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Abstract: - We present a comparative analysis for several multi-agents participating in Trading Agents 
Competition, Classic. The game is first partitioned into separate modules, for which distinct strategies may be 
developed. The strategies used are taken into consideration both individually and in relation with other agents, 
but also the game medium. Conclusions regarding possible improvements, better strategies and potential 
weaknesses are driven from each agent analysis. Alternatives like static market algorithms vs. dynamic market 
algorithms are considered in detail and advantages and disadvantages are discussed.   Also a discussion of TAC 
market and possibilities for the stochastic system approximation with a deterministic one is realized. 
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1 Introduction 

"Agents" are programs which operate 
autonomously in the market—sending bids, 
requesting quotes, accepting offers, and generally 
negotiating deals according to market rules. 
Although the agent's activity is ultimately 
determined by its programmers, the trading behavior 
is fully automated in that the humans do not 
intervene while the negotiation is in progress[1]. 

Trading agents face must play the market 
effectively; an agent must make real-time decisions 
in an uncertain and fast-changing environment, 
taking account of other agents doing the same. 
Capable agents rapidly assimilate market 
information from many sources, forecast future 
events, optimize complex offers and resource 
allocations, anticipate strategic interactions, and 
learn from experience. Successful trading agents 
adopt and extend state-of-the-art techniques from 

artificial intelligence, operations research, statistics, 
and other relevant fields[2]. 
 
 
2 Game Essentials 

In the TAC shopping game, each "agent" is a 
travel agent, with the goal of assembling travel 
packages (from TACtown to Tampa, during a 
notional 5-day period). Each agent is acting on 
behalf of eight clients, who express their preferences 
for various aspects of the trip. The objective of the 
travel agent is to maximize the total satisfaction of 
its clients. Travel packages consist of the following:  

• A round-trip flight,  
• A hotel reservation, and  
• Tickets to some of the following 

entertainment events  
o Alligator wrestling  
o Amusement park Museum. 
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There are obvious interdependencies, as the 
traveler needs a hotel for every night between 
arrival and departure of the flight, and can 
attend entertainment events only during that 
interval. In addition, the clients have individual 
preferences over which days they are in Tampa, 
the type of hotel, and which entertainment they 
want. All three types of goods (flights, hotels, 
entertainment) are traded in separate markets 
with different rules.  
 
A run of the game is called an instance. Several 
instances of the game are played during each 
round of the competition in order to evaluate 
each agent's average performance and to 
smooth the variations in client preferences. 
 
 
2.1 Flight tickets 
In TAC Classic game, TACAIR is the only airline. 
Flight tickets are sold in single seller auction, and 
each agent can only buy it. Tickets for these flights 
are sold in single seller auctions---one auction for 
each day and direction (in or out). Since all clients 
must stay at least one night in Tampa, there will be 
no inflights on the last day, nor outflights on the 
first day. The auctions will clear continuously. 
TACAIR is represented in the marketplace by an 
agent that sets prices according to a stochastic 
function. Each ticket has an individually appointed 
date during the first day to the fifth day and 
direction (inflight,outflight). Since all clients must 
stay at least one night, there are no inflights on the 
last day, nor outflights on the first day. The price of 
a flight ticket is updated at random every 10 seconds 
according to the stochastic function decided in 
advance. A flight ticket is not sold out, and if an 
agent bids at a price higher than a current ask price, 
it can purchase immediately at the ask price[4]. 
 
 
2.2 Hotels 
There are two hotels: The Tampa Towers(TT) and 
The Shoreline Shanties(SS). TT is a hotel better 
than SS, so we would expect to cost more. A client 
can not move between hotels. Each hotel has 16 
rooms per day during the first day to the fourth day. 
There is one auction every combination of hotel and 
night, each with 16 rooms. So, there are eight 
auctions in total. They are traded in the ascending 
multi-unit auction. These auctions are closed one by 
one randomly during four minute to eleven minute 

every minute, and the auction clears when it closes. 
The ask price is sixteenth highest price. The bid 
submitted once cannot be canceled. And when agent 
submits new bid, they must follow the following 
rules. Since clients need hotels only from the night 
of their arrival and through the night before their 
departure, no hotels will be available (or needed) on 
the last day[4]. 
 
 
2.3 Entertainment tickets 
At commencement of a game instance, each travel 
agent receives an allotment of entertainment tickets. 
There are three kinds of entertainment tickets: 

• Alligator wrestling,  
• Amusement park,  
• Museum.  

 
There are a total of 8 tickets available for each event 
type on each day, and each agent receives 12 tickets 
partitioned as follows:  

• One bundle of four of a particular type on 
day 1 or day 4.  

• One bundle of four of a particular type on 
day 2 or day 3.  

• One bundle of two of a particular type 
(different from above) on day 1 or day 4.  

• One bundle of two of a particular type 
(different from above) on day 2 or day 3.  

 
Each ticket has an individually appointed date 
during the first day to the fourth day, and it cannot 
be used for other day. A client cannot use a ticket on 
the day of departure. At the time of a game start, 
each agent receives the fixed number of tickets 
randomly. These tickets are traded in continuous 
double auction, and agent can buy and sell. A price 
is determined according to the balance of supply and 
demand. Note that only one kind of ticket can be 
used for one day. An agent trades in these goods and 
assembles a travel package. Each client has 
individual preferences, which are a preferred arrival 
date (PA), a preferred departure date (PD), a bonus 
of staying in TT (HB), and a bonus of every kind 
entertainment ticket (AW;AP;MU). And each 
client's utility (U) is calculated by the following 
formulas according to these preferences[4]. 
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2.4 Bid auctions 
All of the auctions run according to the following 
high-level protocol:  

1. An agent submits a bid to the auction.  
2. The auction updates its price quote, 

indicating the current going prices.  
 
A bid contains a bid string, representing an 
agent's willingness to buy and sell the good in 
an auction. A bid string containing a list of bid 
points in the following form:  
"((q1 p1) (q2 p2) ... (qn pn))"                             (5) 

where qi is a quantity and pi is a price. If there is 
a point (qi pi) with qi > 0, then it means that the 
agent is willing to buy qi units of the good at the 
auction for no more than pi price units per unit 
of the good. If there is a pair (qj pj) with qj < 0, 
then it means that the agent is willing to sell qj 
units of the good at the auction for no less than 
pj price units per unit of the good. The prices 
should always be nonnegative[4].  
 
 
 
3 Means of Comparing the Agents 

We will base our comparison for the strategies 
adopted by various agents on three important 
criteria, deriving from the game itself. In fact, 
besides the idea that without a flight ticket there can 
be no vacation, and without a hotel the package is 
not feasible, between these three components there 
seems it doesn’t exist a certain interdependency. 
Basically, if for all of the above, the agents’ strategy 
would be to get the lowest price possible, we could 
separate these three components as distinct pieces of 
the overall architecture of an agent. Therefore we 
will look at strategies concerning:  

• Flight Booking,  
• Hotel Booking  

• Entertainment Tickets Buying.  
We will take into consideration three agents that 

took part in the TAC Classic competition on which 
we will perform the analysis: Mertacor, Walverine, 
Roxy-Bot. All of these three agents were in the TAC 
finals, in the previous years [5][6][7][8]. 
 
 
3.1 Flight booking 
Flight auctions are continuous one-sided auctions, 
and close at the end of the game.  
Agents may submit buy bids, but not sell bids. Only 
the TACAIR seller may submit sell bids. 
Price quotes are issued immediately in response to 
new bids. The price quote is specified as the ask 
price, which is simply the price of the current sell 
bid[4].  
 
From all the strategies, Mertacor seems to have the 
most elaborated one. Their approach is to predict the 
moment when x(t), specified in the game as the 
perturbation function, changes sign, as this would be 
a very good moment to book a flight. A first 
observation that should be made is that all of the 
bookings occur at specified time intervals, therefore 
there results an array of update prices depending on 
the moment and the equation provided by the game 
can be rewritten in the following manner:  
 

 ],1[,10 Ni
N
yixi ∈⋅+=                                        (6) 

 
In this equation y=x-10, where x is the random 
variable specified by the game and N is the total 
number of auctions, in our case maximum 54, due to 
time limitation of the game. 
The Mertacor authors consider that corner ic of a 
flight auction is the latest update for which we know 
that price perturbations are drawn from [-10, xi]. 
Also low bound  B is  the maximum real number for 
which we know that         y ≥ B. They define the 
following equation 
 

  
i
NpB ii ⋅−= )10(δ                                      (7) 

 

For this it is true that  . When  then a 
new low bound has been encountered. They finally 
estimate the corner with the equation: 
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Due to the fact that this is only an estimation of the 
corner and not the real corner itself, by using this 
strategy, they can compute only when the real 
corner has been crossed so that they can make a bid. 
Based on the evidence vector, containing the bounds 
and the times at which these bounds were specified 
they estimate y as being: 
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Where s=y/20, BE is the evidence bound vector, g is 
a function depending upon 2 variables which 
represents a probability and   =[bn, z]. The 
authors fix the probability of equation 4 to 0.8 and 
derive an interval where y might be situated.  

1S

 
Based upon these predictions Mertacor takes its 
decisions. However, this is not an optimum strategy, 
and most of the time, it helps predict a price situated 
somewhere in the middle of all the flight prices, 
proposed during the auction. Furthermore, the 
estimation of the corner often falls in the second 
part of the auction, where the prices are known to be 
usually higher. Due to the fact that in this 
mathematical conceived model they can detect a 
single corner, despite the fact that there might be as 
many as 27, we consider this a rough estimation. A 
better approach would be to consider a set of 
corners, and try to estimate these corners. If we 
were to make a simple analysis of this algorithm we 
would deduce that it is possible in practice for this 
algorithm to tolerate a price rise of 102 after 25 
bidding periods. More than that, if an important 
increase of the price would be detected, the agent 
would bid immediately. Therefore, the agent will 
never bid on the smallest price, and there is almost 
no chance for it to do so, unless a sufficient increase 
would follow, the price bidding price will not be 
estimated correctly, and then a drastic decrease 
would happen. As it can be seen this is a highly 
improbable case. Therefore we can conclude that 
this agent will not buy conveniently in most of the 
cases.  
More than that, the estimation of the corner is never 
optimum. The corner in conformity to equation (3) 
can be found after the middle of the auction. Other 
authors consider that the price for flight auctions 
have the tendency to rise most of the time, so 
bidding after the middle of the auction might result 
in disastrous consequences.  
Walverine maintains a distribution Pr(x) for each 
flight, initialized to be uniformon [-10,30], and 

updated using Bayes’s rule given the observed 
perturbations at each iteration:   
 
Pr(x|Δ) = α Pr(x) Pr(Δ|x)                          (10) 
 
Given this distribution over the hidden x parameter, 
the expected perturbation for the next 
iteration, ]|'[ xE Δ , is simply . Averaging 
over the distribution for x, it is obtained    

2/)( ublb +

 
E[Δ’] = ∑xPr(x) E[Δ’]                          (11)  
 
Given a set of flights that Walverine has calculated 
to be in the optimal package, it decides which to 
purchase now as a function of the expected 
perturbations, current holdings, and marginal flight 
values. On a high level, the strategy is designed to 
defer purchase of flights that are not quickly 
increasing, allowing for flexibility in avoiding 
expensive hotels as hotel price information is 
revealed. 
RoxyBot proposes almost the same strategy as 
Wolverine. It holds some point estimates that it uses 
during scenarios.  
 
 
3.2 Hotel booking 
Hotel auctions are standard English ascending 
multi-unit, except that they close at randomly 
determined times. Specifically, at 01:00 (one 
minute) into the game, one randomly chosen hotel 
auction will close. Another hotel auction closes each 
minute thereafter, on the minute, again chosen 
randomly, until 8:00 when the last hotel auction is 
closed. The agents cannot tell in advance which 
hotel auction will close at which time. A hotel 
auction clears and matches bids only once, when it 
closes. Price quotes are only generated once per 
minute, on the minute.  
Agents may submit buy bids, but not sell bids. Only 
the hotel owners may submit sell bids. The hotel 
owners submit bids to provide up to 16 rooms of 
each hotel type on each night, for a minimum price 
of $0[4].  
 
Pertinent observations were made when designing  
 
Mertacor: 
 ]4,1[,1.05.0, ∈−= iis iin                           (12) 
 
 ]5,2[,1.01.0, ∈−= ijs jout                          (13) 
 
The above probabilities represent the probability 
that an inflight might occur on the i-th day, and the 
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probability that an outflight might occur on the j-th 
day respectively. This should be taken into account 
by all agents, when designing a strategy for this 
point. Unfortunately only Mertacor does this, the 
rest of the agents use other approaches. Mertacor 
approach is to compute estimations of the hotel 
requests depending on days.  
 
εi =Ii /I    
μi=Oj/O,        

i  [1,4], j  [2,5].                                    (14) 

 
The equations above represent the relative inflight 
and out-flight ticket demand. 
 
 H1 = I1  
  H2 = I1 + I2 – O2 
  H3= -I4 + O4 +O5  
 H4 = O5                                    (15) 
 
H represents absolute hotel room demand. Thus 
equation (8) can be rewritten: 
 

H=R F                                     (16) 

 
where 
 H =(H1 H2 H3 H4) T   
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              F = (I1 I2 I3 I4 O2 O3 O4 O5)  T 
 
The estimated hotel demand can be computed using 
the formula: 

  
^^
FRH ⋅=                                     (17) 

 
In this case contains relative estimations of the hotel 
requests. This strategy has a very important 
problem. Mertacor acts as a single agent, on a single 
market, without taking into consideration the other 
agents participating in the competition. With 
concern to Hotel bids the price is determined by the 

market, so probabilistic computations might not 
hold the required result all the time. However 
Mertacor, uses previous experience of the games 
and adapts its biddings baring in mind the previous 
results. Also this kind of analysis works sometimes, 
but sometimes might result in some less fortunate 
decisions.  
This situation would require a strategy that is 
adapted to market conditions. This kind of 
economical approach is used by Walverine. 
Walverine predicts hotel prices based on a literal 
application of its presumption that TAC markets are 
competitive. Specifically, it calculates the 
Walrasian competitive equilibrium of the TAC 
economy, defined as the set of prices at which all 
markets  would clear, assuming all agents behave as 
price takers, i.e., behave competitively. 
Demand for a given hotel is a function of all hotel 
prices, as changing the price of any hotel can affect 
the agent’s choice of trips, and thus the demand for 
any other hotel.  
The interconnection of markets renders this a 
problem in general equilibrium (as opposed to 
partial equilibrium), and prevents us from analyzing 
each hotel in isolation. 
Prices constitute a competitive equilibrium if 
aggregate demand equals aggregate supply for all 
hotels. Since there are 16 rooms available for each 
hotel on each day, we have in competitive 
equilibrium, x(p)=16. 
Walverine searches for a competitive equilibrium 
using tatonnement. Starting from an initial guess, it 
iteratively computes a revised price vector 
according to: 
 

)16)((1 −+=+ tttt pxpp α                         (18) 
 
Eventually the price would reach an approximate 
equilibrium, which should be sufficient to know 
what bid should the agent make next. Wolverine 
partitions the problem of expected demand into two 
components, the internal one and the external one.  
 

(p) x+ (p) x= x(p)
ww                          (19) 

 
Thus: 

(p)]x[ E  (p)]E[x
56

1
clientw ∑=                         (20) 

This equation can be rewritten: 
 

(p)][x E 56 (p)]E[x clientw ⋅=                            (21) 
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At the beginning of the game when there are no 
holdings of flights and hotels, the agent optimization 
problem is indeed separable by client, and so (16) is 
justified. At interim points when agents hold goods, 
the demand optimization problem is no longer 
separable. This is actually where the problem with 
this strategy occurs. The authors are happy with an 
approximation, which is not a very good bound. 
Instead of using this formula, they have the 
possibility to combine the formula with an 
estimation of the goods bought by other agents. 
Exactly for this purpose of predicting the market 
and other agents’ actions, Wolverine has a strategy 
of Hierarchical Game Reduction. Since the 
environment is stochastic, numerous samples (say 
12) are required to produce a reliable estimate for 
even one profile. At roughly two hours per profile, 
exhaustively exploring profile space will require 13 
trillion hours simply to estimate the payoff function 
representing the game under analysis. If the game is 
symmetric, we can exploit that fact to reduce the 
number of distinct profiles to 1, which will require 
628 million hours. That is quite a bit less, but still 
much more time than we have. The idea of 
hierarchical game reduction is that although a 
strategy’s payoff does depend on the play of other 
agents, it may be relatively insensitive to the exact 
numbers of other agents playing particular 
strategies.  
For example, let (s,k;s’) denote a profile where k 
other agents play strategy s, and the rest play s’. In 
many natural games, the payoff for the respective 
strategies in this profile will vary smoothly with k. 
If such is the case, we sacrifice relatively little 
fidelity by restricting attention to subsets of profiles, 
for instance those with only even numbers of any 
particular strategy. To do so essentially transforms 
the N-player game to an N/2-player game over the 
same strategy set, where the payoffs to a profile in 
the reduced game are simply those from the original 
game where each strategy in the reduced profile is 
played twice. 
  
The potential savings from reduced games are 
considerable, as they contain combinatorially fewer 
profiles.  
Lastly they compute the excess for each client: 

(p)]E(x[ E 1,0 (p)]E[x
pd)(pa,

pd , paclient ∑⋅=                 (22) 

Based upon these formulas Walverine obtains the 
necessary estimations. The policy proposed is tested 
on real markets, and it seems that it also giving 
results in TAC according to the results Wolverine 
had. The strategy Wolverine uses, combined with 

the technique of predicting adversary strategies 
holds good results. However, some problems still 
arise from the fact that the decisions are taken based 
upon only two other strategies.  
 
Roxy-Bot also uses Walverine approach. The hotel 
price predictions are evaluated using two metrics: 
Euclidean distance and “expected value of perfect 
prediction” (EVPP). Euclidean distance is a 
standard way of measuring the difference between 
two vectors, in this case the actual and the predicted 
prices. The value of perfect prediction (VPP) for a 
client is the difference between the value of the best 
package for the client based on the actual prices and 
the value of the best package for the client based on 
the predicted prices. EVPP is the expected VPP 
averaged over the client distribution.  
They interpret each prediction with 56 random 
clients as a sample scenario, so that a set of such 
scenarios represents draws from a probability 
distribution over competitive equilibrium prices. 
The vector of predicted prices that is evaluated and 
plotted is the average of multiple (40) such 
predictions. Using random clients helps us make 
better interim predictions later in the game as we 
explain next. 
As hotel auctions close, RoxyBot-06 updates the 
predicted clearing prices of the open hotel auctions. 
The first is to fix the prices of the closed auctions at 
their clearing prices and then to run SimAA or 
tatonnement with expected or random clients. The 
second is to distribute goods from the closed 
auctions to the clients who want them the most, and 
then to exclude any closed auctions in further runs 
of SimAA or tatonnement.  
 
Note that we can only distribute goods to random 
clients. It is not clear how to distribute goods to 
“expected clients,” which are aggregate clients 
rather than real clients. Figure 1 (center and right) 
shows that the predictions based on the distribution 
method are better than the others. Hotels that close 
early tend to sell for less than hotels that close late; 
hence, any method that makes relatively constant 
predictions all throughout the game is bound to 
suffer. 
 
There can be observed that the Roxy-Bot team has 
observed well the minuses that Wolverine was 
exhibiting and corrected them.  
 
 
3.3 Entertainment booking 
The entertainment ticket auctions are standard 
continuous double auctions (much like a stock 
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market) that close when the game ends. Agents may 
submit bids with buy and/or sell points (so long as a 
bid does not specify that the agent sell to itself).  
 
Entertainment ticket auctions clear continuously.  
Bids match immediately, if possible. A bid that does 
not completely match remains standing in the 
auction.  
Buy bid points will immediately match the lowest 
price standing sell bid points that have prices at or 
below the price of the buy bid. Sell bid points will 
immediately match the highest price standing buy 
bid points that have prices above the price at or 
below the sell bid. Bids match at the price of the 
standing bid in the auction.  
 
Regarding Mertacor strategy for Entertainment 
Selling and Purchasing, they use the following 
algorithm: 
 
PROCEDURE MertacorSellStrategy 
1:       FOR each entertainment ticket in possession 
2:     Assign a pre-specified value to target; 
3:     mean ← getMeanValue(); 
4:     M ← A*target + B*mean; 
5:     IF M ≤ (1/2)*target OR M ≥ (3/2)*target 
THEN 
6:          M ← relocateM(); 
7:     END IF 
8:     V ← calcVal(); 
9:     IF V < Vo THEN V ← Vo; END IF 
10:    profit ← ask– 2*V; 
11:     Mt ← w(t)*M; 
12:     Ra ← M; 
13:     Rb ← 3*M/2; 
14:    Rc ← rand(M/2, M); 
15:    IF profit ≥ Mt-Ra THEN sellTicket(); 
16:    ELSE IF profit ≥ Mt-Rb THEN ask (Mt-    
                    Ra+2*V); 
17:    ELSE ask (Mt - Rc +2*V); 
18:    END IF 
19:     END FOR 
 
Mertacor uses previous game experience and 
prespecifies values to some parameters inside its 
strategy. Target gets values from interval [5,12]. 
This assignment of the variable was deduced 
through experiments. Other parameters deduced by 
experiment are A and B. Mean  is computed from 
previous games. M is then bounded between 
(1/2)*target and (3/2)*target. The reason is that 
Mertacor designers want to make sure that this value 
would allow obtaining a good price for buying, or a 
credible price for selling. A value V for the price is 
then computed and if that particular value is 

considered to be less than a minimum value, the 
minimum value becomes the desired V value. A 
profit is afterwards computed as being the ask price 
from which there is subtracted the value of the ticket 
multiplied by 2.  Then parameters Mt, Ra, Rb, Rc  
are computed and a selling decision or a buying 
decision is made afterwards.  
The strategy Mertacor uses has some disadvantages. 
Firstly, Mertacor does not make a computation 
regarding the utility it will get by using the ticket 
itself instead of just selling it or buying it. The 
decision is made for a static market, one that does 
not change prices much. This could make Mertacor 
an isolated agent on the market and serious 
problems might occur from this.  
Furthermore, w(t) function is a lineary and 
continous one, and therefore a predictor for the 
other agents might be possible, in order to know 
what prices might they get for tickets, when to buy 
them, what bidding price should they have to 
increase their utility. Lastly, Mertacor does not take 
its decisions based upon market reality he observes, 
but rather he uses precomputed parameters from 
other games.   
Walverine adopts a fairly minimal adjustment of its 
basic (initial) price prediction method to address 
ticket bidding. In calculating its own demand for 
tickets, it takes into account its current holdings of 
flights and closed hotels. For closed hotels, 
Walverine fixes its own demand at actual holdings. 
For other agents, it continues to employ initial flight 
prices in best-trip calculations. Since they do not 
know the holdings of other agents, they make no 
attempt to account for this in estimating their 
demand. This applies even to closed hotels—in the 
absence of information about their allocation, 
Walverine’s tatonnement calculations attempt to 
balance supply and demand for these as well.  
Also Walverine computes the entertainment 
expected surplus. As a result taking into account 
previous games they obtain the following table: 
 
TABLE 1. Walverine’s game results 
 
 Expected Entertainment Surplus 
Arrive:Depart TAC-01 Prices TAC-02 Prices 
1:2,4:5 74.7 78.0 
1:3,3:5 101.5 112.1 
1:4,2:5 106.9 119.9 
1:5 112.7 120.9 
2:3,3:4 66.2 76.6 
2:4 93.0 110.7 
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The problem with this approach is again the fact that 
it is possible for other agents to come with a strategy 
different than what is on the market in order to 
destabilize it. Under these circumstances, these 
estimations would no longer be of use and bad 
decisions might be taken. In this case a strategy 
similar to Hotel Booking would be better, but here 
there are three skinds of utilities and the number of 
scenarios would rise in accordance more rapidly. 
Therefore, a combined strategy might work better in 
this case.  
RoxyBot-06’s estimates of entertainment ticket 
prices are based on historical data from the past 40 
games. To generate a scenario, a sample game is 
drawn at random from this collection, and the 
sequences of entertainment bid, ask, and transaction 
prices are extracted. Given such a history, for each 
auction a, let trade ai denote the price at which the 
last trade before time i transacted; this value is 
initialized to 200 for buying and 0 for selling. In 
addition, let bid ai denote the bid price at time i, and 
let ask ai denote the ask price at time i.  
To predict current buy price in auction a at time t, 
RoxyBot-06 first computes the minimum among the 
historical trade and ask prices at time t and the 
current ask price in the present game. The current 
buy price is then constrained to be above the current 
bid price in the present game. Without this latter 
constraint, the agent might be inclined to buy a good 
at a price that is lower than the outstanding bid, 
which is impossible. 
Roxy-Bot strategy is also based on previous games. 
As a conclusion, in regarding the Ticket auctions, no 
agent from the ones that we observed is taking into 
account market requests and market evolution. Due 
to the fact that this part of the game is highly 
economical a good strategy would be to observe the 
market behavior and take decisions in accordance 
with that. A Walrasian approach, in relation with 
bounds imposed to the market would produce a far 
better result. 
In pseudocode, the algorithm is defined as: 
 
1:     INPUT 
2:  current ask_est, bid_est  
3:  current lo_ask, hi_bid  
4:  rates of adjustment α, β. 
5:     OUTPUT : 
6:  adjusted ask est, bid est 
7:  IF  (a recent trade took place at price p) 

8:      ask est = (1 − α)  ask est + αp 

9:      bid est = (1 − α)  bid est + αp 

10:  ELSE (there is a hi bid–lo ask spread) 

11:      ask est = (1 − β)  ask est + βlo ask 

12:          bid est = (1 − β)  bid est + βhi bid 

13:  ENDIF 
 
The approach RoxyBot uses for estimation of the 
entertainment ticket auctions is based on setting 
some variables during the game α = 0.1 and β = 
0.05. 
Also, two internal price estimates are maintained for 
all entertainment tickets, an ask_est and a bid_est. 
The adjustment of these estimates is made in the 
direction of the trade price, if any trade takes place. 
Else, if a bid-spread occurs, the ask_est is adjusted 
in the direction of lo_ask and bid_est is adjusted in 
the direction of hi_bid. 
 
 
3.4 Future directions 
As playing the same method became quite intuitive 
and the market had new requests, another type of 
game was initiated. 
The SCM game tournament started back in 2003, as 
a simple competition.  
From the 2007 edition, two more challenges where 
added:  a Procurement Challenge and a Prediction 
Challenge. 
Different extensions were made from year to year.  
Agents are simulations of small manufacturers, who 
must compete with each other for both supplies and 
customers, and manage inventories and production 
facilities[12]. 
 
Supply chain management is concerned with 
planning and coordinating the activities of 
organizations across the supply chain, from raw 
material procurement to finished goods delivery. In 
today’s global economy, effective supply chain 
management is vital to the competitiveness of 
manufacturing enterprises as it directly impacts their 
ability to meet changing market demands in a timely 
and cost effective manner. With annual worldwide 
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supply chain transactions in the trillions of dollars, 
the potential impact of performance improvements 
is tremendous[12].  
 
While today’s supply chains are essentially static, 
relying on long-term relationships among key 
trading partners, more flexible and dynamic 
practices offer the prospect of better matches 
between suppliers and customers as market 
conditions change. Adoption of such practices has 
however proven elusive, due to the complexity of 
many supply chain relationships and the difficulty in 
effectively supporting more dynamic trading 
practices[4].  
 
TAC SCM was designed to capture many of the 
challenges involved in supporting dynamic supply 
chain practices, while keeping the rules of the game 
simple enough to entice a large number of 
competitors to submit entries. The game has been 
designed jointly by a team of researchers from the e-
Supply Chain Management Lab at Carnegie Mellon 
University and the Swedish Institute of Computer 
Science (SICS) [4].  
Six agents compete in each game. The game takes 
place over 220 TAC days, each day being 15 
seconds long. The agent with the highest sum of 
money in the bank at the end of the game is declared 
the winner. The format and content of the various 
messages exchanged between the agents and the 
game server are available in the software 
documentation. 
In addition to the interaction with the suppliers and 
customers, agents (and game viewers) have access 
to other data within a game[4]. 
 
TAC-SCM Procurement Challenge (SCM-PC): 
The challenge requires agents to manage supply 
chain risk by negotiating long-term, quantity 
flexible procurement contracts and supplementing 
these contracts with one-off procurement orders. As 
such, this challenge complements the current 
“baseline” TAC- SCM scenario by extending the 
space of procurement options available to supply 
chain trading agents. 
Specifically, manufacturer agents will rely on a 
combination of: 

• Long-term “quantity flexible” 
contracts. These contracts 
specify minimum component 
quantities a manufacturer agent 
commits to purchasing weekly 
(at a fixed price) from a given 
supplier agent and include 
options to increase these 

quantities by up to some 
percentage (at the same fixed 
price). 

 

• One-off contracts. These are the 

same supply contracts as the 
ones negotiated in the baseline 
TAC-SCM scenario[12]. 

 
The TAC-SCM Procurement Challenge (or ”SCM-
PC”) game simulates D days of operation (where D 
= 100 days). It features n manufacturer agents 
(where n = 3) competing for supply contracts from 8 
different supplier agents every supplier offers both 
long-term and one-off contracts. Long-term 
contracts are negotiated at the start of the game and 
last for the game’s full duration. Each week, 
manufacturer agents may decide to order more than 
the minimum quantities they committed to up to a 
pre- specified max quantity. Each day, they may 
also decide to procure additional components 
outside of their long-term procurement contracts 
(specifying quantity and delivery date) [12]. 
 
TAC-SCM Prediction Challenge (SCM-PC): 
In  order  to  effectively manage  a  supply  chain,  a 
TAC  SCM  agent must  be  capable  of performing  
a  number  of  interrelated  tasks.   In the TAC SCM  
Prediction  Challenge, agents will be evaluated on 
their ability to perform a single one of these tasks in 
isolation: making predictions about prices.    In 
particular, agents will make daily predictions over 
the course of a number of TAC SCM games about 
four different types of prices: current and future 
computer prices, and current and future component 
prices[12]. 
The predictions consist of:  

 
1. The price at which each RFQ sent  from 

customers on  the current day will be 
ordered (i.e., the lowest price that will be 
offered by a manufacturer),  

2. The median price at which each of the 16 
types of computer will sell in Ncomputer 
days,  

3. The price that will be offered for each RFQ 
sent by the PAgent to a supplier on the 
current day, and  

4. The price that will be offered for each of a 
number of provided RFQs that will be sent 
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by the PAgent to suppliers in Ncomponent 
days[12]. 

 
In order to allow games to be followed in real time, 
and also analyzed in depth at a later date, an 
additional set of metrics (including the following) 
will be monitored throughout the game. These 
metrics are used by the game viewer to provide a 
visual representation of the game as it proceeds, and 
are stored within the game logs for post mortem 
analysis[12]. 

• Bank balance 
• Inventory quantities and cost of inventory 

held 
• Delivery performance 
• Assembly cell utilization 
• All RFQ, offers and orders exchanged by 

agents, customers and suppliers[12]. 
 
Note that this information is not provided to the 
agents directly, and agents should not attempt 
to access it though external means (i.e. through the 
game viewer or the game logs). The use of such 
external information, either manually or 
automatically, is regarded as external ‘tuning’ of the 
agent. As such, according to the existing 
competition rules, it is forbidden within any specific 
round during the finals of the competition[12]. 
4 Conclusion 
The most interesting phase was seeing all these 
agents competing on one game. The results are very 
important, as the three strategies are very well 
defined, but all have their leaks. 
After an 80 rounds game, the following results have 
been obtained by the three agents. This is presented 
in Figure 1. 
The names are abbreviated in the pictures: 
Rox : RoxyBot 
Wal : Wlaverine 
Mer : Mertarcor 

 
 
Fig. 1. Graphic with the results obtained by the 
agents 
 

The place obtained by Mertarcor is not so good. 
In order to explain this situation, the steps in the  
game have to be observed, by category for bidding. 
 
TABLE 2. Game bidding steps 
 

 Rox Wal Mer 
Hotel Bids 130 81 94 
Average Hotel Bids 170 115 147 
Won Hotels 15.99 16.79 18.44 
Hotel Costs 1102 1065 902 
Unused Hotels 2.24 1.82 4.86 
Hotel Bonus 613 598 590 
Trip Penalty 296 281 380 
Flight Costs 4615 4655 4834 
Event Profits 110 26 123 
Event Bonus 1470 1530 1369 

 
As expected, the best result obtained by Mertarcor 
was for won hotels. Their strategy is best for hotels. 
But only for won hotels, as they do not use both 
hotels all the time, they are oriented only on one 
hotel. This is why the agent does not obtain a 
maximum bonus for hotels. 
RoxyBot uses both hotels, not as well as Mertarcor, 
but it gets the maximum bonus.  
Walverine has a poor strategy for hotels, as it 
appears here. 
Basically, for all goods,  Mertacor has a one-target 
oriented strategy, while RoxyBot and Walverine 
have a all-goods oriented strategy. Although 
Mertacor orients towards the most expensive goods 
in order to obtain better prices and more money, 
RoxyBot and Walverine manage to use most of the 
goods at lower prices, that’s why they get also 
bonuses, and their rank increases. 
Finally, RoxyBot has the most equilibrate strategy, 
not very strong on one good, but sufficiently strong 
on all goods. So if it bids on one good, it may not 
get the best price, but at least the immediate one 
after the best price. 
Mertarcor obtains the best price for some goods, 
while for others it obtains very poor prices, being 
also penalized because of its orientation towards 
only some goods. 
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