
An Object-Oriented Framework with Corresponding
Graphical User Interface for Developing Ant Colony Optimization

Based Algorithms

 RAKA JOVANOVIC MILAN TUBA DANA SIMIAN
 Institute of Physics Faculty of Mathematics Department of Computer Science

 Belgrade University of Belgrade Lucian Blaga University of Sibiu
 Pregrevica 118, Zemun Studentski trg 16 5-7 dr. I. Ratiu str.

 SERBIA SERBIA ROMANIA
 rakabog@yahoo.com tubamilan@ptt.rs d_simian@yahoo.com

Abstract: - This paper describes GRAF-ANT (Graphical Framework for Ant Colony Optimization), an object-
oriented C# framework for developing ant colony systems that we have developed. While developing this
framework, abstractions that are necessary for ant colony optimization algorithms were analyzed, as well as the
features that their implementing classes should have. During creation of these classes, several problems were
solved: implementation of individual ants and ant colonies, connection between visualization and problem
spaces, creation of a multithread application in which multiple ant colonies can communicate, creation of a
problem independent graphical user interface (GUI), establishing an opportunity for hybridization of ACO (Ant
colony optimization). Effects of this hybridization to different variations of ant colony systems is analyzed. The
use of the GRAF-ANT and its suitability is illustrated by few instances of the Traveling Salesman Problem
(TSP). We also present a concept of escaping ACO stagnation in local optima, named suspicious path
destruction, that is also a part of GRAF-ANT.

Key-Words: Ant colony system, Evolutionary computing, Combinatorial Optimization, Swarm Intelligence

1 Introduction
A large number of problems necessary to be solved
by industry and business are in their source
combinatorial. Problems like truck routing, facility
positioning, production scheduling, fall into this
group, and in some cases, they are even NP-
complete. There are no known algorithms for
finding the optimal solution of NP-complete
problems in polynomial time [1]. When solving
these problems in real life situations, like production
planning, it is not necessary to have the best overall
solution, but a near optimum is adequate in many
cases. A large number of different methods for
finding near optimal solutions exist, like the use of
simple heuristics, greedy algorithms, a Monte Carlo
approach, up to more complex local search methods
like Tabu Search [2], and Simulated Annealing
(SA) [3]. Another concept is using population based
metaheuristic like Genetic algorithms (GA) [4], [5],
[6] or swarm algorithms for solving this type of
problems.
 Swarms are collective systems capable of
accomplishing complex tasks in dynamic system
without any external guidance. The observation of
ant colony behavior has inspired a metaheuristic
method called the Ant Colony Optimization (ACO)

[7], which has in some cases given better results
than GA and SA [8], especially in dynamic systems.
 A large number of different problems have been
solved by using ACO, and in most of the cases new
specialized software was created for this task. Some
software implementations of this group like
ACOTSP, ANTNET, GUIAnt-Miner with their
source code are available under a General Public
License (GPL). They can be freely downloaded at
the IRIDIA research group website in the section for
ACO public software at the following address
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/
public-software.html. They can be used as
guidelines for creating new specialized software.
Their source code can even be modified for new
problems, but in most cases, it is easier to create
completely new software. ANT-C is an
implementation of ACO developed in the C
programming language [9] that could be used as a
base for new applications, but has a significant
drawback of not being object oriented. It is well
known that an object-oriented approach is a good
methodology for creating reusable code and
modular software when solving a group of similar
problems. Ugo Chirico has created an object-
oriented framework for solving problems with ACO

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1948 Issue 12, Volume 7, December 2008

mailto:rakabog@yahoo.com
http://iridia.ulb.ac.be/%7Emdorigo/ACO/aco-code/

in Java (Java Framework for Ant Colony Systems
JFACS)[10]. but this package has some major
disadvantages. There is no available graphical user
interface (GUI) and the concept of threading is
implemented by attaching different ants to threads
instead of the more efficient approach of multiple
ant colony systems in which a different colony is
simulated in a different thread.
 In this paper, we present a new object oriented
framework for ant colony systems, GRAF-ANT
(Graphical Framework for Ant Colony
Optimization) that we developed in C#. It solves
some of the existing problems of developing new
ACO algorithms. This paper is organized as follows.
In Section 2 we show the basics behind the AC
algorithm. In Section 3 we give the guidelines for
creating abstractions that are needed for this type of
framework. In Section 4 we explain a hybridization
implemented in GRAF-ANT that is used for
escaping from ACO stagnation. In Section 5 we
give an example of using our framework for the
traveling salesman problem (TSP). In the final
Section 6 we show results of using the hybridization
from Section 4 on the TSP and do analysis of the
effects, combined with different variations of ACO.

2 Ant Colony Optimization
The basic idea of ACO is to imitate the behavior of
ants in a colony while gathering food. Each ant
starts from the nest and walks toward food. It mov
until it reaches an intersection, where it decides
which path to take. In the beginning it seems as a
random choice, but after some time the majority of
ants are using the optimal path (Fig. 1). Another
important property of ant colony behavior is the
ability of reconnecting a broken line after a sudden
appearance of an unexpected obstacle has
interrupted the initial path. This is possible because
the colony works as a group and not just as
individual ants, and the way it is achieved is by
using pheromone as a collective memory for the
ants in the colony. The pheromone is used in the
following way. Each ant deposits pheromone while
walking, which marks the route taken. The amount
of pheromone indicates the usage of a certain route.
Pheromone trail evaporates as time passes. Due to
this, a shorter path will have more pheromone
because it will have less time to evaporate before
new pheromone is deposited. The colony behaves
intelligently because each ant chooses paths that
has more pheromone.

es

There are many different ways of converting the
presented behavior into a computational system. We

 Fig. 1: Ant colony behavior over time

accept the one presented by Marco Dorigo and Luca
Maria Gambardella [11], with small modifications

{ } 0

0

a rg m ax ,

,
k

rs rsu M
q q

s
S q

βατ η
∉

⎧
⎪
⎨
⎪
⎩

≤
=

> q
 (1)

,

0 ,
k

rs rs
k

k ru rurs u M

k

s M
p

s M

βα

βα
τ η
τ η

∉

⎧
⎪
⎪
⎨
⎪
⎪⎩

∉
=

∈

∑ (2)

 Equations (1) and (2) describe the probabilistic
decision method that an artificial ant k, currently at
node r, after visiting nodes in Mk uses for choosing
the next node s.
• q is a random variable chosen uniformly from

[0, 1]
• q0 is a predefined parameter that gives us a

balance between exploitation (use of known
good paths, q<=q0) and exploration (search for
new paths, q>q0).

• In the case of exploitation, the next node is
selected by the highest value of τrs

α ηrs
β where

τrs is the value corresponding to the amount of
pheromone deposit on edge connecting r and s,
and ηrs is the value of some heuristic for the
same edge.

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1949 Issue 12, Volume 7, December 2008

• α, β are predefined parameters that specify the
influence of pheromone and heuristic. In the
case of exploration, the next node is chosen at
random with a probability distribution given by
Equation (2), where prs is the probability of
choosing edge rs.

 The pheromone trail is maintained using two
types of updates. Global update is used to reward
good paths, or in other words, more pheromone
should be deposited on better paths, which is
obtained by the following formula

(1) ,k k

ij ije e ij Bτ τ τ= − + Δ ∀ ∈ (3)

Bk is the set of all edges in the path ant k used, Δτk is
the quality of that solution, and e is a predefined
constant .The local updating is used to avoid
creation of a very strong edge used by all ants, and it
emulates pheromone evaporation. Every time an ant
chooses an edge, it loses some pheromone by the
following formula where τ0 is a predefined constant.

0(1)ij ije eτ τ τ= − + (4)

 The presented AC heuristic has the following
desirable characteristics:

• It is versatile, in that it is easy to be applied to
similar versions of the same problem; for
example, there is a straightforward extension
from the traveling salesman problem (TSP) to
the asymmetric traveling salesman problem
(ATSP).

• It is robust. It can be applied with minimal
changes to other combinatorial optimization
problems such as the quadratic assignment
problem (QAP) and the job-shop scheduling
problem (JSP).

• It is a population-based approach. This is
interesting because it allows the exploitation of
positive feedback as a search mechanism. It also
makes the system amenable to parallel
implementations

3 GRAF-ANT Framework Analysis
A framework is a special kind of software library
that is similar to an application program interface
(API) in the class of packages that make possible
faster development of applications. Big difference is
that, while an API consists of a set of functions that
user calls, a framework consists of a hierarchy of
abstract classes. The user only defines suitable

derived classes that implement the virtual functions
of the abstract classes. Frameworks are
characterized by using the inverse control
mechanism (also known as the Hollywood
principle:” Don’t call us, we’ll call you”) for the
communication with the user code: the functions of
the framework call the user-defined functions and
not the other way round. The framework thus
provides full control structures for the invariant part
of the algorithms and the user only supplies the
problem-specific details.
 ACO can be applied to a large number of
different problems[12][13] [14]. Due to this, the
idea of creating a framework that can be used for
different types of problems appears naturally, and
was exploited a number of times [15] [16].
 When developing this type of system, the aspects
of creating a useful GUI and the possibility of easy
visualization of the problem being solved as well as
the progress of the ACO are usually neglected. ACO
algorithms are very sensitive to input parameters
that define the ant colony behavior [17]. The
optimal values are obtained from a large number of
tests. This process is more efficient when a good
visualization and GUI are accessible. To answer
these needs, GRAF-ANT is being developed in C#
because of its powerful GUI development tools. In
our framework, we have created a base abstract
class that implements some basic visualization for
graph problems. It is named RAntVisualiserAbstract
and is inherited when different or more precise
visualization is needed for specific problem. This
greatly decreases the time of developing ACO
applications due to avoiding of redundant
programming. The other purpose of this class is to
keep problem information that is in not directly
associated with the ACO algorithm. An example
would be the positions of nodes in the TSP, because
for the implementation of ACO we only need the
distances between cities. A separate abstract class
named RAntGraphAbstract is used as a base class
for keeping information about problem and
calculation variables that are important for ACO
like heuristics, pheromone trail, and cost. The
connection between visualization and these
variables is very strong and is not only graphical
presentation of the solution. In some cases it is
easier and even necessary to determinate the
problem variables from given visualization [18].
Our framework leaves this direction of
communication open.
 The next important part of the ACO is
implementation of individual ant behavior and this
task is done through the specification of the class
RAntAbstract. This class has some methods that

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1950 Issue 12, Volume 7, December 2008

need to be implemented for each specific problem
like GetNextHeuristicStep(), CalcProbability-
Distribution(). It also implements some common
needs for these types of classes like local path
update, getting a value from a probability
distribution, keeping track of a path. In many cases,
the path that ants create is not just a simple array of
node indices, but a structure with some properties,
and constraints. Several different steps of the
algorithm implementation use the path created by
ants, and it should be possible to visualize a path in
the GUI. That is why we created a new abstraction
RAntGraphPathAbstract that implements some of
the common path manipulation methods and is used
for communication between different classes in
GRAF-ANT.
 Class RAntColonyAbstract implements standard
colony methods like control of the best path found
so far, iteration counting, checks for stagnation of
the algorithm. The basic ACO system presented in
Section 1 has large number of improvements and
variations that are used to enhance performance and
avoid falling into local optima. Some of them can be
implemented independently to a certain level of the
problem being solved, and in other cases just some
parts of the program code should be edited. In our
framework, we have abstracted variations of the
basic ACO into class RAntColonyAbstract. These
variations are explained in detail in article [17] for
the TSP problem. GRAF-ANT implements the
following

• Elitist Ant System in which only the best path is
reinforced in ant colony iterations.

• Elitist Reinforcement Ant System in which the
best path is reinforced with more pheromone.

• Min-Max Ant System (MMAS) in which the
strength of the pheromone trail is confined to
the interval [TMin, TMax]. TMin is calculated at
the beginning of the search depending on the
problem data. TMax is calculated dynamically
depending on the best path found so far.

• Rank Based Ant System in which the amount of
pheromone being deposited by an ant does not
only depend on the quality of the solution. The
idea is that when all ants have completed their
paths to sort them by the quality of their path,
and depending on their rank to decide the
amount of pheromone they will leave.

 Hybridization of ACO algorithms in many cases
results in significant improvement of their efficiency
[19]. Hybridization usually consists of combining
ACO with other methods for solving combinatorial
problems mentioned in the introduction. Regardless
of the hybridizations being used, the effect on the

basic ACO, can be divided into two groups.
RAntColonyAbstract has the possibility of
hybridization in the directions of adding local
searches to elevate the quality of paths found, or the
possibility of pheromone trail correction when the
algorithm has reached stagnation. We have
implemented, to our knowledge, a novel concept to
pheromone trail correction that we called suspicious
path destruction. The following section explains
this method in detail.
 When developing an ACO the idea of paralleli-
zation has at first been exploited with the concept of
using different processors for calculating the
movement of different ants, but this was not the
most powerful approach. Similarly to GA, where it
is more efficient to have N islands of populations of
M members rather than one island with population
of NM members, ACO is generally more efficient
when it has more small colonies of ants rather than
one big colony [20]. Creating an ACO system with a
multiply colonies today is especially powerful when
multiprocessor machines are becoming a standard
and parallel computing is more and more
available[21]. Due to that, multithreaded
applications are becoming increasingly effective.
This means that multiple colonies can be calculated
in separate threads. GRAF-ANT implements a multi
colony approach through the base class RantColony-
ClusterAbstract. When working with multiple
colony system the communication between the
colonies is very important [22]. There is a variety of
different approaches used, from what is going to be
exchanged between them, to the topology of the
communication. We have chosen to use the best-so-
far path instead of the whole pheromone trail matrix
for communication between colonies. It should be
understood that GRAF-ANT is not a high
performance application, but a system for
developing new ACO. ACO applications are often
used in networks for parallel processing and some
analysis of their performance in this type of systems
is needed. For this reason, we decided to emulate
the following network topologies presented in [6].

• Fully connected in which the best overall
solution has been found and is distributed to all
other colonies

• Replace worst in which the best solution is only
distributed to the worst colony

• Ring in which the colony i exchanges its best
solution with colony ((i+1)%k) and colony
((i-1) % k)

• Parallel independent runs in which colonies run
independently and the best solutions is the best
one over all colonies.

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1951 Issue 12, Volume 7, December 2008

 Ant colonies with different behavior advance
towards the solution of the problem by different
speeds and sometimes even in different directions.
The behavior of an ant colony is defined by the
variant of ACO being used and the calculation
parameters, and in different steps of the search
different behavior is more desirable. When we have
a multiple colony system, some types of colonies
can act complementary to each other. For example,
ones with high and low exploration levels are
complementary. Good combination of different
colonies behavior can greatly increase the efficiency
of the whole system. In GRAF-ANT the search for
this optima has been enhanced with good
visualization and an easy way to test different
parameter values.
 Because of the significant dependence of ACO
performance on behavior parameters, it was
important to create an effective GUI. To achieve
this effectiveness the GUI had to have the following
characteristics:

• Easy input and adjustment of parameters in
several different groups. These groups are: ant
colony decision parameters, ant colony
variation and hybridization parameters,
problem visualization and characteristics
parameters, multi-colony system parameters.

• A possibility of having control over random
seeds for better evaluation of the effect of
parameter changes.

• Easy approach to each colony in the multi-
colony system for observing current state of
search progress and changing parameters

• Changing parameter values for several colonies
simultaneously in multi-colony systems

• Possibility of viewing the state of pheromone
trail

• Real time reaction to parameter changes
• Possibility of comparing visual results of

search for different colonies in the multi-
colony system

• Adaptability of the GUI for a wide range of
problems possibly solved by ACO

• Adding the possibility of enlarging GRAF-
ANT GUI with new dialogs created by the
developers of ACO Modules.

• Selecting different ACO modules
• The possibility of loading and saving

parameter settings
• Saving ant colony search results for further

analysis.

In GRAF-ANT we have implemented these features
as a part of the GUI. The GUI is connected to a

particular problem through the abstract classes
mentioned earlier. We choose to develop GRAF-
ANT in C# because it was obvious that
augmentation of the basic GUI will be needed for
specific problems, and C# makes this easy through
its property grid component and its relationship
properties in classes.
 In Fig. 2 and 3 we can view the GUI for TSP.
We notice that parameters for colonies and the
multi-colony system are located in different tab
controls. In each of them groups of parameters are
placed in separate tab-pages. On the left side of Fig.
2 we see the best path in red and the current
iteration path in blue.

Fig. 2: A screenshot of GRAF-ANT application for
the TSP

This screen is animated in real time for observing
the progress of the algorithm. Real time animation
can be turned of in case that greater speed is needed.
The GUI also has basic control over threads with
colonies for stopping, pausing, restarting, initia-
lizing and saving current results. File operations are
positioned in the standard way in the main menu.
 Strictly speaking, GUI is not a part of the
framework, because it would greatly restrict the
possible uses. On the other hand, the mentioned
GUI features are sufficient for the majority of users.
Even in the case of users for which this type of
visualization is not adequate or is superfluous, it
will be useful in the early tests of the algorithm
being developed. Designing and programming of a
GUI takes a large part of development time for an
application. That is why it is very useful to use
already developed ones.
 At the current stage of development the GRAF-
ANT framework and its corresponding GUI are a
Microsoft Visual Studio 2005 C# project. The
project itself consists of a set of files in which the

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1952 Issue 12, Volume 7, December 2008

abstract framework classes are defined together with
classes that define the GUI. The project also has as
a template an example of the TSP implementation.
When creating a new application of an ACO the
easiest way is to change the example template.

Fig. 3: Part of GRAF-ANT GUI for editing colony
parameters and for viewing numeric results

4 Suspicious Path Destruction
In this section we present a concept of ACO
hybridization for escaping local optima or best path

search stagnation. The idea appeared from
observing the progress of ACO on the Traveling
Salesman Problem (TSP). When the algorithm was
trapped in local optima in many cases it was
obvious from visual observation, which corrections
should be made, or more precisely, what should not
appear in the shortest path. There were two simple
criteria: very long edges and intersecting edges are
very unlikely to be a part of the best path (Fig. 4).

Fig. 4: Example of local optima found with ACO

for TSP with suspicious edges on path

The next step was to find a way to, without major
corrections to the ACO algorithm, remove them
from the ants search path. The solution was to
significantly lower the amount of pheromone on
randomly selected highly suspicious edges
belonging to the best path and to let the colony
resume its search. This was a good approach
because in the case that a suspicious edge was a part
of the optimal path ants would come back to it after
testing alternative routes. This hybridization
improved the quality and calculation time of ACO
for the TSP in most of the tested cases, which will
be shown in the following section. A similar
concept could be used in other applications of ACO.
More formally we need to define a heuristic
function Sus(edge,path) that indicates the level of
undesirability of an edge in a path. Using that
function, we create a random variable for selection
of edges using the following probability distribution

(,) ()
(,) ()xy

xy Bp

Sus xy Bp ExSusepect xyp
Sus xy Bp ExSusepect xy

∈

=
∑ (5)

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1953 Issue 12, Volume 7, December 2008

Bp is the best path, xy is an edge. Just using the
heuristic function for calculating the distribution
was not good enough for a large number of
iterations because the same group of edges would be
selected repeatedly. That is why we added a
correction factor ExSuspect that is used to avoid
selecting the same edges repeatedly. This correction
factor is initially set to 1 for all edges. If an edge xy
is selected, we update ExSuspect as in Equation (6)

1
() ()*

Pass
ExSuspect xy ExSuspect xy Pass

<
=

 (6)

In the case that the best path has improved, we also
need to update correction values

1

() min(1, *)

NewEv
A Edges

ExSuspect A ExSuspect NewEv

<
∀ ∈

=

(7
)

This correction maintains the starting logic of
suspicion because, like in the real world, when a
suspect passes interrogation he becomes less likely
that he has committed a crime, and in the case of
new evidence, suspicion can return. When solving
particular problems, there could be a need for
adding alterations to distribution from Equation (5).
Like in the case of the TSP, a pair of intersecting
edges would be considered as one suspicious edge.
The next step is to select up to N edges from the best
path for the set Suspects and apply the Equation (6).
δ is a predefined parameter.

,xy xy xy Suspectsτ δτ= ∀ ∈ (8)

In the case of the TSP, the appearance of inter-
secting edges could have been avoided by using a
local search or some correction method for newly
found paths. This could mislead to the idea that a
good local search could be a much better solution
for this type of problem in the general case also,
using the logic of ‘Better safe than sorry’. This is
wrong for a number of reasons.

• Correction of suspicious edges in most cases is
a more complex problem to be solved than just
recognizing them

• When using this approach, ants in fact perform a
guided local search with a minimal change to
the original code

• Suspicious edges are sometimes a part of the
best solution, and totally avoiding them with
local search could lead to local optima

• More information is passed to all the ants by
adding a new heuristic that analyses the
characteristics of the solution independently
from the rest of the problem

• The path correction is conducted only when
stagnation appears and not for all newly found
good paths like it would be done with a
correction method used by individual ants.

5 Implementation of the TSP
In this section, we illustrate the use of the GRAF-
ANT framework with the TSP problem. Fig. 5
shows an UML model of GRAF-ANT and its
expansion with classes for implementing TSP.
First, we wish to point out that there is a large
number of connections between classes in our
framework through composition, aggregation, and
dependence due to the complexity of the multi-
colony system. The user of the framework is
isolated from this complexity because he only needs
to specialize certain classes. When creating the TSP
module we need to create new inherited classes as
seen in Fig. 5. First, we create RAntVisualiserTSP
from RantVisualiserAbstract; in this case we do not
need to override function Visualise for drawing the
problem and ShowPath for path found by ants
graphical representation.
 The base class has implemented drawing nodes
at certain positions and drawing lines between them
as default. In some cases it is very useful to view the
state of the pheromone trail and to do this we
override the method ShowTrail, This is not an
obligatory step, and we did not do it for the TSP.
We also create class RAntGraphTSP in which we
need to implement calculating of cost and distance
from RAntVisualisationTSP; in our case it will be
simple Euclidean distance. This is done by
overriding a constructor that uses as a parameter
RAntVisualisationAbstract. RAntGraphPathTSP is
the same as its base class because it has no
constraints except nodes in the path being unique, a
check for more constraints is done in the virtual
member function CheckNewNode(). RAntTSP needs
some extra code in the constructor to create
properties for graph, path and visualization of class
types corresponding to the TSP. The initialization of
the search path for each ant is another problem,
specific point of ACO. We divided this into two
virtual methods: one in the path abstraction Reset,
and ResetPath in the ant abstraction class. In the

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1954 Issue 12, Volume 7, December 2008

case of our problem, we just set the first element of
the path to a random city. Classes RAntColonyTSP,
RAntColonyClusterTSP are the same as their base
classes, except for overriding methods like
CreateAnts and CreateColonies for creating arrays
or array objects of a procreate classes. When we
have created all of the classes for our problem, the
connection to the GUI needs no extra lines of code.
The class RAntColonyClusterAbstract links the
colonies, parameter groups to the GUI.

Fig. 5: UML diagram of implementation of TSP

6 Tests and Results

We performed an experimental analysis of the effect
of suspicious path destruction (SPD) to different
ACO variations. It is important to test the effect of
SPD on all the standard variations because none of
the variants can be the considered as the most
effective. We used our framework to create an
application for testing the effects of SPD. To
achieve this we needed to implement virtual
function ConstantGraphCorrectection() in
RabstractAntColonyTSP. We considered long edges
and pairs of interesecting edges as suspicious. We
used the SPD through two separate methods, one
for long edges and one for intersecting ones. In the
case of length suspision, the heuristic function was
the rank of the edge in the best path, and in
intersection suspision it was a 0,1 depending if
intersections occures or not. It is interesting to
mention that information needed for calculating
intersecting edges (positions of nodes) was inside
Rvisualiser, which proves ones again that strong
connection between visualisation and ACO
algorithm is more powerful than it seems at first
glance.
 In our tests we have used the following
parameters for defining the ACO algorithm q0 = 0.3,
α= 2, β= 0.1, e = 0.1 and τ0 is calculated as
suggested in [5], and the colony had 10 ants. For the
Rank based variation of ACO the number of
significant ants was 5. The criterion for stagnation
was the absence in improvement of the best path for
more than 20 colony iterations, and the value of δ =
0.01. For each variation with or without DSP, we
preformed 10 different tests and recorded the best
path length for all the tests, the iteration on which it
was found, and the average path value. We
performed tests for the TSP with 50, 100 and 150
cities on randomly generated city positions .

Variation Best

Value
Best Value
Iteration

Avg

Basic 6.751 631 6.802
Basic SPD 6.155 1302 6.459
Elitist 6.376 402 6.500
Elitist SPD 6.191 1628 6.413
Elitist Reinforce 6.595 1409 6.670
Elitist R SPD 6.448 519 6.544
Rank Based 6.621 279 6.637
RB SPD 6.256 362 6.445
MMAX 6.307 401 6.573
MMAX SPD 6.448 1302 6.532

Table 1. TSP for 50 cities the maximum possible

number of iterations was 2500

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1955 Issue 12, Volume 7, December 2008

We can see from Tables 1, 2 and 3 that,
independent from the problem size, in the majority
of cases the same variation of ACO would give
better results if SPD hybridization was added.

Variation Best

Value
Best Value
Iteration

Avg

Basic 9.005 2959 9.136
Basic SPD 8.754 984 9.041
Elitist 8.734 1172 8.908
Elitist SPD 8.656 2751 8.813
Elitist Reinforce 8.764 533 9.029
Elitist R SPD 8.869 2963 8.975
Rank Based 9.154 3322 9.202
RB SPD 8.852 843 8.924
MMAX 8.869 2401 8.942
MMAX SPD 8.718 1709 8.951

Table 2. TSP for 100 cities the maximum possible

number of iterations was 3500

The effect is greatest for the basic ACO. It is
important to notice that when using SPD, it does not
only get a better solution but it also falls into
stagnation at a higher number of iterations. SPD
could have been improved if more criteria where
added, like the case of 4 consecutive nodes in a path
forming a non-convex quadrangle, but in our case
we just wished to show its effectives, even with
simple and easy tests.

Variation Best

Value
Best Value
Iteration

Avg

Basic 10.932 1372 11.181
Basic SPD 10.284 360 10.371
Elitist 9.932 742 10.698
Elitist SPD 9.979 3611 10.068
Elitist Reinforce 10.844 959 10.972
Elitist R SPD 10.077 1503 10.364
Rank Based 10.509 3343 10.625
RB SPD 10.113 1624 10.317
MMAX 10.669 2179 10.902
MMAX SPD 10.017 3101 10.451

Table 3. TSP for 150 cities the maximum possible

number of iterations was 4000

7 Conclusion
It has been shown that C# is a good choice for
creating an ant colony system framework
because of its good GUI development tools and
the simplicity of creating multi-thread
applications. A good GUI is very important

when developing and using ACO algorithms.
Result quality obtained by using ACO is highly
dependent on colony behavior parameters. That
is why we have to have an effective an easy
way of testing numerous parameters for getting
their best possible values and that can be
achieved by having a good GUI. We have
abstracted different types of ACO variations
that are implemented regardless of the problem
being solved. In the future we also plan to add
the hyper-cube framework concept as a
variation. While developing GRAF-ANT we
have anticipated the possibility of some ACO
hybridization and created classes with which
this could be easily done when creating
applications for solving particular problems.
We considered two types of hybridization:
adding local searches and pheromone trail
correction in case of colony search stagnation.
It has been presented in a large number of
articles that a multi-colony approach for ACO
greatly increases its efficiency when conducting
parallel computing. That is why we added the
possibility of experimenting with this type of
system to GRAF-ANT. Multi-colony systems
are usually connected with network calculations
so we decided to emulate several standard
network communication methods for testing
purposes. A pheromone trail correction method
based on the concept of destroying suspicious
parts of the best-found path is presented. We
used our framework to create an application for
the TSP. With it, we tested the SPD method in
combination with all standard variations of
ACO and it gave good results. When
performing these tests the convenience of a
powerful GUI, combined with a multi-colony
system that allows a large number of
simultaneous colonies to run, has greatly
simplified the process of retrieving results. A
framework that implements all the previously
mentioned qualities can greatly decrease the
developing time for new ACO algorithms, both
by avoiding programming of redundant code
and by quick parameter testing which was the
goal of GRAF-ANT. At the present stage of
development, GRAF-ANT needs full GUI
application code to be compiled when using it
with the framework, but in the future, we plan

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1956 Issue 12, Volume 7, December 2008

to turn it into a plug-in system to further
simplify the creation of new ACO algorithms.
References:
[1] Garey, M.R.; Johnson, D.S. Computers and

Intractability: A Guide to the Theory of NP-
Completeness. New York: W.H. Freeman, 1979

[2] L.Vogt,C. A. Poojari,J.E Beasley, A tabu
search algorithm for the single vehicle routing
allocation problem, Journal of the Operational
Research Society, Vol. 58, No. 4, 2007 , pp.
467-480

[3] Kirkpatrick S. and Gelatt C. D. and Vecchi M.
P., Optimization by Simulated Annealing,
Science, Vol 220, No. 4598, 1983, pp. 671-680.

[4] Sancho Salcedo-Sanz, Xin Yao, Assignment of
cells to switches in a cellular mobile network
using a hybrid Hopfield network-genetic
algorithm approach, Applied Soft Computing,
Vol. 8 , No. 1, 2008, pp 216-224

[5] Der-Horng Lee , Hui Qiu Wang, Lixin Miao,
Quay crane scheduling with non-interference
constraints in port container terminals,
Transportation Research Part E, Vol.44 ,No.
1, 2008, pp.124–135

[6] M. Manfrin, M. Birattari, T. St¨utzle, and M.
Dorigo, Parallel ant colony optimization for the
traveling salesman problem, Proceedings of
ANTS 2006, ser. LNCS, M. Dorigo et al., Eds.,
vol. 4150.Springer Verlag, 2006,, pp. 224–234.

[7] Dorigo M, Maniezzo V: Ant Colony system:
Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man
and Cybernetics - Part B Vol. 26, No.1, 1996,
pp. 29-41

[8] Kwee Lim, Yew-Soon Ong,Meng Lim,
Xianshun Chen, Amit Agarwal,, Hybrid ant
colony algorithms for path planning in sparse
graphs, Soft Computing, Vol. 12, No 10, 2008 ,
pp. 981-994

[9] Samdani Saurabh Arun, Ant Colony
Optimization,
http://www.geocities.com/saurabhsamdani/aco.
html, Accessed November 2008

[10] Ugo Chirico, A Java Framework for Ant
Colony Systems,
http://www.ugosweb.com/Documents/jacs.aspx,
Accessed November 2008

[11] Dorigo M, Gambardella LM: Ant colonies for
the traveling salesman problem. BioSystems
Vol. 43 No.2 ,1997, pp.73-81.

[12] Vlachos Aristidis, An Ant Colony Optimization
(ACO) algorithm solution to Economic Load
Dispatch (ELD) problem, WSEAS Transactions
on Systems, Vol 5, No, 2006, pp. 1763-1771

[13] Bouktir T. and Slimani L., Optimal power flow
of the Algerian Electrical Network Using
Genetic Algorithms, WSEAS Transactions on
Circuit and Systems, Vol. 3, No. 6, p.1478-
1482, 2004.

[14] Usman Ali, Shahid Khan, Ant Colony System
Vector Quantization, Effect on Image Data
Hiding, WSEAS Transactions on Information
Science and Applications, Vol. 1, No 6, 2004,
p.1650-1655

[15] Blum, C. Dorigo, M., The hyper-cube
framework for ant colony optimization,
Transactions on Systems, Man, and
Cybernetics, Part B, Vol. 34, 2004, No. 2, pp.
1161-1172

[16] A.Brocco, B.Hirsbrunner, M.Courant,
Solenopsis: A Framework for the development
of Ant Algorithms, Swarm Intelligence
Symposium, 2007. SIS 2007. IEEE Vo , Issue ,
1-5 April 2007 pp. 316 – 323

[17] D. Asmar and A. Elshamli and S. Areibi. A
Comparative Assessment of ACO Algorithms
Within a TSP Environment, In 4th
International Conference on Engineering
Applications and Computational Algorithms,
Guelph, Ontario, Canada, July 2005.

[18] Liu Nan, Huang Bo and Xiaohong Pan, Using
the Ant Algorithm to Derive Pareto Fronts for
Multiobjective Siting of Emergency Service
Facilities, Journal of the Transportation
Research Board, No. 1935, 2005, pp. 120–129.

[19] Feng Y J, Feng Z R, Ant colony system
hybridization with simulated annealing for
flow-shop scheduling problems. WSEAS
Transaction on Business and Economics, Vol.
1, No. 1, 2004, p. 133-138

[20] R. Michels, M. Middendorf, An island model
based Ant system with look ahead for the
Shortest Super sequence problem, Parallel
Problem Solving from Nature — PPSN V,
Springer, 1998

[21] Laurentiu Rudeanu, Mitica Craus, Parallel
Implementation of Ant Colony Optimization
for Travelling Salesman Problem, WSEASs
Transactions on Systems, Vol. 3, No. 3, 2004,
pp. 1161 -1166

[22] I. Ellabib, O. Basir and P.H. Calamai, `A
multiple Ant Colony System with different
communication strategies', World Scientific and
Engineering Academy & Society (WSEAS)
Transactions on Systems, Vol. 6, 2005, pp.
663-670.
Research for this paper is part of the Project
144007, Ministry of Science, Republic of
Serbia

WSEAS TRANSACTIONS on COMPUTERS Raka Jovanovic, Milan Tuba, Dana Simian

ISSN: 1109-2750 1957 Issue 12, Volume 7, December 2008

http://www.geocities.com/saurabhsamdani/aco.html
http://www.geocities.com/saurabhsamdani/aco.html
http://www.ugosweb.com/Documents/jacs.aspx

