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Abstract: A Linear Feedback Shift Register (LFSR) is always the kernel of any digital system based on 
pseudorandom bits sequences and is frequently used in cryptosystems, in codes for errors detecting, in wireless 
system communication. The Advanced Encryption System (Rijndael) is based on using a grade 8 irreducible 
polynomials in a Galois Field. For a better understanding this study contains aspects of functioning for Linear 
Feedback Shift Register and Multiple Input-Output Shift Register (MISR) using grade 4, 8 and 16 irreducible 
polynomials. This experiment shows that the Linear Feed-back Shift Register and Multiple Input-Output Shift 
Register have the same function. The conclusion of this paper is that for grade 8 and 16 irreducible polynomials 
the weights are calculated with a formula discovered in this work. 
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1 Introduction 
Beginning with 2000 Rijndael [1] [2] cryptosystem 
is officially the Advanced Encryption System 
(AES) [7], [8]. The old DES (Data Encryption 
Standard) [3], [4] was broken from Electronic 
Frontier Foundation in 3 days. The two authors 
Joan Daemen and Vincent Rijman from Holland 
chose to use a Galois Field GF (28) with the 
following generator polynomial [7], [8].   
 

P(x) =x8+x4+x3+x+1 (1) 
 

All arithmetical operations will be developed in 
a Galois group. 

The Shift Register Cryptosystems’ variant has 
been developed from the evolution of the 
encrypting techniques [5]. Such a cryptosystem is 
based upon generating a sequence in a finite field 
and for obtaining it a Feedback Shift Register is 
used. 

The Linear Feedback Shift Registers are used 
in a variety of domains [5]: sequences generators; 
counters; BIST (Built-In-Self-Test) [6]; encryption; 
PRBS (Pseudo-Random Bit Sequences). 

LFSR can be realized based on XOR (exclusive 
OR) circuits or XNOR (exclusive denied OR). 

Of course, the difference is of status, the equivalent 
status will be 1, where it was 0. For an n bits LFSR, 
all the registers will be configured as shirt registers, 
but only the last significant register will determine 
the feedback. 

An n bits register will always have n + 1 
signals. 

A feedback shift register is composed of: 
- a shift register 
- a feedback function. 

 

Fig. 1 Feedback Shift Register  

A LFSR is a shift register, whose input bit is 
given from a linear function of the initial status. 
The initial value of the register is called seed and 
the sequence produced is completely determined by 
the initial status. Because the register has a finite 
number of possible statuses, after a period the 
sequence will be repeated. If the feedback function 
is very good chosen the produced sequence will be 
random and the cycle will be very long. The list 
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with the position that influences the future status is 
called tap sequence. For example, for the next 
LFSR this list is [16, 14, 13, 11 ]: 
 

 
Fig. 2 A LFSR scheme 

 

     The tap sequence can be represented as a 
polynomial mod 2, with the coefficients 1 or 0. 
This is called feedback polynomial or characteristic 
polynomial. For the Fig.2 this polynomial is: 
 

S(x) = x16+x14+x13+x11+1 (2) 
 

     The 1 number from the polynomial isn’t 
correspondent in tap sequence, but the powers of 
the terms are correspondent to the bits from that 
sequence. Though the pseudorandom bits sequence 
produced a LFSR is the most important part of any 
digital systems with application in cryptography in 
measurement based on the error bit rates, in 
wireless communication systems. There are two 
kinds of implementation for LFSR: 

• Fibonacci implementation 
• Galois form. 

 

Fig. 3 Fibonacci implementation  

 

     In Fibonacci form the weight for any status is 0, 
when there isn’t any connection and 1 for sending 
back. Exceptions of this are the first and the last 
one, both connected, so always on 1. 
 

Fig. 4 Galois implementation  
 

     In Galois implementation there is a Shift 
Register, whose content is modified each step at a 
binary value sent to the output. Comparing the two 

type of representation it is shown that the weight 
order in Galois is opposite the one in Fibonacci. 
From the hardware point of view, Galois 
implementation is fastest than Fibonacci because of 
the reduced number of XOR gates in feedback and 
so it is much more used. There are some industries 
in which Fibonacci form is referenced as SSRG 
(Simple Shift Register Generator) and Galois as 
MRSRG(Multiple-Return Shift Register 
Generator). There are two types of LFSR from the 
utilization point of view: the well-known LFSR, 
that is an “in-tapping” LFSR and the “out-tapping” 
LFSR. The “in-tapping” LFSR is usually called a 
MISR (Multiple Input Shift Register). A MISR is 
in fact a modified LFSR, thus functioning is a 
little bit slower. Cycle codes belong to 
algebraically codes for errors detecting. This 
paper develops an analyze of a Linear Feedback 
Shift Register and a Multiple Input – output Shift 
Register. 
 
 

2 Functioning of LFSR and MISR 
with grade 4 irreducible polynomials 
It was necessary to use different pseudorandom 
sequence for input. For analyzing the functioning 
of a LFSR based on a grade 4 irreducible 
polynomial there are 3 different schemes. For 
example for the polynomial  
 

P(x) = x4 + x + 1 (2) 
 

Fig. 5 Scheme A  
 

 
Fig. 6 Scheme B 

 

 
Fig. 7 Scheme C 

     For each type of scheme is another program for 
simulating the functioning of LFSR. The relations 
for the calculus of each weight are: 
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S0=1*P(x) 
S1=x*P(x) 
S2=x2*P(x) 
S3=x3 * P(x) 

 
    (3) 

 

     For each of them these relations were verified. 
Also dividing the input polynomial with x4+x+1 the 
rests were correct. The program contains also the 
time at the beginning and at the ending of the 
operations. Separate programs have been developed 
for the theoretical method presented above for 
calculating the output of a Linear Feedback Shift 
Register using the polynomial 
 

x4 + x +1 (4) 
 

     A program for simulating the functioning of the  
LFSR for scheme A will be presented in the 
following lines.  It has to receive as input data the 
coefficients of the input polynomial that was 
already calculated in a separate part. This string of 
zeros and ones is afterwards used for calculating 
the output of the LFSR. The counter (used after 
calculating both the output of a Linear Feedback 
Shift Register and the output of a Multiple Input-
Output Shift Register) is started right before the 
starting of the calculation. The calculation itself 
consists of a cycle that for every value in the input 
data, an intermediate result for an intermediate step 
is calculated as it follows. 
     -For the a[0] value, the program gets the result 
for an XOR between the value in the input data 
string, found on the position that has the number of 
the step, and the previous value(from the previous 
step) of a[0]; in the program, the data from where 
the calculation starts is contained in the string array 
s and this status is counted as step 0-the initial step. 
     -For the a[1] value, the result is calculated in the 
program as an XOR between the s[0](intermediate 
value from the previous step) ands[n-1], where n is 
the value of the highest power of the polynomial, 
actually the grade of the polynomial; both values 
used in this calculation are calculated during the 
previous step. 
     -For the other two values, a[2] and a[3], the 
calculation is as simple as this: they get the value of 
s[i-1], where i is either 2 for a[2], or 3 for a[3]. 
     All operations made in this procedure for the 
current step are related to the results obtained 
during the calculation of the previous step. 
     The procedure that does this calculation for the 
intermediate cycles and also for the most important, 
the final values, is available below: 
 

void prelucrare(int n, int knt) 
{ a[0]=s[n-1]^x[knt]; 

  a[1]=s[0]^s[n-1]; 
  for (int i=2;i<4;i++) 
    a[i]=s[i-1]; 
  k++; 
 } 
 

     As soon as the final results are obtained in the 
main part of the program, the counter is stopped 
and the elapsed time is calculated and stored.  
     For calculating the output of a Multiple Input-
Output Shift Register there was developed a 
program for scheme A. 
     As input data, the program uses 4 columns of 
zeros and ones on 20 rows. These 20 sets of 4 bits 
are used to obtain the output of the MISR. After 
reading the input data in the program, the counter is 
starting. 
     This time the calculation uses for each step one 
row of the input data: 
     -For the value of a[0], the result is obtained 
from XOR between s[n-1] and the value from the 
input data on the position “first row, first column” 
x[0][0](for the first calculated step), using the 
initial step where all the elements in the array s are 
zero. 
     -For the a[1] value, the calculation is made as an 
XOR between s[0] and s[n-1] and x[1][0], where n 
is 4 in this example and this example refers  to  the 
first step, done starting from the initial step, in 
which the string s contains just zeros. 
     -For all the other values(a[2] and a[3]), the 
result is obtained by XOR between s[1] and x[2][0] 
for a[2] and s[2] and x[3][0] for a[3]. 
     -For the nest steps, the procedure for calculation 
is the same, only the indexes are changing and 
therefore the values used in the calculation.  
     In this procedure, all calculations are made 
based on the previous step results, stored in the 
string s. 
     The final values for the calculation of MISR are 
obtained from this procedure: 
 

void prelucrare(int n, int knt) 
{ a[0]=s[n-1]^x[0][knt]; 
  a[1]=x[1][knt]^(s[0]^s[n-1]); 
  for (int i=2;i<n;i++) 
    a[i]=s[i-1]^x[i][knt]; 
  k++; 
 } 
     After the results are obtained in the main part of 
the program, the counter is stopped so that the 
elapsed time, used for getting the MISR output, can 
be calculated.  
     In the case of the B schema for LFSR, the 
program developed is presented in the next section. 
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     All the calculations that are to be done for 
obtaining the final result have as a basis the input 
data that consists of the coefficients of the same 
polynomial that was previously calculated also for 
the scheme A program for LFSR. The program 
contains two procedures and the main part. In the 
procedure afis, the results of each intermediate step 
are listed, so that it’s easier to track back the 
results. The procedure afis is used in the main 
program, where it is called for each of the 
intermediate steps, in front of the second procedure 
of the program, called prelucrare. This second 
procedure is actually the most important one, as it 
calculates the intermediate results for the 
intermediate steps ending up with calculating the 
final results. The relations used in this procedure 
can be read from the scheme B for a LFSR. Below, 
the procedure is enclosed. 
 

void prelucrare(int n, int knt) 
{ for (int i=1;i<4;i++) 
    a[i]=s[i-1]; 
  a[0]=(a[n-1]^s[n-1])^x[knt]; 
  k++; 
 } 
 

     In the main section of the program, all the 
needed data is collected and also a counter is used 
for the elapsed time spent for the calculation of the 
final results. The program used for MISR for the 
scheme B is is explained next. Same as the input 
data for scheme A, this program gets the data like 
this: a table with 4 columns and 20 rows is read in 
the beginning of the program. The same structure 
of the program is applied here, like for the previous 
LFSR and MISR programs. This means that there 
are two procedures called afis and prelucrare, and 
there is also a main part of the program. In the 
procedure afis, the information at each intermediate 
step is listed, for easier understanding. This 
procedure is called-before the procedure 
prelucrare-and lists the results of the intermediary 
steps and also the final one. The procedure 
prelucrare is called in the main part of the program 
right after the procedure afis, being used for 
calculating both the intermediate steps and also for 
the final results. The main part of the program 
offers the same support, as a counter: how much 
time does it take? For exemplification, the code of 
the main part is: 
 

void prelucrare(int n, int knt) 
{ for (int i=1;i<n;i++) 
    a[i]=s[i-1]^x[i][knt]; 
  a[0]=(s[n-1]^a[n-1])^x[0][knt]; 
  k++; 

 } 
 

     Same as in the previous cases, the counter is 
started right after the calculation finished and ends 
when it is requested. 
     In the last case of the schema C calculating 
LFSR/MISR, the relations differ a bit. Overall, the 
program is organized in the same way as all the 
previous ones: two procedures and one main. The 
input data is the already known polynomial, made 
out of the same coefficients. The input data is read 
in the main program, afterwards the intermediate 
steps will be agreed. The procedure afis works 
closely especially with the procedure prelucrare. 
The calculation (in main) using parts of the input 
data is actually a cycle that for each step writes 
what was before and also what it is now, using the 
procedure afis and also prelucrare. The procedure 
prelucrare is enclosed: 
 

void prelucrare(int n, int knt) 
{ a[0]=s[n-1]^x[knt]; 
  a[1]=s[0]^a[0]; 
  for (int i=2;i<4;i++) 
    a[i]=s[i-1]; 
  k++; 
 } 
 

     The program used for this calculation 
corresponding to scheme C follows the template 
already established for the other programs. 
Primarily, the procedures are afis and prelucrare, 
and they are both needed to get in the end to the 
final results. Same 4 columns on 20 rows are the 
input data for the obtaining of the next step results. 
In the procedure prelucrare what is changed for this 
MISR scheme C is that the relations are following 
the scheme C for the step by step calculation and 
also the final result. 
 

void prelucrare(int n, int knt) 
{ a[0]=s[n-1]^x[0][knt]; 
  a[1]=x[1][knt]^(s[0]^a[0]); 
  for (int i=2;i<n;i++) 
    a[i]=s[i-1]^x[i][knt]; 
  k++; 
 } 
     In the main part of the program both procedures 
are called to list and then calculate the intermediate 
step, ending with the final results. Before the 
calculation starts and after it had been finished, in 
the main part of the program is counted the elapsed 
time. 
 

void main() 
{ pf=fopen("lfsr_a1.txt","wb"); 

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1808 Issue 10, Volume 7, October 2008



  for (int i=0;i<4;i++) s[i]=0; 
  printf("\nIntroduceti coeficientii polinomului de 
intrare sub forma: a a a a a s.a.m.d.\n"); 
  scanf("%d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d %d %d %d %d %d %d %d 
%d",&x[0],&x[1],&x[2],&x[3],&x[4],&x[5],&x[6
],&x[7],&x[8],&x[9],&x[10],&x[11],&x[12],&x[1
3],&x[14],&x[15],&x[16],&x[17],&x[18],&x[19],
&x[20],&x[21],&x[22]); 
  gettime(&timep0); 
  k=1; 
  for (i=0;i<24;i++) 
  { afis(s,4); 
    prelucrare(4,i); 
    for (int j=0;j<4;j++) s[j]=a[j]; 
   } 
  gettime(&timep1); 
  long ora=timep1.ti_hour-timep0.ti_hour; 
  long mint=timep1.ti_min-timep0.ti_min; 
  long secn=timep1.ti_sec-timep0.ti_sec; 
  float suts=timep1.ti_hund-timep0.ti_hund; 
  ora*=3600; 
  mint*=60; 
  suts/=100; 
  float suma=ora+mint+secn+suts; 
  printf("\n suma de sec %f",suma); 
  fclose(pf); 
  getch(); 
 } 
 

     The program for MISR is: 
void main() 
{ pf=fopen("misr_a1.txt","wb"); 
  for (int i=0;i<4;i++) s[i]=0; 
  printf("\nIntroduceti cei 20 de x corespunzatori 
coloanei 0 in forma: a a a a  s.a.m.d.\n"); 
  for (i=0;i<4;i++) 
    scanf("%d %d %d %d %d %d %d %d %d %d 
%d %d %d %d %d %d %d %d %d 
%d",&x[i][0],&x[i][1],&x[i][2],&x[i][3],&x[i][4
],&x[i][5],&x[i][6],&x[i][7],&x[i][8],&x[i][9],&
x[i][10],&x[i][11],&x[i][12],&x[i][13],&x[i][14],
&x[i][15],&x[i][16],&x[i][17],&x[i][18],&x[i][1
9]); 
  gettime(&timep0); 
  k=1; 
  for (i=0;i<21;i++) 
  { afis(s,4); 
    prelucrare(4,i); 
    for (int j=0;j<4;j++) s[j]=a[j]; 
   } 
  gettime(&timep1); 
  long ora=timep1.ti_hour-timep0.ti_hour; 
  long mint=timep1.ti_min-timep0.ti_min; 
  long secn=timep1.ti_sec-timep0.ti_sec; 

  float suts=timep1.ti_hund-timep0.ti_hund; 
  ora*=3600; 
  mint*=60; 
  suts/=100; 
  float suma=ora+mint+secn+suts; 
  printf("\n suma de sec %f",suma); 
  fclose(pf); 
  getch(); 
 } 
 
 

3 Functioning of LFSR and MISR 
with 8 grade irreducible polynomials 
First of all, the algorithm was applied using grade 4 
polynomials. 
     The results were accurate and correct. 
     For each polynomial it was necessary to create 
three programs: 

• one for simulating the use of  LFSR 
• one for another simulation with MISR 
• another one for verifying the correctitude 

of the previous result. 
     Initially a program was specially developed to 
obtain all the irreducible grade 8 polynomial, thus 
substantially improving security [3]. 
     In the following rows there is the description of 
the program used for obtaining all the Grade 8 
irreducible polynomials.[21] 
     First of all, all the 8 grade polynomials were 
generated, but only that with natural coefficients. 
The general form for such polynomials is: 
 

1---…-1 (5 ) 
 

because the first 1 is mandatory for having the 
established grade and the last one confirm the fact 
of being irreducible; if this is missing, than the 
polynomial can be divided by x. 
     For generating all the 8 grade polynomials it is 
necessary to work with 7 columns. The total 
number of polynomials will be z=128. For 
eliminating the reducible polynomials it is useful to 
use Z2 presented in the next table: 
     Each of the 128 polynomials will be divided by 
the 12 irreducible polynomials. If one single rest is 
null, then the tested polynomials is dividing at least 
with one from the 12 irreducible polynomials. For a 
better verifying in the results table is maintained 
also the order number of the initial polynomial. 
     Out of the programs, it comes to the conclusion 
that the results should also rely on the previous link 
(given by the “equal with one” coefficient of the 
polynomial). This “specific” link that is also part of 
the calculation for MISR is to be taken after the 
XOR was made for that rank of the polynomial. 
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Tab. 1 The 12 irreducible polynomials for grade 1, 
2, 3 and 4 

 
 

Tab. 2 The 8 Grade irreducible polynomials 

14. 1 1   0 1 1 0 0 0 1 

15. 1 0 1 1 1 0 0 0 1 

22. 1 1 0 1 0 1 0 0 1 

23. 1 0 1 1 0 1 0 0 1 

 29. 1 0 0 1 1 1 0 0 1 

32. 1 1 1 1 1 1 0 0 1 

39. 1 0 1 1 0 0 1 0 1 

48. 1 1 1 1 1 0 1 0 1 

50. 1 1 0 0 0 1 1 0 1 

51. 1 0 1 0 0 1 1 0 1 

53. 1 0 0 1 0 1 1 0 1 

57. 1 0 0 0 1 1 1 0 1 

60. 1 1 1 0 1 1 1 0 1 

62. 1 1 0 1 1 1 1 0 1 

68. 1 1 1 0 0 0 0 1 1 

70. 1 1 0 1 0 0 0 1 1 

71. 1 0 1 1 0 0 0 1 1 

80. 1 1 1 1 1 0 0 1 1 

82. 1 1 0 0 0 1 0 1 1 

85. 1 0 0 1 0 1 0 1 1 

89. 1 0 0 0 1 1 0 1 1 

95. 1 0 1 1 1 1 0 1 1 

98. 1 1 0 0 0 0 1 1 1 

104. 1 1 1 1 0 0 1 1 1 

108. 1 1 1 0 1 0 1 1 1 

111. 1 0 1 1 1 0 1 1 1 

116. 1 1 1 0 0 1 1 1 1 

122. 1 1 0 0 1 1 1 1 1 

123. 1 0 1 0 1 1 1 1 1 

125. 1 0 0 1 1 1 1 1 1 
 

     The mathematically representation of each rank 
of the polynomial was made accordingly to these 
“specific” links. Also, this new revealed thing was 
verified with the help of programs. 
     In the end, correlating the results obtained for 
the grade 4 polynomials with the results obtained 
for the 8 grade polynomials, it comes to   
mathematical relations for calculating each rank. 
These relations point out the previous existing links 
and act similarly to a feedback “calculated” also 
from the previous links. 
     The link acts after the XOR was calculated and 
in this way takes the result that was previously 
obtained. 
     In order to demonstrate that those presented 
above are correct and precise, was made an 
analysis for all the 30 irreducible grade 8 
polynomials that were also found in another 
program specially developed for this purpose, 
coming to three particular cases. 
Out of this analyze, there was made a 
generalization, that led to the writing of specific 
programs for each irreducible grade 8 polynomial, 
used for the substantially improvement of security 
[10]. 
     The simulation programs were tested in both 
ways: with the method of making tables according 
to the proposed circuits and also with mathematical 
methods that materialize the hard operations. 
     As input data sets were used several different 
multiple combinations, randomly generated. 
     For building a security infrastructure the use of 
pseudorandom generators using packed matrices is 
very efficient [21]. Another possibility is to use 
Mersenne-Twister generator easy to find in 
MATLAB beginning with 7.4 version and in 
SCILAB. 
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     The two programs are described in this paper, 
one of them simulating the functioning of a LFSR 
and the functioning of an analytic MISR, and the 
other one simulating the functioning of a synthetic 
MISR. The programs are based on irreducible 
grade 8 polynomials, allowing the user to introduce 
the coefficients of the chosen polynomial. 
     There have been chosen two polynomials for 
testing these two programs. 
     The first one is the polynomial 
 

P(x)=x8+x6+x5+x3+1 (6) 
 

     The coefficients would be introduced in the 
program as it follows: 
 

1 0 1 1 0 1 0 0 1 (7) 
 

and would lead to the following scheme depicted in 
the next figure: 
 

 
Fig. 8 Scheme for the polynomial 

P(x)=x8+x6+x5+x3+1 
 

     In the program the weights for each chosen 
polynomial are calculated. For this  scheme, the 
weights are: 
 

S0=1 P(x) 
S1=x P(x) 
S2=x2 P(x) 

S3=(x3+x) P(x) 
S4=(x4+x2+x) P(x) 
S5=(x5+x3+x2) P(x) 

S6=(x6+x4+x3+x) P(x) 
S7=(x7+x5+x4+x2) P(x) 

 

 
 
 
 
(8) 

The second one is the polynomial 
 

P(x)=x8+x4+x3+x+1 (9) 
 

used in Rijndael Cryptosystem [10]: 
 

Fig. 9 Scheme for the polynomial  
 

     For the case in the “Fig. 9.” scheme, the weights 
are: 
 

S0=1 P(x) 
S1=x P(x) 
S2=x2 P(x) 
S3=x3 P(x) 
S4=x4 P(x) 

S5=(x5+x) P(x) 
S6=(x6+x2+x) P(x) 
S7=(x7+x3+x2) P(x) 

 

 
 

(10) 

     In order to get the final results from the 
programs, the user has to introduce in the program 
the polynomial’s coefficients as described above 
and also the input data sets, consisting of 8 
columns, each of them having a length of 2n 
elements (where n is an integer). Because the new 
cryptographic Algorithms uses longer keys, now is 
important to improve the analysis of the 
functioning for shift registers of 16 and 32 [1],[3]. 
In the MISRSIN.CPP program the synthetic MISR 
is calculated for the input data given by the user  
and then the results are provided in the end. 
Calculating the results consists of categorizing the 
8 SRi steps in which the scheme will be treated in 3 
major types of ways according to the below 
described types:  

• the first type is characterized by the 
existence of the coefficient of the i power 
corresponding to the SRi; in this case the 
procedure prelexi is called, having i+1 as 
an argument; 

• the second type is characterized by the 
absence of the coefficient of the i power 
corresponding to the SRi; in this case the 
procedure prelabs is called, having i+1 as 
an argument; 

• the third type is actually a particular one: it 
refers to the case of SR0, and the procedure 
prelzero is called, having no argument. 

 

     In the following rows the prelexi procedure is 
presented: 
void prelexi(int ind) 
{ int i,j,k,xor=0; 
  for (i=0;i<8;i++)  
for(j=0;j<51;j++) sr[i][j]=0; 
  for (j=1;j<=n;j++) 
  { xor=0; 
    for (i=0;i<8;i++) 
    { if ((ax[i]==1)&& 
         ((ind-1)!=i)) 
    xor=xor^sr[i][j-1]; 
  if (i!=0) 
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    sr[i][j]=sr[i-1][j-1]; 
 } 
    sr[ind][j]=col[ind][j-1] 
^sr[ind-1][j-1]; 
    sr[0][j]=xor^sr[ind][j]; 
   } 
  for (i=0;i<8;i++) 
    rez[i][ind]=sr[i][n]; 
 } 
 

     This time the basis is also the translation of the 
elements corresponding to the SRis, with i from 1 
to 7 without ind (the argument of the procedure), 
by “connecting” the feedback in the SR0 while 
executing XOR with all the SRis that have a 
corresponding “connection” and with the current 
corresponding SRind, and by executing XOR with 
the element of the corresponding column and the 
element of the corresponding SRind. The code of 
the procedure prelabs is: 
 

void prelabs(int ind) 
{ int i,j,xor=0; 
  for (i=0;i<8;i++)  
for(j=0;j<51;j++)         sr[i][j]=0; 
  for (j=1;j<=n;j++) 
  { xor=0; 
    for (i=0;i<8;i++) 
    { if (ax[i]==1)  
    xor=xor^sr[i][j-1]; 
  if (i!=0) 
    sr[i][j]=sr[i-1][j-1]; 
 } 
    sr[ind][j]=col[ind][j-1] ^sr[ind-1][j-1]; 
    sr[0][j]=xor; 
   } 
  for (i=0;i<8;i++) 
    rez[i][ind]=sr[i][n]; 
 } 
 
     Here is the same translation of the elements 
from SR1 to SR7 without ind (the argument of the 
procedure), by “connecting” the feedback in the 
SR0 while executing XOR with all the SRis that 
have a corresponding “connection” (the power i 
exists in the chosen polynomial) and by executing 
XOR with the element of the corresponding 
column and the element of the corresponding 
SRind. 
     The difference between prelabs and prelexi is 
given by the SRind: it is taken into consideration in 
the procedure prelexi in SR0, and does not appear 
in the procedure prelabs in SR0. 

The final result is calculated by making XORs with 
all the partial results obtained in the 8 steps on each 
and every column of all the eight columns. 
     The prelzero procedure is reproduced below: 
 

void prelzero)//SR0 calculation 
{ int i,j,xor=0; 
  for (j=1;j<=n;j++) 
  { xor=0; 
    for (i=0;i<8;i++) 
    { if (ax[i]==1) //there is a //“connection” 
    xor=xor^sr[i][j-1]; 
  if (i!=0) 
    sr[i][j]=sr[i-1][j-1]; 
 } 
    sr[0][j]=xor^col[0][j-1]; 
   } 
  for (i=0;i<8;i++) 
    rez[i][0]=sr[i][n]; 
 } 
 
     In this procedure, the result is calculate by 
translating the elements corresponding to the SRis, 
with i from 1 to 7, and by “collecting” the feedback 
in the SR0 while executing XOR with all the SRis 
that have a corresponding “connection”. 
     The analytic MISR and LFSR are calculated for 
the input data given by the user and the results are 
provided in the end of MISRCALC.  
     For the given polynomial, the program 
calculates in the procedure genr the corresponding 
8 weights. The procedure genr is: 
 
void genr() 
{ //se calculeaza legaturile pentru polinomul 
introdus 
  for (int i=0;i<9;i++) 
    for (int j=0;j<8;j++) 
  s[j][i]=0; 
//S0 e intotdeauna 1 pentru ca 8-r=8 (r e 0) si 
x^8/x^8 e 1 
  s[0][0]=1; 
//r=8 nu are sens 
  for ( i=1;i<8;i++) 
    impart(i); 
 } 
 

     These weights are a base for calculation MISR 
and LFSR also. The whole procedure for the 
analytic MISR consists of 8 steps: for each step is 
considered the corresponding column which is 
multiplied by the corresponding weight, then it is 
divided by the chosen polynomial, again it is 
multiplied by x8 and, finally, divided by the chosen 
polynomial. The result obtained in this way is the 
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result of the current step of the calculation for the 
analytical MISR. For each of the eight cases, the 
result is obtained as described above. The final 
result for the analytical MISR is obtained by 
making XORs with all the results of the 8 steps on 
each and every column of all the eight columns. 
The interpretation of this final result is that the ones 
and zeroes obtained are the coefficients of a 
polynomial. The grade of this polynomial may be 
any of those between seven and zero. The whole 
procedure for the LFSR is simpler: it is obtained by 
making XOR with all the weights multiplied by the 
corresponding column, and then, using the result 
obtained (whose grade gives the number of rounds 
that are to be done) as o column corresponding to 
the SR0 and no other columns, translating all the 
elements without 0, and “collecting” the feedback 
in the 0 element executing XOR with all the other 
elements that have a corresponding “connection” 
(the power with that rank exists in the chosen 
polynomial). In this case, the final result consisting 
of those eight figures (ones and zeroes) represents 
also the coefficients of a polynomial, just as in the 
case of MISR. The results obtained from the 
MISRS.CPP program and the other two results 
obtained from the MISRCALC.CPP program are 
the same, since they are the result of the same input 
data used for calculation that are equivalent. These 
kinds of calculation for verifying the correctness of 
the results have been made primarily on paper. 
The next table contains all the 30 polynomials and 
the results of the tests. For this tests the input dates 
were provided random from a Pseudorandom 
Generator [9]. 
 

Tab. 3 The complete situation about all the 30 
grade 8 irreducible polynomials 

No. Polynomial Result 
1 x8+x4+x3+x+1 00110010 
2 x8+x4+x3+x2+1 01101000 
3 x8+x5+x3+x+1 01011011 
4 x8+x5+x3+x2+1 01101000 
5 x8+x5+x4+x3+1 00111001 
6 x8+x5+x4+x3+x2+x+1 01100011 
7 x8+x6+x3+x2+1 00010111 
8 x8+x6+x4+x3+x2+x+1 11101010 
9 x8+x6+x5+x+1 10001000 
10 x8+x6+x5+x2+1 11010101 
11 x8+x6+x5+x3+1 00011110 
12 x8+x6+x5+x4+1 01011101 
13 x8+x6+x5+x4+x2+x+1 11100010 
14 x8+x6+x5+x4+x3+x+1 10010000 
15 x8+x7+x2+x+1 11101010 
16 x8+x7+x3+x+1 11001010 

17 x8+x7+x3+x2+1 00001110 
18 x8+x7+x4+x3+x2+x+1 11001100 
19 x8+x7+x5+x+1 11110001 
20 x8+x7+x5+x3+1 11011010 
21 x8+x7+x5+x4+1 01010110 
22 x8+x7+x5+x4+x3+x2+1 10111000 
23 x8+x7+x6+x+1 01010101 
24 x8+x7+x6+x3+x2+x+1 01110100 
25 x8+x7+x6+x4+x2+x+1 10101011 
26 x8+x7+x6+x4+x3+x2+1 01110010 
27 x8+x7+x6+x5+x2+x+1 00101110 
28 x8+x7+x6+x5+x4+x+1 00100010 
29 x8+x7+x6+x5+x4+x2+1 11010001 
30 x8+x7+x6+x5+x4+x3+1 10001011 
 

The results were obtained by running the programs 
for LFSR, MISR and for the mathematical method. 
The complete presentation for the 8 grade 
irreducible polynomials is presented in [22]. 
 
 
4 Functioning of LFSR and MISR 
with grade 16 irreducible polynomials 
This program was developed based on the other 
one related to the Grade 8 Irreducible Polynomials 
[12]. Calling parameters for functions were 
extended to 2 bytes, so unsigned char became 
unsigned short. Another difference is at the column 
that is composed of 2 bytes. Power procedure 
returns the value of the most significant bit 
depending on the dimension given as argument. In 
the following will be useful to calculate the index 
for calling the function misr(). 
 

 
Fig. 10 Scheme A LFSR on 16 bits for the 

polynomial: X16+X12+X3+X+1 
 

     The code for the program is presented below: 
LFSR_16_A: 
 

void prelucrare(int n,int knt) 
{ 
a[0]=s[n-1]^x[knt]; 
a[1]=s[0]^s[n-1]; 
a[2]=s[1];  
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a[3]=s[n-1]^s[2]; 
for (int i=4;i<12;i++) 
a[i]=s[i-1]; 
a[12]=s[n-1]^s[11]; 
for (int i=13;i<16;i++) a[i]=s[i-1]; 
k++;      
} 
int main(void) 
{ 
pf=fopen("lfsr_al.txt","wb"); 
for (int i=0;i<16;i++) s[i]=0; 
printf("\n introduceti coeficientii polinomului ex: a 
a a :\n"); 
scanf("%d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d %d %d %d %d %d %d %d 
%d",&x[0],&x[1],&x[2],&x[3],&x[4],&x[5],&x[6
],&x[7],&x[8],&x[9],&x[10],&x[11],&x[12],&x[1
3],&x[14],&x[15],&x[16],&x[17],&x[18],&x[19],
&x[20],&x[21],&x[22],&x[23]); 
k=1; 
time_t  start=clock(),end; 
for (int i=0;i<24;i++) 
{ 
afis(s,16); 
prelucrare(16,i) ; 
for (int j=0;j<16;j++) s[j]=a[j];    
} 
end=clock(); 
timpalocat=end; 
printf("\n timpul alocat pentru lfsr_16_a este: %d 
microsecunde \n",timpalocat); 
fclose(pf); 
getch();      
return 0; 
} 
 
     For MISR Scheme A the functioning is 
simulated in the next program: 
 
MISR_16_A: 
FILE *pf; 
int s[50],a[50],k ,kontor=0; 
long timpalocat; 
int x[16][20]={ 
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0}, 
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1}, 
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},  
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0}, 
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1}, 
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0}, 
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1}, 

{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},  
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0}, 
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1}, 
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},   
                }; 
void afis(int tab[],int n) 
{ 
fprintf(pf,"\n%d.",k); 
printf("\n%d.",k);      
for (int i=0;i<n;i++) 
{ 
printf("%d",tab[i]); 
fprintf(pf,"%d",tab[i]);     
} 
} 
void prelucrare(int n,int knt) 
{ 
a[0]=s[n-1]^x[0][knt]; 
a[1]=x[1][knt]^(s[0]^s[n-1]); 
a[2]=x[2][knt]^s[1]; 
a[3]=x[3][knt]^(s[n-1]^s[2]); 
for (int i=4;i<12;i++) a[i]=s[i-1]^x[i][knt]; 
a[12]=x[12][knt]^(s[n-1]^s[11]); 
for (int i=13;i<16;i++) a[i]=s[i-1]^x[i][knt]; 
k++;      
} 
int main(void) 
{ 
pf=fopen("lfsr_al.txt","wb"); 
for (int i=0;i<16;i++) s[i]=0; 
printf("\n introduceti coeficientii polinomului ex: a 
a a :\n"); 
/*for(int i=0;i<16;i++) 
scanf("%d %d %d %d %d %d %d %d %d %d %d 
%d %d %d %d %d %d %d %d %d 
",&x[i][0],&x[i][1],&x[i][2],&x[i][3],&x[i][4],&
x[i][5],&x[i][6],&x[i][7],&x[i][8],&x[i][9],&x[i]
[10],&x[i][11],&x[i][12],&x[i][13],&x[i][14],&x
[i][15],&x[i][16],&x[i][17],&x[i][18],&x[i][19]); 
*/ 
// initializare matrice de intrare 
k=1; 
time_t  start=clock(),end; 
for (int i=0;i<20;i++) 
{ 
afis(s,16); 
prelucrare(16,i) ; 
for (int j=0;j<16;j++) s[j]=a[j];    
} 
end=clock(); 
timpalocat=end; 
printf("\n timpul alocat pentru misr_16_a este: %d 
microsecunde \n",timpalocat); 
fclose(pf); 
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getch();      
return 0; 
} 
 

 
Fig. 11 Scheme B LFSR on 16 bits for the 

polynomial: X16+X12+X3+X+1 
 

Shift to the right: 
 

 for (int i=1;i<n;i++) a[i]=s[i-1]; 
a[0]=s[2]^s[4]^s[5]^s[6]^s[7]^s[8]^s[9]^s[10]^s[
11]^s[13]^s[14]^s[n-1]^x[knt]; 
 

     The code for scheme B is:  
LFSR_16_B: 
 

     In the following there are presented only the 
differences between the programs for scheme A, 
and the ones for scheme B and C. 
 

void prelucrare(int n,int knt) 
{ 
for (int i=1;i<n;i++) a[i]=s[i-1]; 
a[0]=s[2]^s[4]^s[5]^s[6]^s[7]^s[8]^s[9]^s[10]^s[
11]^s[13]^s[14]^s[n-1]^x[knt]; 
k++;      
} 
 

MISR_16_B: 
 

void prelucrare(int n,int knt)//numerotare inversata 
{ 
a[0]=s[0]^s[1]^s[3]^s[12]^x[0][knt]; 
for (int i=1;i<n;i++) 
a[i]=s[i+1]^x[i][knt]; 
k++;      
} 
 
     The function corresponding to Scheme C is: 
LFSR_16_C: 
 

void prelucrare(int n,int knt) 
{ 
a[n-1]=s[0]^x[knt]; 
a[n-2]=a[n-1]^s[n-1]; 
a[n-3]=s[n-2]; 
a[n-4]=a[n-1]^s[n-3]; 
for (int i=n-5;i>=4;i--) a[i]=s[i+1]; 

a[3]=a[n-1]^s[4]; 
for (int i=2;i>=0;i--) a[i]=s[i+1]; 
k++;      
} 
 

 
Fig. 12   Scheme C on 16 bits for the polynomial: 

X16+X12+X3+X+1 
 

MISR_16_C: 
 

void prelucrare(int n,int knt)  
{ 
 a[n-1]=s[0]^x[n-1][knt]; 
a[n-2]=a[n-1]^s[n-1]^x[n-2][knt]; 
a[n-3]=s[n-2]^x[n-3][knt]; 
a[n-4]=a[n-1]^s[n-3]^x[n-4][knt]; 
for (int i=n-5;i>=4;i--) a[i]=s[i+1]^x[i][knt]; 
a[3]=a[n-1]^s[4]^x[3][knt]; 
for (int i=2;i>=0;i--) a[i]=s[i+1]^x[i][knt]; 
k++;      
} 
 

     After testing the programs with grade 16 
irreducible polynomials the results for MISR and 
LFSR were identically. 
 
 

5 Related Works 
First of all it’s well known that for maintaining a 
high level of security services is necessary to use a 
dependable source of random data [9]. 
     One of the most interesting solutions is the 
Pseudorandom Generator using Packed Matrices. 
LFSR is one of the most popular elements for 
building cryptographic generator because it’s easy 
to be implemented in hardware. The generator 
described in the mentioned paper is based on the 
power of a block upper triangular matrix (BUTM). 
The efficiency of using “packed matrices” comes 
from performing binary operations between 
processor registers. This BUTM can also be used 
for integrating a security kernel with many 
applications for low cost/ low power solutions. 
     For ensuring secure communications for low 
power devices there are some novel techniques 
[18]. After an interesting presentation of Data 
Encryption Algorithm DES AES and RSA (Rivest-
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Shamir-Adleman) it was described the concept of 
unique key for each node. The main idea was to use 
the specific node properties, so that to obtain a 
maximizing of network security. Some 
experimental aspects and some results should be 
useful in this frame. 
     A very interesting point of view is to use a 
matricial public key cryptosystem with digital 
signature. [13] Again is very important to use the 
block upper triangular matrices (BUTM), this time 
based on a generalization of the discrete logarithm 
problem over a finite group. Confidentiality, 
integrity and availability are the main goals for 
security services. Also it’s necessary to archive the 
authenticity of public keys and there are many 
ways for obtaining it. The Discrete Logarithm 
Problem(DLP) has a very good efficiency. After 
understanding the functioning of the symmetric 
component, the asymmetric one and the Hash one 
the applications proves how efficient and easy is to 
use them. Interesting is the fact that the 
implementation is almost as simple in hardware as 
it is in software. The conclusion is that using this 
discrete logarithm algorithm it will result a higher 
security level than on other algorithms used for the 
same key size. 
      Speaking about using hardware or software 
solutions for studying some cryptography methods 
rarely are used both of them. 
     One of the most efficient methods is modular 
multiplication [16]. Using repeatedly, this modular 
multiplication it obtains a modular exponentiation. 
The efficiency of the implementation of modular 
exponentiation and multiplication determined the 
performance of public-key cryptosystems. 
Because the plaintext is usually large as 1024 bits it 
was necessary to minimize the number of modular 
multiplications used so that this experiment take a 
single modular multiplication. For all the tests the 
efficiencies of the implementation is almost the 
same software and hardware. It was used and 
described the Karatsuba-Ofman’s method for 
multiplying and the Barett’s method for reducing. 
These methods are very useful for studying the 
strengths and the weaknesses of a system. 
     Because a main problem in cryptosystems is to 
use LFSR with irreducible polynomials, it’s 
interesting to find out the situation for an 
innovative scheme for LFSR reseeding with 
irreducible polynomials [20]. In fact is an 
investigation about the potential for effective 
reseeding of a built-in test pattern generation (TPG) 
mechanism. Application of this mechanism to 
pseudorandom test pattern generation demonstrated 
improvements over the classical approach of 

reseeding with a primitive characteristic 
polynomial. 
     A modern method in encoding and decoding is 
the use of convolutional code. A particular solution 
for obtaining this is Viterbi algorithm known as a 
maximum likelihood-decoding algorithm.[14]. The 
proposed model for decoder uses VDHL. Viterbi 
decoding motivate the use of  VDHL. The 
produced code is more powerful when the 
constraint length used is larger. These were some 
of the most interesting news in the frame of the 
presented article. 
 
 
6 Future Work 
Studying the use of the LFSR in Galois Fields GF 
(2n) it was demonstrated that for a better security is 
useful to operate with arithmetic’s modulo n grade 
irreducible polynomial. This kind of situation is 
found in Reed Solomon and Rijndael codes. For 
Rijndael each coefficient in a bit, each element is a 
word of 4 bytes(32 bits).[15] It’s possible to use 
convolutional codes, that are different than the 
codes using blocks, because they never have a 
constant length. There are special kinds of models 
for codifier. It was demonstrated that the 
convolutional encoding and decoding using Viterbi 
algorithm is a powerful method in error correction 
[14]. 
 
 

7 Conclusions 
The analysis described in proves that a MISR has 
always the same results as a LFSR.  
     In the case of using LFSR, the speed increases 
very much, and it is well known that in using 
registers in cryptography an important goal is 
increasing the speed of calculations. 
     The aspect of security, as described in [3], was 
taken into consideration: the used polynomials are 
all irreducible grade 8 polynomials or 16. 
     Another important aspect presented in this paper 
is the discovery of the new formula for the 
calculation of the weights used for obtaining the 
final result of MISR. 
     This formula was tested for all the situations 
referring to grade 8 and 16 irreducible polynomials 
and the final conclusion is that the mathematical 
relations discovered are correct. 
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