since
h(x) is the lower bound of the actual cost to reach
goal, the algorithm can guarantee finding the optimal
solution. During the shortest path search each node x
with g(x) + h(x) larger than the upper bound of the
DC+BDS approximation solution is pruned to reduce
the search space.

The cumulated cost and the backtrack pointer of
each node are updated layer by layer, and this search
method can be considered as a breadth-first search al-
gorithm. By using the breadth-first search, the optimal
path to each node has been found before the expansion
to next layer. The algorithm traverses various paths
from root to goal. By keeping all the layers of the
search graph in memory, the shortest path from root
to goal can be recovered starting from pred(goal).

Each branch with less optimal solution than the
DC+BDS upper bound can be pruned from the search
graph. Therefore, the efficiency of the A* algorithm is
determined by the difference between the upper bound
from the DC+BDS approximation solution, and the
lower bound from the max-flow-min-cut technique.
Figure 5 shows the search results for using A* al-
gorithm on Example 1. For each node x mapped to
partition pair (V l, V u), M(V u) is shown inside the
node; the (s(x), g(x), h(x)) triplex is shown beside
the node, and each split vertex is shown beside the
backtrack pointer. The search result shows that the
optimal path is [2, 4, 1, 3, 5] with cost 74.

layer 5 —>

layer 4 —>

layer 3 —>

layer 2 —>

layer 1 —>

layer 0 —>

m

m m

m m

m m

m m

m

φ

5 4

4,5 3

3,4 1

2 1,4

1,2 (0,0,58)

(0,74,0)

(18,56,18) (4,74,4)

(22,52,22) (36,20,54)

(40,12,58) (8,12,54)

(28,0,58) (12,0,58)

o

o7

o7

7 7

k 3

1 2

1 4

3 1

5 3

5

Figure 5. The search result from using A* algorithm
on Example 1.

However, since the graph may grow expo-
nentially, this approach cannot be used in a sparse
memory system, and can only be used in a small
DAG or in a subset of complete DAG returned from
the partition-approach algorithm. In a sparse memory
system each layer of nodes can not be stores in mem-
ory at same time. Zhou and Hansen [22] described a
memory-efficient approach to graph searching called
Breadth-First Heuristic Search(BFHS), which
can be used in a partition search graph to reduce the
memory requirement.

Starting from layer−0 root, the layer−k nodes
are used to update the cost and backtrack pointers for
layer−k+1 nodes. Unlike the conventional backtrack
pointer in the breadth-first search that points to the
best layer−k+1 ancestor node, each nodes in layer−k
points to layer−0 root for k < n

2 , and to its best
layer−n

2 ancestor node for k > n
2 .

Since all backtrack pointers are either point to
root or a layer−n

2 node, by retaining all layer−n
2

nodes in memory, each layer−k nodes can be free
from memory after all updates of layer−k+1 nodes
are completed.

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1964 Issue 12, Volume 7, December 2008

After the layer−n goal is constructed and
completely updated, a layer−n

2 relay node, which
is within the optimal path to goal, can be found
from pred(goal). The relay node is used to divide
the search problem into two sub-problems, namely
finding the optimal path from root to the relay node,
and finding the optimal path from the relay node to
goal. Both sub-problems are then solved through
the original search algorithm in order to find the new
relay nodes between root and the old relay node,
and between the old relay node and goal. This
process continues recursively until all nodes in the
optimal path are identified.

By combining the divide-and-conquer strategy
and A* algorithm with pruning capability, nodes can
be constructed and updated layer by layer without
saving the complete search graph in memory.

5 Experimental Results
In this section all proposed algorithms were experi-
mentally compared by measuring their performance
over a large number of randomly generated DAGs
with multiple-source and multiple-sink. To evaluate
the performance of the algorithms over a wide range
of data characteristics, the edge weight of each gen-
erated DAG followed a generalized Zipf distribution.
Let w(i) denote weight of an edge ranked in the ith
position of sorted edge list. The generalized Zipf dis-
tribution is defined as follows.

w(i) ∝ 1
is

1 ≤ i ≤ m

where s is the skew coefficient. For s=0, the Zipf
reduces to uniform distribution with w(i) = 1

m ,
whereas larger values of s derive increasingly
skewered distributions. Each data set of simulation
experiments is from 20 randomly generated DAGs,
and is evaluated for n=50, for m varying from 100 to
300, and for skew factor s in the range 0-2.0.

Table 1 compares the performances of 6 methods;
those results are also compared with the optimum
arrangement solutions from the shortest path search
from partition search graph. The first method is the
lower bound from h(root). Method 2 and 3 involve
the forward sort algorithm with maximum-incident
heuristic and least-cost heuristic, respectively.
Method 4 and method 5 are bidirectional sort and
directed clustering, respectively. Method 6 is the
hybrid DC+BDS algorithm.

Lower bound. The lower bound which utilizes the
max-flow-min-cut theorem, became closer to the
optimal solution as the number of edges increased, or
the edges had an increasingly skewered distribution.

Comparison between maximum-incident and
least-cost heuristic. The least-cost heuristic outper-
formed the maximum-incident heuristic for an edge
weight with a skewered distribution, but performed
worse with a more uniform edge weight distribution.

DC+BDS algorithm. Bidirectional sort algorithm
implements the iterative improvement technique
with both maximum-incident and least-cost heuristic,
and outperforms the algorithm using either only the
maximum-incident heuristic or least-cost heuristic.
Both bidirectional sort and directed clustering were
found to be vulnerable when the number of edges
was small, or the edges had a skewered distribution.
However, the simulation results show that the hybrid
DC+BDS algorithm improves not only the arrange-
ment solution but also the vulnerability of input graph
skewness.

6 Conclusions

This work present a branch and bound method to
convert the directed linear arrangement problem to a
shortest path search problem, and solved with a A* al-
gorithm with an upper limit calculated from a hybrid
DC+BDS algorithm and a lower limit obtained from
the max-flow-min-cut theorem. If the available mem-
ory is insufficient to store an entire layer of nodes, the
solution can also be found using a partial search graph
with only the promising nodes in each layer.

Additionally, analytical results show that the
DC+BDS algorithm, which uses the directed cluster-
ing, in conjunction with the bidirectional sort method,
achieves good quality approximate solutions for a
wide range of edge numbers and skew ratios of edge
weights.

References:

[1] G.M. Adelson-velsky, A. Gelbukh, E. Levner, A
Fast Scheduling Algorithm in AND-OR Graphs,
Applied and Theoretical Mathematics and Com-
puter Science, WSEAS Press, 2001, pp. 170-175.

[2] D. Adolphson and T.C. Hu, Optimal linear order-
ing, SIAM Journal on Applied Mathematics, Vol
25, No 3, 1973, pp. 403-423.

[3] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data
Structures and Algorithms.

[4] Y.D. Chung and M.H. Kim, On Scheduling Wire-
less Broadcast Data, Technical Report CS-TR-98-
134, KAIST, Department of Computer Science,
1998.

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1965 Issue 12, Volume 7, December 2008

Table 1: Comparison of Simulation Results from different algorithms
|E| =100
opt=8.77

|E| =150
opt=11.53

|E| =200
opt=12.65

|E| =250
opt=13.82

|E| =300
opt=14.40

Max-Flow-Min-Cut
Lower Bound 5.56 (-36.49%) 9.34 (-19.00%) 11.20 (-11.41%) 12.92 (-6.48%) 13.78 (-4.32%)

Maximum-Incident 10.40 (+18.67%) 12.16 (+5.49%) 12.93 (+2.26%) 13.94 (+0.92%) 14.48 (+0.51%)
Least-Cost 10.98 (+25.25%) 12.38 (+7.38%) 13.19 (+4.25%) 14.02 (+1.51%) 14.56 (+1.06%)

Bidirectional Sort 9.37 (+6.91%) 11.75 (+1.90%) 12.80 (+1.20%) 13.91 (+0.70%) 14.43 (+0.20%)
Directed Clustering 9.80 (+11.86%) 12.21 (+5.89%) 13.13 (+3.82%) 14.02 (+1.47%) 14.55 (+1.04%)

DC+BDS 9.17 (+4.60%) 11.69 (+1.42%) 12.73 (+0.62%) 13.86 (+0.34%) 14.43 (+0.18%)

(a) s=0 , |V |=50

|E| =100
opt=6.15

|E| =150
opt=8.73

|E| =200
opt=9.72

|E| =250
opt=10.33

|E| =300
opt=10.73

Max-Flow-Min-Cut
Lower Bound 4.49 (-26.97%) 7.42 (-14.99%) 8.84 (-9.06%) 9.82 (-4.98%) 10.38 (-3.17%)

Maximum-Incident 8.62 (+40.30%) 10.23 (+17.15%) 10.44 (+7.40%) 10.86 (+5.04%) 11.06 (+3.09%)
Least-Cost 8.65 (+40.71%) 10.25 (+17.32%) 10.55 (+8.50%) 10.66 (+3.15%) 10.90 (+1.59%)

Bidirectional Sort 7.08 (+15.27%) 9.20 (+5.34%) 10.00 (+2.84%) 10.47 (+1.29%) 10.82 (+0.89%)
Directed Clustering 7.90 (+28.55%) 9.50 (+8.82%) 10.41 (+7.03%) 10.72 (+3.75%) 10.97 (+2.26%)

DC+BDS 6.45 (+4.93%) 8.98 (+2.88%) 9.89 (+1.69%) 10.41 (+0.75%) 10.79 (+0.57%)

(b) s=1.0 , |V |=50

|E| =100
opt=5.18

|E| =150
opt=9.58

|E| =200
opt=10.90

|E| =250
opt=11.34

|E| =300
opt=11.84

Max-Flow-Min-Cut
Lower Bound 4.75 (-8.15%) 9.08 (-5.26%) 10.60 (-2.75%) 11.13 (-1.89%) 11.73 (-0.92%)

Maximum-Incident 9.36 (+80.76%) 12.38 (+29.10%) 12.27 (+12.48%) 12.73 (+12.27%) 12.57 (+6.21%)
Least-Cost 9.38 (+81.22%) 11.64 (+21.42%) 11.44 (+4.90%) 11.88 (+4.79%) 12.08 (+2.00%)

Bidirectional Sort 6.03 (+16.57%) 10.17 (+6.08%) 11.40 (+4.56%) 11.49 (+1.35%) 11.93 (+0.78%)
Directed Clustering 11.14 (+115.19%) 11.71 (+22.12%) 11.78 (+8.01%) 12.29 (+8.34%) 12.37 (+4.53%)

DC+BDS 5.41 (+4.50%) 9.99 (+4.24%) 11.15 (+2.27%) 11.48 (+1.24%) 11.92 (+0.65%)

(c) s=2.0 , |V |=50

[5] Y.D. Chung, S. Bang, M. Kim, An efficient
broadcast data clustering method for multipoint
queries in wireless information systems, The
journal of Systems and Software, 2002, pp. 173-
181.

[6] C. Ding, X. He, H. Zha, M. Gu, H. Simon,
A Min-max cut algorithm for graph partition-
ing and data clustering. IEEE 1st Conference on
Data Mining, 2001, pp. 107-114.

[7] M. Ganapathy, S. Lodha, On Minimum Circu-
lar Arrangement, Lecture Notes in Computer Sci-
ence, Vol 2996, 2004, pp. 394-405.

[8] A.K. Jain, M.N. Murty, P.J. Flymn, Data Cluster:
a review. ACM Computing Surveys, Vol 31, No 3,
1999, pp. 264-323.

[9] T. Kaji, A. Ohuchi, A simulated annealing al-
gorithm with the random compound move for
the sequential partitioning problem of directed
acyclic graphs, European Journal of Operational
Research, Vol 112, No 1, 1999, pp. 147-157.

[10] D. Karger, Global Min-cuts in RNC and other
ramifications of a simple Min-cut Algorithm,
Proc. ACM-SIAM Symp. Discrete Algorithms,
1993, pp. 21-30.

[11] S. Kotsiantis, P. Pintelas, Recent Advances in
Clustering: A Brief Survey, WSEAS Transactions
on Information Science and Applications, Vol 1,
No 1, 2004, pp. 73-81.

[12] K.C. Lai, C.M. Lee, J.F. Fang, A Critical Pre-
decessor Duplication Scheduling Algorithm for
Distributed Heterogeneous Computing Environ-
ments, Proceedings of the 5th WSEAS Interna-
tional Conference on Telecommunications and
Informatics, 2006, pp. 497-502.

[13] Z. Liu, B. Fang, Y. Zhang, J. Tang, A Schedul-
ing Algorithm for an Out-Tree DAG, The Fourth
International Conference on High-Performance
Computing in the Asia-Pacific Region, Vol 1,
2000, pp. 327-328.

[14] E. Milkova, Combinatorial Optimization: Mu-
tual Relations among Graph Algorithms, WSEAS
Transactions on Mathematics, Issue 1, Vol 7,
January 2008, pp. 293-302.

[15] H. Pan, R.J. Willis, C.H. Yeh, Resource-
constrained Project Scheduling with Fuzziness,
In Advances in FUZZY Systems and Evolutionary
Computation, WSEAS Press, 2001, pp. 173-179.

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1966 Issue 12, Volume 7, December 2008

[16] S. Patkar, H. Sharma, H. Narayanan, Efficient
Network Flow based Ratio-cut Netlist Hyper-
graph Partitioning, WSEAS Transactions on Cir-
cuits and Systems, Vol. 3, No. 1, January 2004,
pp. 47-53.

[17] R. Sakellariou, H. Zhao, A Hybrid Heuristic
for DAG Scheduling on Heterogeneous Systems.
Proceedings of 13th Heterogeneous Computing
Workshop, Santa Fe, NM, 2004, pp. 111-124.

[18] Y.G. Saab, A Contraction-based ratio-cut Parti-
tioning Algorithm, VLSI Design, Vol 15, No 2,
January 2002, pp. 485-489.

[19] W.J. Sun, C. Sechen, Efficient and effective
placement for very large circuits, IEEE Trans-
actions on Computer-Aided Design of Integrated
Circuits and Systems, Issue 3, Vol 14, Mar 1995,
pp. 349-359.

[20] D. Tsaih, G.M. Wu, C.B. Wang, Y.T. Ho, An
Efficient Broadcast Scheme for Wireless Data
Schedule Under a New Data Affinity Model, Lec-
ture Notes in Computer Science, Vol 3391, 2005,
pp. 390-400.

[21] D.Z. Wang, J.S. Zhan, F. Wan, L. Zhu, A Dy-
namic Task Scheduling Algorithm in Grid Envi-
ronment. Proceedings of the 5th WSEAS Inter-
national Conference on Telecommunications and
Informatics, 2006, pp. 273-275.

[22] R. Zhou, E. Hansen, Breadth-first heuristic
search, Proceedings of the 14th International
Conference on Automated Planning and Schedul-
ing, Whistler, British Columbia, 2004, pp. 92-
100.

WSEAS TRANSACTIONS on COMPUTERS
Derchian Tsaih, Guangming Wu, Chiehyao Chang,
Shaoshin Hung, Chinshan Wu, Huiling Lin

ISSN: 1109-2750 1967 Issue 12, Volume 7, December 2008

