
A Comparison of Multi-Agents Competing for Trading Agents
Competition

DAN MANCAS*

STEFAN UDRISTOIU**
ECATERINA – IRINA MANOLE*

BOGDAN LAPADAT**
*Computer and Communication Engineering Department

Faculty of Automation, Computers and Electronics
University of Craiova

Bvd. Decebal, Nr. 107, 200440, Craiova, Dolj
ROMANIA

dan.mancas@ucv.ro, catya_ace@yahoo.com

**Software Engineering Department
Faculty of Automation, Computers and Electronics

University of Craiova
Bvd. Decebal, Nr. 107, 200440, Craiova, Dolj

ROMANIA
stefan@software.ucv.ro, lepadat_bogdan@yahoo.com

Abstract: - We present a comparative analysis for several multi-agents participating in Trading Agents
Competition, Classic. The game is first partitioned into separate modules, for which distinct strategies may be
developed. The strategies used are taken into consideration both individually and in relation with other agents,
but also the game medium. Conclusions regarding possible improvements, better strategies and potential
weaknesses are driven from each agent analysis. Alternatives like static market algorithms vs. dynamic market
algorithms are considered in detail and advantages and disadvantages are discussed. Also a discussion of TAC
market and possibilities for the stochastic system approximation with a deterministic one is realized.

Key-Words: multi – agent, artificial intelligence, autonomous trading agents, probabilistic market strategy,
machine learning, agents.

1 Introduction

"Agents" are programs which operate
autonomously in the market—sending bids,
requesting quotes, accepting offers, and generally
negotiating deals according to market rules.
Although the agent's activity is ultimately
determined by its programmers, the trading behavior
is fully automated in that the humans do not
intervene while the negotiation is in progress[1].

Trading agents face must play the market
effectively; an agent must make real-time decisions
in an uncertain and fast-changing environment,
taking account of other agents doing the same.
Capable agents rapidly assimilate market
information from many sources, forecast future
events, optimize complex offers and resource
allocations, anticipate strategic interactions, and
learn from experience. Successful trading agents
adopt and extend state-of-the-art techniques from

artificial intelligence, operations research, statistics,
and other relevant fields[2].

2 Game Essentials

In the TAC shopping game, each "agent" is a
travel agent, with the goal of assembling travel
packages (from TACtown to Tampa, during a
notional 5-day period). Each agent is acting on
behalf of eight clients, who express their preferences
for various aspects of the trip. The objective of the
travel agent is to maximize the total satisfaction of
its clients. Travel packages consist of the following:

• A round-trip flight,
• A hotel reservation, and
• Tickets to some of the following

entertainment events
o Alligator wrestling
o Amusement park Museum.

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1916 Issue 12, Volume 7, December 2008

mailto:dan.mancas@ucv.ro
mailto:catya_ace@yahoo.com
mailto:stefan@software.ucv.ro
mailto:lepadat_bogdan@yahoo.com

There are obvious interdependencies, as the
traveler needs a hotel for every night between
arrival and departure of the flight, and can
attend entertainment events only during that
interval. In addition, the clients have individual
preferences over which days they are in Tampa,
the type of hotel, and which entertainment they
want. All three types of goods (flights, hotels,
entertainment) are traded in separate markets
with different rules.

A run of the game is called an instance. Several
instances of the game are played during each
round of the competition in order to evaluate
each agent's average performance and to
smooth the variations in client preferences.

2.1 Flight tickets
In TAC Classic game, TACAIR is the only airline.
Flight tickets are sold in single seller auction, and
each agent can only buy it. Tickets for these flights
are sold in single seller auctions---one auction for
each day and direction (in or out). Since all clients
must stay at least one night in Tampa, there will be
no inflights on the last day, nor outflights on the
first day. The auctions will clear continuously.
TACAIR is represented in the marketplace by an
agent that sets prices according to a stochastic
function. Each ticket has an individually appointed
date during the first day to the fifth day and
direction (inflight,outflight). Since all clients must
stay at least one night, there are no inflights on the
last day, nor outflights on the first day. The price of
a flight ticket is updated at random every 10 seconds
according to the stochastic function decided in
advance. A flight ticket is not sold out, and if an
agent bids at a price higher than a current ask price,
it can purchase immediately at the ask price[4].

2.2 Hotels
There are two hotels: The Tampa Towers(TT) and
The Shoreline Shanties(SS). TT is a hotel better
than SS, so we would expect to cost more. A client
can not move between hotels. Each hotel has 16
rooms per day during the first day to the fourth day.
There is one auction every combination of hotel and
night, each with 16 rooms. So, there are eight
auctions in total. They are traded in the ascending
multi-unit auction. These auctions are closed one by
one randomly during four minute to eleven minute

every minute, and the auction clears when it closes.
The ask price is sixteenth highest price. The bid
submitted once cannot be canceled. And when agent
submits new bid, they must follow the following
rules. Since clients need hotels only from the night
of their arrival and through the night before their
departure, no hotels will be available (or needed) on
the last day[4].

2.3 Entertainment tickets
At commencement of a game instance, each travel
agent receives an allotment of entertainment tickets.
There are three kinds of entertainment tickets:

• Alligator wrestling,
• Amusement park,
• Museum.

There are a total of 8 tickets available for each event
type on each day, and each agent receives 12 tickets
partitioned as follows:

• One bundle of four of a particular type on
day 1 or day 4.

• One bundle of four of a particular type on
day 2 or day 3.

• One bundle of two of a particular type
(different from above) on day 1 or day 4.

• One bundle of two of a particular type
(different from above) on day 2 or day 3.

Each ticket has an individually appointed date
during the first day to the fourth day, and it cannot
be used for other day. A client cannot use a ticket on
the day of departure. At the time of a game start,
each agent receives the fixed number of tickets
randomly. These tickets are traded in continuous
double auction, and agent can buy and sell. A price
is determined according to the balance of supply and
demand. Note that only one kind of ticket can be
used for one day. An agent trades in these goods and
assembles a travel package. Each client has
individual preferences, which are a preferred arrival
date (PA), a preferred departure date (PD), a bonus
of staying in TT (HB), and a bonus of every kind
entertainment ticket (AW;AP;MU). And each
client's utility (U) is calculated by the following
formulas according to these preferences[4].

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1917 Issue 12, Volume 7, December 2008

(4)???_
(3) _
(2))(_
(1) _

__1000

MUMUAPAPAWAWbonusent
HPTTbonushotel

PDADPAAApenaltytravvel
bonusententertainm

bonushotelpenaltytravelU

×+×+×=
×=

−+−=

+
++−=

where each in {0,1} are ticket
indicators for each event type.

??,?, MUAPAW

2.4 Bid auctions
All of the auctions run according to the following
high-level protocol:

1. An agent submits a bid to the auction.
2. The auction updates its price quote,

indicating the current going prices.

A bid contains a bid string, representing an
agent's willingness to buy and sell the good in
an auction. A bid string containing a list of bid
points in the following form:
"((q1 p1) (q2 p2) ... (qn pn))" (5)

where qi is a quantity and pi is a price. If there is
a point (qi pi) with qi > 0, then it means that the
agent is willing to buy qi units of the good at the
auction for no more than pi price units per unit
of the good. If there is a pair (qj pj) with qj < 0,
then it means that the agent is willing to sell qj
units of the good at the auction for no less than
pj price units per unit of the good. The prices
should always be nonnegative[4].

3 Means of Comparing the Agents

We will base our comparison for the strategies
adopted by various agents on three important
criteria, deriving from the game itself. In fact,
besides the idea that without a flight ticket there can
be no vacation, and without a hotel the package is
not feasible, between these three components there
seems it doesn’t exist a certain interdependency.
Basically, if for all of the above, the agents’ strategy
would be to get the lowest price possible, we could
separate these three components as distinct pieces of
the overall architecture of an agent. Therefore we
will look at strategies concerning:

• Flight Booking,
• Hotel Booking

• Entertainment Tickets Buying.
We will take into consideration three agents that

took part in the TAC Classic competition on which
we will perform the analysis: Mertacor, Walverine,
Roxy-Bot. All of these three agents were in the TAC
finals, in the previous years [5][6][7][8].

3.1 Flight booking
Flight auctions are continuous one-sided auctions,
and close at the end of the game.
Agents may submit buy bids, but not sell bids. Only
the TACAIR seller may submit sell bids.
Price quotes are issued immediately in response to
new bids. The price quote is specified as the ask
price, which is simply the price of the current sell
bid[4].

From all the strategies, Mertacor seems to have the
most elaborated one. Their approach is to predict the
moment when x(t), specified in the game as the
perturbation function, changes sign, as this would be
a very good moment to book a flight. A first
observation that should be made is that all of the
bookings occur at specified time intervals, therefore
there results an array of update prices depending on
the moment and the equation provided by the game
can be rewritten in the following manner:

],1[,10 Ni
N
yixi ∈⋅+= (6)

In this equation y=x-10, where x is the random
variable specified by the game and N is the total
number of auctions, in our case maximum 54, due to
time limitation of the game.
The Mertacor authors consider that corner ic of a
flight auction is the latest update for which we know
that price perturbations are drawn from [-10, xi].
Also low bound B is the maximum real number for
which we know that y ≥ B. They define the
following equation

i
NpB ii ⋅−=)10(δ (7)

For this it is true that . When then a
new low bound has been encountered. They finally
estimate the corner with the equation:

yBi ≤ BBi ≥

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
⋅=

B
Nic 10 if B<-10 and N otherwise (8)

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1918 Issue 12, Volume 7, December 2008

Due to the fact that this is only an estimation of the
corner and not the real corner itself, by using this
strategy, they can compute only when the real
corner has been crossed so that they can make a bid.
Based on the evidence vector, containing the bounds
and the times at which these bounds were specified
they estimate y as being:

∫
∫

=∈
2

1

),(

),(
)|(1

S

S
c sBEg

sBEg
BESsp (9)

Where s=y/20, BE is the evidence bound vector, g is
a function depending upon 2 variables which
represents a probability and =[bn, z]. The
authors fix the probability of equation 4 to 0.8 and
derive an interval where y might be situated.

1S

Based upon these predictions Mertacor takes its
decisions. However, this is not an optimum strategy,
and most of the time, it helps predict a price situated
somewhere in the middle of all the flight prices,
proposed during the auction. Furthermore, the
estimation of the corner often falls in the second
part of the auction, where the prices are known to be
usually higher. Due to the fact that in this
mathematical conceived model they can detect a
single corner, despite the fact that there might be as
many as 27, we consider this a rough estimation. A
better approach would be to consider a set of
corners, and try to estimate these corners. If we
were to make a simple analysis of this algorithm we
would deduce that it is possible in practice for this
algorithm to tolerate a price rise of 102 after 25
bidding periods. More than that, if an important
increase of the price would be detected, the agent
would bid immediately. Therefore, the agent will
never bid on the smallest price, and there is almost
no chance for it to do so, unless a sufficient increase
would follow, the price bidding price will not be
estimated correctly, and then a drastic decrease
would happen. As it can be seen this is a highly
improbable case. Therefore we can conclude that
this agent will not buy conveniently in most of the
cases.
More than that, the estimation of the corner is never
optimum. The corner in conformity to equation (3)
can be found after the middle of the auction. Other
authors consider that the price for flight auctions
have the tendency to rise most of the time, so
bidding after the middle of the auction might result
in disastrous consequences.
Walverine maintains a distribution Pr(x) for each
flight, initialized to be uniformon [-10,30], and

updated using Bayes’s rule given the observed
perturbations at each iteration:

Pr(x|Δ) = α Pr(x) Pr(Δ|x) (10)

Given this distribution over the hidden x parameter,
the expected perturbation for the next
iteration,]|'[xE Δ , is simply . Averaging
over the distribution for x, it is obtained

2/)(ublb +

E[Δ’] = ∑xPr(x) E[Δ’] (11)

Given a set of flights that Walverine has calculated
to be in the optimal package, it decides which to
purchase now as a function of the expected
perturbations, current holdings, and marginal flight
values. On a high level, the strategy is designed to
defer purchase of flights that are not quickly
increasing, allowing for flexibility in avoiding
expensive hotels as hotel price information is
revealed.
RoxyBot proposes almost the same strategy as
Wolverine. It holds some point estimates that it uses
during scenarios.

3.2 Hotel booking
Hotel auctions are standard English ascending
multi-unit, except that they close at randomly
determined times. Specifically, at 01:00 (one
minute) into the game, one randomly chosen hotel
auction will close. Another hotel auction closes each
minute thereafter, on the minute, again chosen
randomly, until 8:00 when the last hotel auction is
closed. The agents cannot tell in advance which
hotel auction will close at which time. A hotel
auction clears and matches bids only once, when it
closes. Price quotes are only generated once per
minute, on the minute.
Agents may submit buy bids, but not sell bids. Only
the hotel owners may submit sell bids. The hotel
owners submit bids to provide up to 16 rooms of
each hotel type on each night, for a minimum price
of $0[4].

Pertinent observations were made when designing

Mertacor:
]4,1[,1.05.0, ∈−= iis iin (12)

]5,2[,1.01.0, ∈−= ijs jout (13)

The above probabilities represent the probability
that an inflight might occur on the i-th day, and the

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1919 Issue 12, Volume 7, December 2008

probability that an outflight might occur on the j-th
day respectively. This should be taken into account
by all agents, when designing a strategy for this
point. Unfortunately only Mertacor does this, the
rest of the agents use other approaches. Mertacor
approach is to compute estimations of the hotel
requests depending on days.

εi =Ii /I
μi=Oj/O,

i [1,4], j [2,5]. (14)

The equations above represent the relative inflight
and out-flight ticket demand.

 H1 = I1
 H2 = I1 + I2 – O2
 H3= -I4 + O4 +O5
 H4 = O5 (15)

H represents absolute hotel room demand. Thus
equation (8) can be rewritten:

H=R F (16)

where
 H =(H1 H2 H3 H4) T

 R=
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

10000000
11001000
00010011
00000001

 F = (I1 I2 I3 I4 O2 O3 O4 O5) T

The estimated hotel demand can be computed using
the formula:

^^
FRH ⋅= (17)

In this case contains relative estimations of the hotel
requests. This strategy has a very important
problem. Mertacor acts as a single agent, on a single
market, without taking into consideration the other
agents participating in the competition. With
concern to Hotel bids the price is determined by the

market, so probabilistic computations might not
hold the required result all the time. However
Mertacor, uses previous experience of the games
and adapts its biddings baring in mind the previous
results. Also this kind of analysis works sometimes,
but sometimes might result in some less fortunate
decisions.
This situation would require a strategy that is
adapted to market conditions. This kind of
economical approach is used by Walverine.
Walverine predicts hotel prices based on a literal
application of its presumption that TAC markets are
competitive. Specifically, it calculates the
Walrasian competitive equilibrium of the TAC
economy, defined as the set of prices at which all
markets would clear, assuming all agents behave as
price takers, i.e., behave competitively.
Demand for a given hotel is a function of all hotel
prices, as changing the price of any hotel can affect
the agent’s choice of trips, and thus the demand for
any other hotel.
The interconnection of markets renders this a
problem in general equilibrium (as opposed to
partial equilibrium), and prevents us from analyzing
each hotel in isolation.
Prices constitute a competitive equilibrium if
aggregate demand equals aggregate supply for all
hotels. Since there are 16 rooms available for each
hotel on each day, we have in competitive
equilibrium, x(p)=16.
Walverine searches for a competitive equilibrium
using tatonnement. Starting from an initial guess, it
iteratively computes a revised price vector
according to:

)16)((1 −+=+ tttt pxpp α (18)

Eventually the price would reach an approximate
equilibrium, which should be sufficient to know
what bid should the agent make next. Wolverine
partitions the problem of expected demand into two
components, the internal one and the external one.

(p) x+ (p) x= x(p)
ww (19)

Thus:

(p)]x[E (p)]E[x
56

1
clientw ∑= (20)

This equation can be rewritten:

(p)][x E 56 (p)]E[x clientw ⋅= (21)

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1920 Issue 12, Volume 7, December 2008

At the beginning of the game when there are no
holdings of flights and hotels, the agent optimization
problem is indeed separable by client, and so (16) is
justified. At interim points when agents hold goods,
the demand optimization problem is no longer
separable. This is actually where the problem with
this strategy occurs. The authors are happy with an
approximation, which is not a very good bound.
Instead of using this formula, they have the
possibility to combine the formula with an
estimation of the goods bought by other agents.
Exactly for this purpose of predicting the market
and other agents’ actions, Wolverine has a strategy
of Hierarchical Game Reduction. Since the
environment is stochastic, numerous samples (say
12) are required to produce a reliable estimate for
even one profile. At roughly two hours per profile,
exhaustively exploring profile space will require 13
trillion hours simply to estimate the payoff function
representing the game under analysis. If the game is
symmetric, we can exploit that fact to reduce the
number of distinct profiles to 1, which will require
628 million hours. That is quite a bit less, but still
much more time than we have. The idea of
hierarchical game reduction is that although a
strategy’s payoff does depend on the play of other
agents, it may be relatively insensitive to the exact
numbers of other agents playing particular
strategies.
For example, let (s,k;s’) denote a profile where k
other agents play strategy s, and the rest play s’. In
many natural games, the payoff for the respective
strategies in this profile will vary smoothly with k.
If such is the case, we sacrifice relatively little
fidelity by restricting attention to subsets of profiles,
for instance those with only even numbers of any
particular strategy. To do so essentially transforms
the N-player game to an N/2-player game over the
same strategy set, where the payoffs to a profile in
the reduced game are simply those from the original
game where each strategy in the reduced profile is
played twice.

The potential savings from reduced games are
considerable, as they contain combinatorially fewer
profiles.
Lastly they compute the excess for each client:

(p)]E(x[E 1,0 (p)]E[x
pd)(pa,

pd , paclient ∑⋅= (22)

Based upon these formulas Walverine obtains the
necessary estimations. The policy proposed is tested
on real markets, and it seems that it also giving
results in TAC according to the results Wolverine
had. The strategy Wolverine uses, combined with

the technique of predicting adversary strategies
holds good results. However, some problems still
arise from the fact that the decisions are taken based
upon only two other strategies.

Roxy-Bot also uses Walverine approach. The hotel
price predictions are evaluated using two metrics:
Euclidean distance and “expected value of perfect
prediction” (EVPP). Euclidean distance is a
standard way of measuring the difference between
two vectors, in this case the actual and the predicted
prices. The value of perfect prediction (VPP) for a
client is the difference between the value of the best
package for the client based on the actual prices and
the value of the best package for the client based on
the predicted prices. EVPP is the expected VPP
averaged over the client distribution.
They interpret each prediction with 56 random
clients as a sample scenario, so that a set of such
scenarios represents draws from a probability
distribution over competitive equilibrium prices.
The vector of predicted prices that is evaluated and
plotted is the average of multiple (40) such
predictions. Using random clients helps us make
better interim predictions later in the game as we
explain next.
As hotel auctions close, RoxyBot-06 updates the
predicted clearing prices of the open hotel auctions.
The first is to fix the prices of the closed auctions at
their clearing prices and then to run SimAA or
tatonnement with expected or random clients. The
second is to distribute goods from the closed
auctions to the clients who want them the most, and
then to exclude any closed auctions in further runs
of SimAA or tatonnement.

Note that we can only distribute goods to random
clients. It is not clear how to distribute goods to
“expected clients,” which are aggregate clients
rather than real clients. Figure 1 (center and right)
shows that the predictions based on the distribution
method are better than the others. Hotels that close
early tend to sell for less than hotels that close late;
hence, any method that makes relatively constant
predictions all throughout the game is bound to
suffer.

There can be observed that the Roxy-Bot team has
observed well the minuses that Wolverine was
exhibiting and corrected them.

3.3 Entertainment booking
The entertainment ticket auctions are standard
continuous double auctions (much like a stock

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1921 Issue 12, Volume 7, December 2008

market) that close when the game ends. Agents may
submit bids with buy and/or sell points (so long as a
bid does not specify that the agent sell to itself).

Entertainment ticket auctions clear continuously.
Bids match immediately, if possible. A bid that does
not completely match remains standing in the
auction.
Buy bid points will immediately match the lowest
price standing sell bid points that have prices at or
below the price of the buy bid. Sell bid points will
immediately match the highest price standing buy
bid points that have prices above the price at or
below the sell bid. Bids match at the price of the
standing bid in the auction.

Regarding Mertacor strategy for Entertainment
Selling and Purchasing, they use the following
algorithm:

PROCEDURE MertacorSellStrategy
1: FOR each entertainment ticket in possession
2: Assign a pre-specified value to target;
3: mean ← getMeanValue();
4: M ← A*target + B*mean;
5: IF M ≤ (1/2)*target OR M ≥ (3/2)*target
THEN
6: M ← relocateM();
7: END IF
8: V ← calcVal();
9: IF V < Vo THEN V ← Vo; END IF
10: profit ← ask– 2*V;
11: Mt ← w(t)*M;
12: Ra ← M;
13: Rb ← 3*M/2;
14: Rc ← rand(M/2, M);
15: IF profit ≥ Mt-Ra THEN sellTicket();
16: ELSE IF profit ≥ Mt-Rb THEN ask (Mt-
 Ra+2*V);
17: ELSE ask (Mt - Rc +2*V);
18: END IF
19: END FOR

Mertacor uses previous game experience and
prespecifies values to some parameters inside its
strategy. Target gets values from interval [5,12].
This assignment of the variable was deduced
through experiments. Other parameters deduced by
experiment are A and B. Mean is computed from
previous games. M is then bounded between
(1/2)*target and (3/2)*target. The reason is that
Mertacor designers want to make sure that this value
would allow obtaining a good price for buying, or a
credible price for selling. A value V for the price is
then computed and if that particular value is

considered to be less than a minimum value, the
minimum value becomes the desired V value. A
profit is afterwards computed as being the ask price
from which there is subtracted the value of the ticket
multiplied by 2. Then parameters Mt, Ra, Rb, Rc
are computed and a selling decision or a buying
decision is made afterwards.
The strategy Mertacor uses has some disadvantages.
Firstly, Mertacor does not make a computation
regarding the utility it will get by using the ticket
itself instead of just selling it or buying it. The
decision is made for a static market, one that does
not change prices much. This could make Mertacor
an isolated agent on the market and serious
problems might occur from this.
Furthermore, w(t) function is a lineary and
continous one, and therefore a predictor for the
other agents might be possible, in order to know
what prices might they get for tickets, when to buy
them, what bidding price should they have to
increase their utility. Lastly, Mertacor does not take
its decisions based upon market reality he observes,
but rather he uses precomputed parameters from
other games.
Walverine adopts a fairly minimal adjustment of its
basic (initial) price prediction method to address
ticket bidding. In calculating its own demand for
tickets, it takes into account its current holdings of
flights and closed hotels. For closed hotels,
Walverine fixes its own demand at actual holdings.
For other agents, it continues to employ initial flight
prices in best-trip calculations. Since they do not
know the holdings of other agents, they make no
attempt to account for this in estimating their
demand. This applies even to closed hotels—in the
absence of information about their allocation,
Walverine’s tatonnement calculations attempt to
balance supply and demand for these as well.
Also Walverine computes the entertainment
expected surplus. As a result taking into account
previous games they obtain the following table:

TABLE 1. Walverine’s game results

 Expected Entertainment Surplus
Arrive:Depart TAC-01 Prices TAC-02 Prices
1:2,4:5 74.7 78.0
1:3,3:5 101.5 112.1
1:4,2:5 106.9 119.9
1:5 112.7 120.9
2:3,3:4 66.2 76.6
2:4 93.0 110.7

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1922 Issue 12, Volume 7, December 2008

The problem with this approach is again the fact that
it is possible for other agents to come with a strategy
different than what is on the market in order to
destabilize it. Under these circumstances, these
estimations would no longer be of use and bad
decisions might be taken. In this case a strategy
similar to Hotel Booking would be better, but here
there are three skinds of utilities and the number of
scenarios would rise in accordance more rapidly.
Therefore, a combined strategy might work better in
this case.
RoxyBot-06’s estimates of entertainment ticket
prices are based on historical data from the past 40
games. To generate a scenario, a sample game is
drawn at random from this collection, and the
sequences of entertainment bid, ask, and transaction
prices are extracted. Given such a history, for each
auction a, let trade ai denote the price at which the
last trade before time i transacted; this value is
initialized to 200 for buying and 0 for selling. In
addition, let bid ai denote the bid price at time i, and
let ask ai denote the ask price at time i.
To predict current buy price in auction a at time t,
RoxyBot-06 first computes the minimum among the
historical trade and ask prices at time t and the
current ask price in the present game. The current
buy price is then constrained to be above the current
bid price in the present game. Without this latter
constraint, the agent might be inclined to buy a good
at a price that is lower than the outstanding bid,
which is impossible.
Roxy-Bot strategy is also based on previous games.
As a conclusion, in regarding the Ticket auctions, no
agent from the ones that we observed is taking into
account market requests and market evolution. Due
to the fact that this part of the game is highly
economical a good strategy would be to observe the
market behavior and take decisions in accordance
with that. A Walrasian approach, in relation with
bounds imposed to the market would produce a far
better result.
In pseudocode, the algorithm is defined as:

1: INPUT
2: current ask_est, bid_est
3: current lo_ask, hi_bid
4: rates of adjustment α, β.
5: OUTPUT :
6: adjusted ask est, bid est
7: IF (a recent trade took place at price p)

8: ask est = (1 − α) ask est + αp

9: bid est = (1 − α) bid est + αp

10: ELSE (there is a hi bid–lo ask spread)

11: ask est = (1 − β) ask est + βlo ask

12: bid est = (1 − β) bid est + βhi bid

13: ENDIF

The approach RoxyBot uses for estimation of the
entertainment ticket auctions is based on setting
some variables during the game α = 0.1 and β =
0.05.
Also, two internal price estimates are maintained for
all entertainment tickets, an ask_est and a bid_est.
The adjustment of these estimates is made in the
direction of the trade price, if any trade takes place.
Else, if a bid-spread occurs, the ask_est is adjusted
in the direction of lo_ask and bid_est is adjusted in
the direction of hi_bid.

3.4 Future directions
As playing the same method became quite intuitive
and the market had new requests, another type of
game was initiated.
The SCM game tournament started back in 2003, as
a simple competition.
From the 2007 edition, two more challenges where
added: a Procurement Challenge and a Prediction
Challenge.
Different extensions were made from year to year.
Agents are simulations of small manufacturers, who
must compete with each other for both supplies and
customers, and manage inventories and production
facilities[12].

Supply chain management is concerned with
planning and coordinating the activities of
organizations across the supply chain, from raw
material procurement to finished goods delivery. In
today’s global economy, effective supply chain
management is vital to the competitiveness of
manufacturing enterprises as it directly impacts their
ability to meet changing market demands in a timely
and cost effective manner. With annual worldwide

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1923 Issue 12, Volume 7, December 2008

supply chain transactions in the trillions of dollars,
the potential impact of performance improvements
is tremendous[12].

While today’s supply chains are essentially static,
relying on long-term relationships among key
trading partners, more flexible and dynamic
practices offer the prospect of better matches
between suppliers and customers as market
conditions change. Adoption of such practices has
however proven elusive, due to the complexity of
many supply chain relationships and the difficulty in
effectively supporting more dynamic trading
practices[4].

TAC SCM was designed to capture many of the
challenges involved in supporting dynamic supply
chain practices, while keeping the rules of the game
simple enough to entice a large number of
competitors to submit entries. The game has been
designed jointly by a team of researchers from the e-
Supply Chain Management Lab at Carnegie Mellon
University and the Swedish Institute of Computer
Science (SICS) [4].
Six agents compete in each game. The game takes
place over 220 TAC days, each day being 15
seconds long. The agent with the highest sum of
money in the bank at the end of the game is declared
the winner. The format and content of the various
messages exchanged between the agents and the
game server are available in the software
documentation.
In addition to the interaction with the suppliers and
customers, agents (and game viewers) have access
to other data within a game[4].

TAC-SCM Procurement Challenge (SCM-PC):
The challenge requires agents to manage supply
chain risk by negotiating long-term, quantity
flexible procurement contracts and supplementing
these contracts with one-off procurement orders. As
such, this challenge complements the current
“baseline” TAC- SCM scenario by extending the
space of procurement options available to supply
chain trading agents.
Specifically, manufacturer agents will rely on a
combination of:

• Long-term “quantity flexible”
contracts. These contracts
specify minimum component
quantities a manufacturer agent
commits to purchasing weekly
(at a fixed price) from a given
supplier agent and include
options to increase these

quantities by up to some
percentage (at the same fixed
price).

• One-off contracts. These are the

same supply contracts as the
ones negotiated in the baseline
TAC-SCM scenario[12].

The TAC-SCM Procurement Challenge (or ”SCM-
PC”) game simulates D days of operation (where D
= 100 days). It features n manufacturer agents
(where n = 3) competing for supply contracts from 8
different supplier agents every supplier offers both
long-term and one-off contracts. Long-term
contracts are negotiated at the start of the game and
last for the game’s full duration. Each week,
manufacturer agents may decide to order more than
the minimum quantities they committed to up to a
pre- specified max quantity. Each day, they may
also decide to procure additional components
outside of their long-term procurement contracts
(specifying quantity and delivery date) [12].

TAC-SCM Prediction Challenge (SCM-PC):
In order to effectively manage a supply chain, a
TAC SCM agent must be capable of performing
a number of interrelated tasks. In the TAC SCM
Prediction Challenge, agents will be evaluated on
their ability to perform a single one of these tasks in
isolation: making predictions about prices. In
particular, agents will make daily predictions over
the course of a number of TAC SCM games about
four different types of prices: current and future
computer prices, and current and future component
prices[12].
The predictions consist of:

1. The price at which each RFQ sent from

customers on the current day will be
ordered (i.e., the lowest price that will be
offered by a manufacturer),

2. The median price at which each of the 16
types of computer will sell in Ncomputer
days,

3. The price that will be offered for each RFQ
sent by the PAgent to a supplier on the
current day, and

4. The price that will be offered for each of a
number of provided RFQs that will be sent

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1924 Issue 12, Volume 7, December 2008

by the PAgent to suppliers in Ncomponent
days[12].

In order to allow games to be followed in real time,
and also analyzed in depth at a later date, an
additional set of metrics (including the following)
will be monitored throughout the game. These
metrics are used by the game viewer to provide a
visual representation of the game as it proceeds, and
are stored within the game logs for post mortem
analysis[12].

• Bank balance
• Inventory quantities and cost of inventory

held
• Delivery performance
• Assembly cell utilization
• All RFQ, offers and orders exchanged by

agents, customers and suppliers[12].

Note that this information is not provided to the
agents directly, and agents should not attempt
to access it though external means (i.e. through the
game viewer or the game logs). The use of such
external information, either manually or
automatically, is regarded as external ‘tuning’ of the
agent. As such, according to the existing
competition rules, it is forbidden within any specific
round during the finals of the competition[12].
4 Conclusion
The most interesting phase was seeing all these
agents competing on one game. The results are very
important, as the three strategies are very well
defined, but all have their leaks.
After an 80 rounds game, the following results have
been obtained by the three agents. This is presented
in Figure 1.
The names are abbreviated in the pictures:
Rox : RoxyBot
Wal : Wlaverine
Mer : Mertarcor

Fig. 1. Graphic with the results obtained by the
agents

The place obtained by Mertarcor is not so good.
In order to explain this situation, the steps in the
game have to be observed, by category for bidding.

TABLE 2. Game bidding steps

 Rox Wal Mer
Hotel Bids 130 81 94
Average Hotel Bids 170 115 147
Won Hotels 15.99 16.79 18.44
Hotel Costs 1102 1065 902
Unused Hotels 2.24 1.82 4.86
Hotel Bonus 613 598 590
Trip Penalty 296 281 380
Flight Costs 4615 4655 4834
Event Profits 110 26 123
Event Bonus 1470 1530 1369

As expected, the best result obtained by Mertarcor
was for won hotels. Their strategy is best for hotels.
But only for won hotels, as they do not use both
hotels all the time, they are oriented only on one
hotel. This is why the agent does not obtain a
maximum bonus for hotels.
RoxyBot uses both hotels, not as well as Mertarcor,
but it gets the maximum bonus.
Walverine has a poor strategy for hotels, as it
appears here.
Basically, for all goods, Mertacor has a one-target
oriented strategy, while RoxyBot and Walverine
have a all-goods oriented strategy. Although
Mertacor orients towards the most expensive goods
in order to obtain better prices and more money,
RoxyBot and Walverine manage to use most of the
goods at lower prices, that’s why they get also
bonuses, and their rank increases.
Finally, RoxyBot has the most equilibrate strategy,
not very strong on one good, but sufficiently strong
on all goods. So if it bids on one good, it may not
get the best price, but at least the immediate one
after the best price.
Mertarcor obtains the best price for some goods,
while for others it obtains very poor prices, being
also penalized because of its orientation towards
only some goods.

References:
[1] [1] A. Greenwald and J. Boyan, "Bidding

Under Uncertainty" Theory and Experiments.
In Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence. (Jul.
2004), 209-216.

[2] [2] M.P. Wellman, D.M. Reeves, K.M.
Lochner, Y. Vorobeychik, "Price prediction in

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1925 Issue 12, Volume 7, December 2008

a trading agent competition". Journal of
Artificial Intelligence Research 21 (2004) 19–
36.

[3] [3] D. Kehagias, P. Toulis, P. Mitkas - "A
Long-Term Profit Seeking Strategy for
Continuous Double Auctions in a Trading
Agent Competition", SETN’06, May 18-20,
2006.

[4] [4] www.sics.se/tac/
[5] [5] P. Toulis, D. Kehagias and P. A. Mitkas-

"Mertacor: A Successful Autonomous Trading
Agent", AAMAS’06, May 8-12, 2006.

[6] [6] S. J. Lee, A. Greenwald, and V.
Naroditskiy -"RoxyBot-06: An (SAA)2 TAC
Travel Agent",pp 1378-1383 IJCAI-07.

[7] [7] M. P. Wellman, D. M. Reeves, K. M.
Lochner, and R. Suri- "Searching for Walverine
2005", IJCAI-05, August 1, 2005.

[8] [8] S.-F. Cheng, E. Leung, K. M. Lochner, K.
O’Malley,

[9] D. M. Reeves, L. J. Schvartzman, and M. P.
Wellman- "Walverine: A Walrasian Trading
Agent", Decision Support Systems 39 (2005)
169–184.

[10] A. Greenwald, J. Boyan, “Bidding Algorithms
for Simultaneous Auctions: A Case Study
“,Journal of Autonomous Agents and
Multiagent Systems, Springer, 10(1):67-89,
2005

[11] W. Hildenbrand and A. P. Kirman,
“Introduction to Equilibrium Analysis:
Variations on Themes” by Edgeworth and
Walras, North-Holland Publishing Company,
Amsterdam, 1976.

[12] The Supply Chain Management Game for the
2007 Trading Agent Competition, December
2006

WSEAS TRANSACTIONS on COMPUTERS
Dan Mancas, Stefan Udristoiu,
Ecaterina–irina Manole, Bogdan Lapadat

ISSN: 1109-2750 1926 Issue 12, Volume 7, December 2008

