
A complete analyze of using Shift Registers in Cryptosystems for
Grade 4, 8 and 16 Irreducible Polynomials

MIRELLA AMELIA MIOC

Computer Science Department
“Politehnica” University of Timisoara
Bd. V. Parvan 2, RO-300223

ROMANIA
mmioc@cs.utt.ro http://www.cs.upt.ro/ro/Staff/cd.php?id=21

Abstract: A Linear Feedback Shift Register (LFSR) is always the kernel of any digital system based on
pseudorandom bits sequences and is frequently used in cryptosystems, in codes for errors detecting, in wireless
system communication. The Advanced Encryption System (Rijndael) is based on using a grade 8 irreducible
polynomials in a Galois Field. For a better understanding this study contains aspects of functioning for Linear
Feedback Shift Register and Multiple Input-Output Shift Register (MISR) using grade 4, 8 and 16 irreducible
polynomials. This experiment shows that the Linear Feed-back Shift Register and Multiple Input-Output Shift
Register have the same function. The conclusion of this paper is that for grade 8 and 16 irreducible polynomials
the weights are calculated with a formula discovered in this work.

Key-Words: Cryptosystem, Shift registers, Calculate, Irreducible polynomials, Simulate, Rijndael,
Pseudo-Random Sequence, Error Detect.

1 Introduction
Beginning with 2000 Rijndael [1] [2] cryptosystem
is officially the Advanced Encryption System
(AES) [7], [8]. The old DES (Data Encryption
Standard) [3], [4] was broken from Electronic
Frontier Foundation in 3 days. The two authors
Joan Daemen and Vincent Rijman from Holland
chose to use a Galois Field GF (28) with the
following generator polynomial [7], [8].

P(x) =x8+x4+x3+x+1 (1)

All arithmetical operations will be developed in
a Galois group.

The Shift Register Cryptosystems’ variant has
been developed from the evolution of the
encrypting techniques [5]. Such a cryptosystem is
based upon generating a sequence in a finite field
and for obtaining it a Feedback Shift Register is
used.

The Linear Feedback Shift Registers are used
in a variety of domains [5]: sequences generators;
counters; BIST (Built-In-Self-Test) [6]; encryption;
PRBS (Pseudo-Random Bit Sequences).

LFSR can be realized based on XOR (exclusive
OR) circuits or XNOR (exclusive denied OR).

Of course, the difference is of status, the equivalent
status will be 1, where it was 0. For an n bits LFSR,
all the registers will be configured as shirt registers,
but only the last significant register will determine
the feedback.

An n bits register will always have n + 1
signals.

A feedback shift register is composed of:
- a shift register
- a feedback function.

Fig. 1 Feedback Shift Register

A LFSR is a shift register, whose input bit is
given from a linear function of the initial status.
The initial value of the register is called seed and
the sequence produced is completely determined by
the initial status. Because the register has a finite
number of possible statuses, after a period the
sequence will be repeated. If the feedback function
is very good chosen the produced sequence will be
random and the cycle will be very long. The list

WSEAS TRANSACTIONS on COMPUTERS

MIRELLA AMELIA MIOC

ISSN: 1109-2750 1805 Issue 10, Volume 7, October 2008

with the position that influences the future status is
called tap sequence. For example, for the next
LFSR this list is [16, 14, 13, 11]:

Fig. 2 A LFSR scheme

 The tap sequence can be represented as a
polynomial mod 2, with the coefficients 1 or 0.
This is called feedback polynomial or characteristic
polynomial. For the Fig.2 this polynomial is:

S(x) = x16+x14+x13+x11+1 (2)

 The 1 number from the polynomial isn’t
correspondent in tap sequence, but the powers of
the terms are correspondent to the bits from that
sequence. Though the pseudorandom bits sequence
produced a LFSR is the most important part of any
digital systems with application in cryptography in
measurement based on the error bit rates, in
wireless communication systems. There are two
kinds of implementation for LFSR:

• Fibonacci implementation
• Galois form.

Fig. 3 Fibonacci implementation

 In Fibonacci form the weight for any status is 0,
when there isn’t any connection and 1 for sending
back. Exceptions of this are the first and the last
one, both connected, so always on 1.

Fig. 4 Galois implementation

 In Galois implementation there is a Shift
Register, whose content is modified each step at a
binary value sent to the output. Comparing the two

type of representation it is shown that the weight
order in Galois is opposite the one in Fibonacci.
From the hardware point of view, Galois
implementation is fastest than Fibonacci because of
the reduced number of XOR gates in feedback and
so it is much more used. There are some industries
in which Fibonacci form is referenced as SSRG
(Simple Shift Register Generator) and Galois as
MRSRG(Multiple-Return Shift Register
Generator). There are two types of LFSR from the
utilization point of view: the well-known LFSR,
that is an “in-tapping” LFSR and the “out-tapping”
LFSR. The “in-tapping” LFSR is usually called a
MISR (Multiple Input Shift Register). A MISR is
in fact a modified LFSR, thus functioning is a
little bit slower. Cycle codes belong to
algebraically codes for errors detecting. This
paper develops an analyze of a Linear Feedback
Shift Register and a Multiple Input – output Shift
Register.

2 Functioning of LFSR and MISR
with grade 4 irreducible polynomials
It was necessary to use different pseudorandom
sequence for input. For analyzing the functioning
of a LFSR based on a grade 4 irreducible
polynomial there are 3 different schemes. For
example for the polynomial

P(x) = x4 + x + 1 (2)

Fig. 5 Scheme A

Fig. 6 Scheme B

Fig. 7 Scheme C

 For each type of scheme is another program for
simulating the functioning of LFSR. The relations
for the calculus of each weight are:

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1806 Issue 10, Volume 7, October 2008

S0=1*P(x)
S1=x*P(x)
S2=x2*P(x)
S3=x3 * P(x)

 (3)

 For each of them these relations were verified.
Also dividing the input polynomial with x4+x+1 the
rests were correct. The program contains also the
time at the beginning and at the ending of the
operations. Separate programs have been developed
for the theoretical method presented above for
calculating the output of a Linear Feedback Shift
Register using the polynomial

x4 + x +1 (4)

 A program for simulating the functioning of the
LFSR for scheme A will be presented in the
following lines. It has to receive as input data the
coefficients of the input polynomial that was
already calculated in a separate part. This string of
zeros and ones is afterwards used for calculating
the output of the LFSR. The counter (used after
calculating both the output of a Linear Feedback
Shift Register and the output of a Multiple Input-
Output Shift Register) is started right before the
starting of the calculation. The calculation itself
consists of a cycle that for every value in the input
data, an intermediate result for an intermediate step
is calculated as it follows.
 -For the a[0] value, the program gets the result
for an XOR between the value in the input data
string, found on the position that has the number of
the step, and the previous value(from the previous
step) of a[0]; in the program, the data from where
the calculation starts is contained in the string array
s and this status is counted as step 0-the initial step.
 -For the a[1] value, the result is calculated in the
program as an XOR between the s[0](intermediate
value from the previous step) ands[n-1], where n is
the value of the highest power of the polynomial,
actually the grade of the polynomial; both values
used in this calculation are calculated during the
previous step.
 -For the other two values, a[2] and a[3], the
calculation is as simple as this: they get the value of
s[i-1], where i is either 2 for a[2], or 3 for a[3].
 All operations made in this procedure for the
current step are related to the results obtained
during the calculation of the previous step.
 The procedure that does this calculation for the
intermediate cycles and also for the most important,
the final values, is available below:

void prelucrare(int n, int knt)
{ a[0]=s[n-1]^x[knt];

 a[1]=s[0]^s[n-1];
 for (int i=2;i<4;i++)
 a[i]=s[i-1];
 k++;
 }

 As soon as the final results are obtained in the
main part of the program, the counter is stopped
and the elapsed time is calculated and stored.
 For calculating the output of a Multiple Input-
Output Shift Register there was developed a
program for scheme A.
 As input data, the program uses 4 columns of
zeros and ones on 20 rows. These 20 sets of 4 bits
are used to obtain the output of the MISR. After
reading the input data in the program, the counter is
starting.
 This time the calculation uses for each step one
row of the input data:
 -For the value of a[0], the result is obtained
from XOR between s[n-1] and the value from the
input data on the position “first row, first column”
x[0][0](for the first calculated step), using the
initial step where all the elements in the array s are
zero.
 -For the a[1] value, the calculation is made as an
XOR between s[0] and s[n-1] and x[1][0], where n
is 4 in this example and this example refers to the
first step, done starting from the initial step, in
which the string s contains just zeros.
 -For all the other values(a[2] and a[3]), the
result is obtained by XOR between s[1] and x[2][0]
for a[2] and s[2] and x[3][0] for a[3].
 -For the nest steps, the procedure for calculation
is the same, only the indexes are changing and
therefore the values used in the calculation.
 In this procedure, all calculations are made
based on the previous step results, stored in the
string s.
 The final values for the calculation of MISR are
obtained from this procedure:

void prelucrare(int n, int knt)
{ a[0]=s[n-1]^x[0][knt];
 a[1]=x[1][knt]^(s[0]^s[n-1]);
 for (int i=2;i<n;i++)
 a[i]=s[i-1]^x[i][knt];
 k++;
 }
 After the results are obtained in the main part of
the program, the counter is stopped so that the
elapsed time, used for getting the MISR output, can
be calculated.
 In the case of the B schema for LFSR, the
program developed is presented in the next section.

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1807 Issue 10, Volume 7, October 2008

 All the calculations that are to be done for
obtaining the final result have as a basis the input
data that consists of the coefficients of the same
polynomial that was previously calculated also for
the scheme A program for LFSR. The program
contains two procedures and the main part. In the
procedure afis, the results of each intermediate step
are listed, so that it’s easier to track back the
results. The procedure afis is used in the main
program, where it is called for each of the
intermediate steps, in front of the second procedure
of the program, called prelucrare. This second
procedure is actually the most important one, as it
calculates the intermediate results for the
intermediate steps ending up with calculating the
final results. The relations used in this procedure
can be read from the scheme B for a LFSR. Below,
the procedure is enclosed.

void prelucrare(int n, int knt)
{ for (int i=1;i<4;i++)
 a[i]=s[i-1];
 a[0]=(a[n-1]^s[n-1])^x[knt];
 k++;
 }

 In the main section of the program, all the
needed data is collected and also a counter is used
for the elapsed time spent for the calculation of the
final results. The program used for MISR for the
scheme B is is explained next. Same as the input
data for scheme A, this program gets the data like
this: a table with 4 columns and 20 rows is read in
the beginning of the program. The same structure
of the program is applied here, like for the previous
LFSR and MISR programs. This means that there
are two procedures called afis and prelucrare, and
there is also a main part of the program. In the
procedure afis, the information at each intermediate
step is listed, for easier understanding. This
procedure is called-before the procedure
prelucrare-and lists the results of the intermediary
steps and also the final one. The procedure
prelucrare is called in the main part of the program
right after the procedure afis, being used for
calculating both the intermediate steps and also for
the final results. The main part of the program
offers the same support, as a counter: how much
time does it take? For exemplification, the code of
the main part is:

void prelucrare(int n, int knt)
{ for (int i=1;i<n;i++)
 a[i]=s[i-1]^x[i][knt];
 a[0]=(s[n-1]^a[n-1])^x[0][knt];
 k++;

 }

 Same as in the previous cases, the counter is
started right after the calculation finished and ends
when it is requested.
 In the last case of the schema C calculating
LFSR/MISR, the relations differ a bit. Overall, the
program is organized in the same way as all the
previous ones: two procedures and one main. The
input data is the already known polynomial, made
out of the same coefficients. The input data is read
in the main program, afterwards the intermediate
steps will be agreed. The procedure afis works
closely especially with the procedure prelucrare.
The calculation (in main) using parts of the input
data is actually a cycle that for each step writes
what was before and also what it is now, using the
procedure afis and also prelucrare. The procedure
prelucrare is enclosed:

void prelucrare(int n, int knt)
{ a[0]=s[n-1]^x[knt];
 a[1]=s[0]^a[0];
 for (int i=2;i<4;i++)
 a[i]=s[i-1];
 k++;
 }

 The program used for this calculation
corresponding to scheme C follows the template
already established for the other programs.
Primarily, the procedures are afis and prelucrare,
and they are both needed to get in the end to the
final results. Same 4 columns on 20 rows are the
input data for the obtaining of the next step results.
In the procedure prelucrare what is changed for this
MISR scheme C is that the relations are following
the scheme C for the step by step calculation and
also the final result.

void prelucrare(int n, int knt)
{ a[0]=s[n-1]^x[0][knt];
 a[1]=x[1][knt]^(s[0]^a[0]);
 for (int i=2;i<n;i++)
 a[i]=s[i-1]^x[i][knt];
 k++;
 }
 In the main part of the program both procedures
are called to list and then calculate the intermediate
step, ending with the final results. Before the
calculation starts and after it had been finished, in
the main part of the program is counted the elapsed
time.

void main()
{ pf=fopen("lfsr_a1.txt","wb");

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1808 Issue 10, Volume 7, October 2008

 for (int i=0;i<4;i++) s[i]=0;
 printf("\nIntroduceti coeficientii polinomului de
intrare sub forma: a a a a a s.a.m.d.\n");
 scanf("%d %d %d %d %d %d %d %d %d %d %d
%d %d %d %d %d %d %d %d %d %d %d
%d",&x[0],&x[1],&x[2],&x[3],&x[4],&x[5],&x[6
],&x[7],&x[8],&x[9],&x[10],&x[11],&x[12],&x[1
3],&x[14],&x[15],&x[16],&x[17],&x[18],&x[19],
&x[20],&x[21],&x[22]);
 gettime(&timep0);
 k=1;
 for (i=0;i<24;i++)
 { afis(s,4);
 prelucrare(4,i);
 for (int j=0;j<4;j++) s[j]=a[j];
 }
 gettime(&timep1);
 long ora=timep1.ti_hour-timep0.ti_hour;
 long mint=timep1.ti_min-timep0.ti_min;
 long secn=timep1.ti_sec-timep0.ti_sec;
 float suts=timep1.ti_hund-timep0.ti_hund;
 ora*=3600;
 mint*=60;
 suts/=100;
 float suma=ora+mint+secn+suts;
 printf("\n suma de sec %f",suma);
 fclose(pf);
 getch();
 }

 The program for MISR is:
void main()
{ pf=fopen("misr_a1.txt","wb");
 for (int i=0;i<4;i++) s[i]=0;
 printf("\nIntroduceti cei 20 de x corespunzatori
coloanei 0 in forma: a a a a s.a.m.d.\n");
 for (i=0;i<4;i++)
 scanf("%d %d %d %d %d %d %d %d %d %d
%d %d %d %d %d %d %d %d %d
%d",&x[i][0],&x[i][1],&x[i][2],&x[i][3],&x[i][4
],&x[i][5],&x[i][6],&x[i][7],&x[i][8],&x[i][9],&
x[i][10],&x[i][11],&x[i][12],&x[i][13],&x[i][14],
&x[i][15],&x[i][16],&x[i][17],&x[i][18],&x[i][1
9]);
 gettime(&timep0);
 k=1;
 for (i=0;i<21;i++)
 { afis(s,4);
 prelucrare(4,i);
 for (int j=0;j<4;j++) s[j]=a[j];
 }
 gettime(&timep1);
 long ora=timep1.ti_hour-timep0.ti_hour;
 long mint=timep1.ti_min-timep0.ti_min;
 long secn=timep1.ti_sec-timep0.ti_sec;

 float suts=timep1.ti_hund-timep0.ti_hund;
 ora*=3600;
 mint*=60;
 suts/=100;
 float suma=ora+mint+secn+suts;
 printf("\n suma de sec %f",suma);
 fclose(pf);
 getch();
 }

3 Functioning of LFSR and MISR
with 8 grade irreducible polynomials
First of all, the algorithm was applied using grade 4
polynomials.
 The results were accurate and correct.
 For each polynomial it was necessary to create
three programs:

• one for simulating the use of LFSR
• one for another simulation with MISR
• another one for verifying the correctitude

of the previous result.
 Initially a program was specially developed to
obtain all the irreducible grade 8 polynomial, thus
substantially improving security [3].
 In the following rows there is the description of
the program used for obtaining all the Grade 8
irreducible polynomials.[21]
 First of all, all the 8 grade polynomials were
generated, but only that with natural coefficients.
The general form for such polynomials is:

1---…-1 (5)

because the first 1 is mandatory for having the
established grade and the last one confirm the fact
of being irreducible; if this is missing, than the
polynomial can be divided by x.
 For generating all the 8 grade polynomials it is
necessary to work with 7 columns. The total
number of polynomials will be z=128. For
eliminating the reducible polynomials it is useful to
use Z2 presented in the next table:
 Each of the 128 polynomials will be divided by
the 12 irreducible polynomials. If one single rest is
null, then the tested polynomials is dividing at least
with one from the 12 irreducible polynomials. For a
better verifying in the results table is maintained
also the order number of the initial polynomial.
 Out of the programs, it comes to the conclusion
that the results should also rely on the previous link
(given by the “equal with one” coefficient of the
polynomial). This “specific” link that is also part of
the calculation for MISR is to be taken after the
XOR was made for that rank of the polynomial.

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1809 Issue 10, Volume 7, October 2008

Tab. 1 The 12 irreducible polynomials for grade 1,
2, 3 and 4

Tab. 2 The 8 Grade irreducible polynomials

14. 1 1 0 1 1 0 0 0 1

15. 1 0 1 1 1 0 0 0 1

22. 1 1 0 1 0 1 0 0 1

23. 1 0 1 1 0 1 0 0 1

 29. 1 0 0 1 1 1 0 0 1

32. 1 1 1 1 1 1 0 0 1

39. 1 0 1 1 0 0 1 0 1

48. 1 1 1 1 1 0 1 0 1

50. 1 1 0 0 0 1 1 0 1

51. 1 0 1 0 0 1 1 0 1

53. 1 0 0 1 0 1 1 0 1

57. 1 0 0 0 1 1 1 0 1

60. 1 1 1 0 1 1 1 0 1

62. 1 1 0 1 1 1 1 0 1

68. 1 1 1 0 0 0 0 1 1

70. 1 1 0 1 0 0 0 1 1

71. 1 0 1 1 0 0 0 1 1

80. 1 1 1 1 1 0 0 1 1

82. 1 1 0 0 0 1 0 1 1

85. 1 0 0 1 0 1 0 1 1

89. 1 0 0 0 1 1 0 1 1

95. 1 0 1 1 1 1 0 1 1

98. 1 1 0 0 0 0 1 1 1

104. 1 1 1 1 0 0 1 1 1

108. 1 1 1 0 1 0 1 1 1

111. 1 0 1 1 1 0 1 1 1

116. 1 1 1 0 0 1 1 1 1

122. 1 1 0 0 1 1 1 1 1

123. 1 0 1 0 1 1 1 1 1

125. 1 0 0 1 1 1 1 1 1

 The mathematically representation of each rank
of the polynomial was made accordingly to these
“specific” links. Also, this new revealed thing was
verified with the help of programs.
 In the end, correlating the results obtained for
the grade 4 polynomials with the results obtained
for the 8 grade polynomials, it comes to
mathematical relations for calculating each rank.
These relations point out the previous existing links
and act similarly to a feedback “calculated” also
from the previous links.
 The link acts after the XOR was calculated and
in this way takes the result that was previously
obtained.
 In order to demonstrate that those presented
above are correct and precise, was made an
analysis for all the 30 irreducible grade 8
polynomials that were also found in another
program specially developed for this purpose,
coming to three particular cases.
Out of this analyze, there was made a
generalization, that led to the writing of specific
programs for each irreducible grade 8 polynomial,
used for the substantially improvement of security
[10].
 The simulation programs were tested in both
ways: with the method of making tables according
to the proposed circuits and also with mathematical
methods that materialize the hard operations.
 As input data sets were used several different
multiple combinations, randomly generated.
 For building a security infrastructure the use of
pseudorandom generators using packed matrices is
very efficient [21]. Another possibility is to use
Mersenne-Twister generator easy to find in
MATLAB beginning with 7.4 version and in
SCILAB.

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1810 Issue 10, Volume 7, October 2008

 The two programs are described in this paper,
one of them simulating the functioning of a LFSR
and the functioning of an analytic MISR, and the
other one simulating the functioning of a synthetic
MISR. The programs are based on irreducible
grade 8 polynomials, allowing the user to introduce
the coefficients of the chosen polynomial.
 There have been chosen two polynomials for
testing these two programs.
 The first one is the polynomial

P(x)=x8+x6+x5+x3+1 (6)

 The coefficients would be introduced in the
program as it follows:

1 0 1 1 0 1 0 0 1 (7)

and would lead to the following scheme depicted in
the next figure:

Fig. 8 Scheme for the polynomial

P(x)=x8+x6+x5+x3+1

 In the program the weights for each chosen
polynomial are calculated. For this scheme, the
weights are:

S0=1 P(x)
S1=x P(x)
S2=x2 P(x)

S3=(x3+x) P(x)
S4=(x4+x2+x) P(x)
S5=(x5+x3+x2) P(x)

S6=(x6+x4+x3+x) P(x)
S7=(x7+x5+x4+x2) P(x)

(8)

The second one is the polynomial

P(x)=x8+x4+x3+x+1 (9)

used in Rijndael Cryptosystem [10]:

Fig. 9 Scheme for the polynomial

 For the case in the “Fig. 9.” scheme, the weights
are:

S0=1 P(x)
S1=x P(x)
S2=x2 P(x)
S3=x3 P(x)
S4=x4 P(x)

S5=(x5+x) P(x)
S6=(x6+x2+x) P(x)
S7=(x7+x3+x2) P(x)

(10)

 In order to get the final results from the
programs, the user has to introduce in the program
the polynomial’s coefficients as described above
and also the input data sets, consisting of 8
columns, each of them having a length of 2n
elements (where n is an integer). Because the new
cryptographic Algorithms uses longer keys, now is
important to improve the analysis of the
functioning for shift registers of 16 and 32 [1],[3].
In the MISRSIN.CPP program the synthetic MISR
is calculated for the input data given by the user
and then the results are provided in the end.
Calculating the results consists of categorizing the
8 SRi steps in which the scheme will be treated in 3
major types of ways according to the below
described types:

• the first type is characterized by the
existence of the coefficient of the i power
corresponding to the SRi; in this case the
procedure prelexi is called, having i+1 as
an argument;

• the second type is characterized by the
absence of the coefficient of the i power
corresponding to the SRi; in this case the
procedure prelabs is called, having i+1 as
an argument;

• the third type is actually a particular one: it
refers to the case of SR0, and the procedure
prelzero is called, having no argument.

 In the following rows the prelexi procedure is
presented:
void prelexi(int ind)
{ int i,j,k,xor=0;
 for (i=0;i<8;i++)
for(j=0;j<51;j++) sr[i][j]=0;
 for (j=1;j<=n;j++)
 { xor=0;
 for (i=0;i<8;i++)
 { if ((ax[i]==1)&&
 ((ind-1)!=i))
 xor=xor^sr[i][j-1];
 if (i!=0)

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1811 Issue 10, Volume 7, October 2008

 sr[i][j]=sr[i-1][j-1];
 }
 sr[ind][j]=col[ind][j-1]
^sr[ind-1][j-1];
 sr[0][j]=xor^sr[ind][j];
 }
 for (i=0;i<8;i++)
 rez[i][ind]=sr[i][n];
 }

 This time the basis is also the translation of the
elements corresponding to the SRis, with i from 1
to 7 without ind (the argument of the procedure),
by “connecting” the feedback in the SR0 while
executing XOR with all the SRis that have a
corresponding “connection” and with the current
corresponding SRind, and by executing XOR with
the element of the corresponding column and the
element of the corresponding SRind. The code of
the procedure prelabs is:

void prelabs(int ind)
{ int i,j,xor=0;
 for (i=0;i<8;i++)
for(j=0;j<51;j++) sr[i][j]=0;
 for (j=1;j<=n;j++)
 { xor=0;
 for (i=0;i<8;i++)
 { if (ax[i]==1)
 xor=xor^sr[i][j-1];
 if (i!=0)
 sr[i][j]=sr[i-1][j-1];
 }
 sr[ind][j]=col[ind][j-1] ^sr[ind-1][j-1];
 sr[0][j]=xor;
 }
 for (i=0;i<8;i++)
 rez[i][ind]=sr[i][n];
 }

 Here is the same translation of the elements
from SR1 to SR7 without ind (the argument of the
procedure), by “connecting” the feedback in the
SR0 while executing XOR with all the SRis that
have a corresponding “connection” (the power i
exists in the chosen polynomial) and by executing
XOR with the element of the corresponding
column and the element of the corresponding
SRind.
 The difference between prelabs and prelexi is
given by the SRind: it is taken into consideration in
the procedure prelexi in SR0, and does not appear
in the procedure prelabs in SR0.

The final result is calculated by making XORs with
all the partial results obtained in the 8 steps on each
and every column of all the eight columns.
 The prelzero procedure is reproduced below:

void prelzero)//SR0 calculation
{ int i,j,xor=0;
 for (j=1;j<=n;j++)
 { xor=0;
 for (i=0;i<8;i++)
 { if (ax[i]==1) //there is a //“connection”
 xor=xor^sr[i][j-1];
 if (i!=0)
 sr[i][j]=sr[i-1][j-1];
 }
 sr[0][j]=xor^col[0][j-1];
 }
 for (i=0;i<8;i++)
 rez[i][0]=sr[i][n];
 }

 In this procedure, the result is calculate by
translating the elements corresponding to the SRis,
with i from 1 to 7, and by “collecting” the feedback
in the SR0 while executing XOR with all the SRis
that have a corresponding “connection”.
 The analytic MISR and LFSR are calculated for
the input data given by the user and the results are
provided in the end of MISRCALC.
 For the given polynomial, the program
calculates in the procedure genr the corresponding
8 weights. The procedure genr is:

void genr()
{ //se calculeaza legaturile pentru polinomul
introdus
 for (int i=0;i<9;i++)
 for (int j=0;j<8;j++)
 s[j][i]=0;
//S0 e intotdeauna 1 pentru ca 8-r=8 (r e 0) si
x^8/x^8 e 1
 s[0][0]=1;
//r=8 nu are sens
 for (i=1;i<8;i++)
 impart(i);
 }

 These weights are a base for calculation MISR
and LFSR also. The whole procedure for the
analytic MISR consists of 8 steps: for each step is
considered the corresponding column which is
multiplied by the corresponding weight, then it is
divided by the chosen polynomial, again it is
multiplied by x8 and, finally, divided by the chosen
polynomial. The result obtained in this way is the

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1812 Issue 10, Volume 7, October 2008

result of the current step of the calculation for the
analytical MISR. For each of the eight cases, the
result is obtained as described above. The final
result for the analytical MISR is obtained by
making XORs with all the results of the 8 steps on
each and every column of all the eight columns.
The interpretation of this final result is that the ones
and zeroes obtained are the coefficients of a
polynomial. The grade of this polynomial may be
any of those between seven and zero. The whole
procedure for the LFSR is simpler: it is obtained by
making XOR with all the weights multiplied by the
corresponding column, and then, using the result
obtained (whose grade gives the number of rounds
that are to be done) as o column corresponding to
the SR0 and no other columns, translating all the
elements without 0, and “collecting” the feedback
in the 0 element executing XOR with all the other
elements that have a corresponding “connection”
(the power with that rank exists in the chosen
polynomial). In this case, the final result consisting
of those eight figures (ones and zeroes) represents
also the coefficients of a polynomial, just as in the
case of MISR. The results obtained from the
MISRS.CPP program and the other two results
obtained from the MISRCALC.CPP program are
the same, since they are the result of the same input
data used for calculation that are equivalent. These
kinds of calculation for verifying the correctness of
the results have been made primarily on paper.
The next table contains all the 30 polynomials and
the results of the tests. For this tests the input dates
were provided random from a Pseudorandom
Generator [9].

Tab. 3 The complete situation about all the 30
grade 8 irreducible polynomials

No. Polynomial Result
1 x8+x4+x3+x+1 00110010
2 x8+x4+x3+x2+1 01101000
3 x8+x5+x3+x+1 01011011
4 x8+x5+x3+x2+1 01101000
5 x8+x5+x4+x3+1 00111001
6 x8+x5+x4+x3+x2+x+1 01100011
7 x8+x6+x3+x2+1 00010111
8 x8+x6+x4+x3+x2+x+1 11101010
9 x8+x6+x5+x+1 10001000
10 x8+x6+x5+x2+1 11010101
11 x8+x6+x5+x3+1 00011110
12 x8+x6+x5+x4+1 01011101
13 x8+x6+x5+x4+x2+x+1 11100010
14 x8+x6+x5+x4+x3+x+1 10010000
15 x8+x7+x2+x+1 11101010
16 x8+x7+x3+x+1 11001010

17 x8+x7+x3+x2+1 00001110
18 x8+x7+x4+x3+x2+x+1 11001100
19 x8+x7+x5+x+1 11110001
20 x8+x7+x5+x3+1 11011010
21 x8+x7+x5+x4+1 01010110
22 x8+x7+x5+x4+x3+x2+1 10111000
23 x8+x7+x6+x+1 01010101
24 x8+x7+x6+x3+x2+x+1 01110100
25 x8+x7+x6+x4+x2+x+1 10101011
26 x8+x7+x6+x4+x3+x2+1 01110010
27 x8+x7+x6+x5+x2+x+1 00101110
28 x8+x7+x6+x5+x4+x+1 00100010
29 x8+x7+x6+x5+x4+x2+1 11010001
30 x8+x7+x6+x5+x4+x3+1 10001011

The results were obtained by running the programs
for LFSR, MISR and for the mathematical method.
The complete presentation for the 8 grade
irreducible polynomials is presented in [22].

4 Functioning of LFSR and MISR
with grade 16 irreducible polynomials
This program was developed based on the other
one related to the Grade 8 Irreducible Polynomials
[12]. Calling parameters for functions were
extended to 2 bytes, so unsigned char became
unsigned short. Another difference is at the column
that is composed of 2 bytes. Power procedure
returns the value of the most significant bit
depending on the dimension given as argument. In
the following will be useful to calculate the index
for calling the function misr().

Fig. 10 Scheme A LFSR on 16 bits for the

polynomial: X16+X12+X3+X+1

 The code for the program is presented below:
LFSR_16_A:

void prelucrare(int n,int knt)
{
a[0]=s[n-1]^x[knt];
a[1]=s[0]^s[n-1];
a[2]=s[1];

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1813 Issue 10, Volume 7, October 2008

a[3]=s[n-1]^s[2];
for (int i=4;i<12;i++)
a[i]=s[i-1];
a[12]=s[n-1]^s[11];
for (int i=13;i<16;i++) a[i]=s[i-1];
k++;
}
int main(void)
{
pf=fopen("lfsr_al.txt","wb");
for (int i=0;i<16;i++) s[i]=0;
printf("\n introduceti coeficientii polinomului ex: a
a a :\n");
scanf("%d %d %d %d %d %d %d %d %d %d %d
%d %d %d %d %d %d %d %d %d %d %d
%d",&x[0],&x[1],&x[2],&x[3],&x[4],&x[5],&x[6
],&x[7],&x[8],&x[9],&x[10],&x[11],&x[12],&x[1
3],&x[14],&x[15],&x[16],&x[17],&x[18],&x[19],
&x[20],&x[21],&x[22],&x[23]);
k=1;
time_t start=clock(),end;
for (int i=0;i<24;i++)
{
afis(s,16);
prelucrare(16,i) ;
for (int j=0;j<16;j++) s[j]=a[j];
}
end=clock();
timpalocat=end;
printf("\n timpul alocat pentru lfsr_16_a este: %d
microsecunde \n",timpalocat);
fclose(pf);
getch();
return 0;
}

 For MISR Scheme A the functioning is
simulated in the next program:

MISR_16_A:
FILE *pf;
int s[50],a[50],k ,kontor=0;
long timpalocat;
int x[16][20]={
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
 };
void afis(int tab[],int n)
{
fprintf(pf,"\n%d.",k);
printf("\n%d.",k);
for (int i=0;i<n;i++)
{
printf("%d",tab[i]);
fprintf(pf,"%d",tab[i]);
}
}
void prelucrare(int n,int knt)
{
a[0]=s[n-1]^x[0][knt];
a[1]=x[1][knt]^(s[0]^s[n-1]);
a[2]=x[2][knt]^s[1];
a[3]=x[3][knt]^(s[n-1]^s[2]);
for (int i=4;i<12;i++) a[i]=s[i-1]^x[i][knt];
a[12]=x[12][knt]^(s[n-1]^s[11]);
for (int i=13;i<16;i++) a[i]=s[i-1]^x[i][knt];
k++;
}
int main(void)
{
pf=fopen("lfsr_al.txt","wb");
for (int i=0;i<16;i++) s[i]=0;
printf("\n introduceti coeficientii polinomului ex: a
a a :\n");
/*for(int i=0;i<16;i++)
scanf("%d %d %d %d %d %d %d %d %d %d %d
%d %d %d %d %d %d %d %d %d
",&x[i][0],&x[i][1],&x[i][2],&x[i][3],&x[i][4],&
x[i][5],&x[i][6],&x[i][7],&x[i][8],&x[i][9],&x[i]
[10],&x[i][11],&x[i][12],&x[i][13],&x[i][14],&x
[i][15],&x[i][16],&x[i][17],&x[i][18],&x[i][19]);
*/
// initializare matrice de intrare
k=1;
time_t start=clock(),end;
for (int i=0;i<20;i++)
{
afis(s,16);
prelucrare(16,i) ;
for (int j=0;j<16;j++) s[j]=a[j];
}
end=clock();
timpalocat=end;
printf("\n timpul alocat pentru misr_16_a este: %d
microsecunde \n",timpalocat);
fclose(pf);

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1814 Issue 10, Volume 7, October 2008

getch();
return 0;
}

Fig. 11 Scheme B LFSR on 16 bits for the

polynomial: X16+X12+X3+X+1

Shift to the right:

 for (int i=1;i<n;i++) a[i]=s[i-1];
a[0]=s[2]^s[4]^s[5]^s[6]^s[7]^s[8]^s[9]^s[10]^s[
11]^s[13]^s[14]^s[n-1]^x[knt];

 The code for scheme B is:
LFSR_16_B:

 In the following there are presented only the
differences between the programs for scheme A,
and the ones for scheme B and C.

void prelucrare(int n,int knt)
{
for (int i=1;i<n;i++) a[i]=s[i-1];
a[0]=s[2]^s[4]^s[5]^s[6]^s[7]^s[8]^s[9]^s[10]^s[
11]^s[13]^s[14]^s[n-1]^x[knt];
k++;
}

MISR_16_B:

void prelucrare(int n,int knt)//numerotare inversata
{
a[0]=s[0]^s[1]^s[3]^s[12]^x[0][knt];
for (int i=1;i<n;i++)
a[i]=s[i+1]^x[i][knt];
k++;
}

 The function corresponding to Scheme C is:
LFSR_16_C:

void prelucrare(int n,int knt)
{
a[n-1]=s[0]^x[knt];
a[n-2]=a[n-1]^s[n-1];
a[n-3]=s[n-2];
a[n-4]=a[n-1]^s[n-3];
for (int i=n-5;i>=4;i--) a[i]=s[i+1];

a[3]=a[n-1]^s[4];
for (int i=2;i>=0;i--) a[i]=s[i+1];
k++;
}

Fig. 12 Scheme C on 16 bits for the polynomial:

X16+X12+X3+X+1

MISR_16_C:

void prelucrare(int n,int knt)
{
 a[n-1]=s[0]^x[n-1][knt];
a[n-2]=a[n-1]^s[n-1]^x[n-2][knt];
a[n-3]=s[n-2]^x[n-3][knt];
a[n-4]=a[n-1]^s[n-3]^x[n-4][knt];
for (int i=n-5;i>=4;i--) a[i]=s[i+1]^x[i][knt];
a[3]=a[n-1]^s[4]^x[3][knt];
for (int i=2;i>=0;i--) a[i]=s[i+1]^x[i][knt];
k++;
}

 After testing the programs with grade 16
irreducible polynomials the results for MISR and
LFSR were identically.

5 Related Works
First of all it’s well known that for maintaining a
high level of security services is necessary to use a
dependable source of random data [9].
 One of the most interesting solutions is the
Pseudorandom Generator using Packed Matrices.
LFSR is one of the most popular elements for
building cryptographic generator because it’s easy
to be implemented in hardware. The generator
described in the mentioned paper is based on the
power of a block upper triangular matrix (BUTM).
The efficiency of using “packed matrices” comes
from performing binary operations between
processor registers. This BUTM can also be used
for integrating a security kernel with many
applications for low cost/ low power solutions.
 For ensuring secure communications for low
power devices there are some novel techniques
[18]. After an interesting presentation of Data
Encryption Algorithm DES AES and RSA (Rivest-

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1815 Issue 10, Volume 7, October 2008

Shamir-Adleman) it was described the concept of
unique key for each node. The main idea was to use
the specific node properties, so that to obtain a
maximizing of network security. Some
experimental aspects and some results should be
useful in this frame.
 A very interesting point of view is to use a
matricial public key cryptosystem with digital
signature. [13] Again is very important to use the
block upper triangular matrices (BUTM), this time
based on a generalization of the discrete logarithm
problem over a finite group. Confidentiality,
integrity and availability are the main goals for
security services. Also it’s necessary to archive the
authenticity of public keys and there are many
ways for obtaining it. The Discrete Logarithm
Problem(DLP) has a very good efficiency. After
understanding the functioning of the symmetric
component, the asymmetric one and the Hash one
the applications proves how efficient and easy is to
use them. Interesting is the fact that the
implementation is almost as simple in hardware as
it is in software. The conclusion is that using this
discrete logarithm algorithm it will result a higher
security level than on other algorithms used for the
same key size.
 Speaking about using hardware or software
solutions for studying some cryptography methods
rarely are used both of them.
 One of the most efficient methods is modular
multiplication [16]. Using repeatedly, this modular
multiplication it obtains a modular exponentiation.
The efficiency of the implementation of modular
exponentiation and multiplication determined the
performance of public-key cryptosystems.
Because the plaintext is usually large as 1024 bits it
was necessary to minimize the number of modular
multiplications used so that this experiment take a
single modular multiplication. For all the tests the
efficiencies of the implementation is almost the
same software and hardware. It was used and
described the Karatsuba-Ofman’s method for
multiplying and the Barett’s method for reducing.
These methods are very useful for studying the
strengths and the weaknesses of a system.
 Because a main problem in cryptosystems is to
use LFSR with irreducible polynomials, it’s
interesting to find out the situation for an
innovative scheme for LFSR reseeding with
irreducible polynomials [20]. In fact is an
investigation about the potential for effective
reseeding of a built-in test pattern generation (TPG)
mechanism. Application of this mechanism to
pseudorandom test pattern generation demonstrated
improvements over the classical approach of

reseeding with a primitive characteristic
polynomial.
 A modern method in encoding and decoding is
the use of convolutional code. A particular solution
for obtaining this is Viterbi algorithm known as a
maximum likelihood-decoding algorithm.[14]. The
proposed model for decoder uses VDHL. Viterbi
decoding motivate the use of VDHL. The
produced code is more powerful when the
constraint length used is larger. These were some
of the most interesting news in the frame of the
presented article.

6 Future Work
Studying the use of the LFSR in Galois Fields GF
(2n) it was demonstrated that for a better security is
useful to operate with arithmetic’s modulo n grade
irreducible polynomial. This kind of situation is
found in Reed Solomon and Rijndael codes. For
Rijndael each coefficient in a bit, each element is a
word of 4 bytes(32 bits).[15] It’s possible to use
convolutional codes, that are different than the
codes using blocks, because they never have a
constant length. There are special kinds of models
for codifier. It was demonstrated that the
convolutional encoding and decoding using Viterbi
algorithm is a powerful method in error correction
[14].

7 Conclusions
The analysis described in proves that a MISR has
always the same results as a LFSR.
 In the case of using LFSR, the speed increases
very much, and it is well known that in using
registers in cryptography an important goal is
increasing the speed of calculations.
 The aspect of security, as described in [3], was
taken into consideration: the used polynomials are
all irreducible grade 8 polynomials or 16.
 Another important aspect presented in this paper
is the discovery of the new formula for the
calculation of the weights used for obtaining the
final result of MISR.
 This formula was tested for all the situations
referring to grade 8 and 16 irreducible polynomials
and the final conclusion is that the mathematical
relations discovered are correct.

References:
[1] Landau S.: Communications Security for the

Twenty-first Century : The Advanced

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1816 Issue 10, Volume 7, October 2008

Encryption Standard, Notices of the
American Mathematical Society, vol. 47, No.
4, 2000;

[2] Landau S.: Standing the Test of Time: The Data
Encryption Standard, Notices of the
American Mathematical Society, vol. 47, No.
3, 2000;

[3] Schneier B.:Applied Cryptology: Protocols,
Algorithms, and Source Code in C, John
Wiley and Sons, New York, 1996;

[4] Schneier B.: Bomba pentru criptare este
amorsată, Byte, iunie 1998;

[5]H. Niederreiter, “A Public–Key Cryptosystem
Based on Shift Register Sequences”,
Proceedings of EUROCRYPT’85, Linz,
Austria 1985;

[6] A. Al–Yamani II, “Logic BIST: Theory,
Problems, and Solutions”, Stanford
University, RATS/SUM02, 2002;

[7] Joan Daemen and Vincent Rijmen, "The Design
of Rijndael: AES - The Advanced Encryption
Standard." Springer-Verlag, 2002.

[8] M. Matsui, The First Experimental
Cryptanalysis of the Data Encryption
Standard, in Advances in Cryptology, Proc.
Crypto'94, LNCS 839, Y. Desmedt, Ed.,
Springer-Verlag, 1994.

[9] Jose-Vicente Aguirre, Rafael Alvarez, Leandro
Tortosa, Antonio Zamora: An Optimized
Pseudorandom Genrator using Packed
Matrices – WSEAS TRANSACTIONS on
INFORMATION SCIENCE &
APPLICATIONS Manuscript received Oct.
22, 2007; revised Mar. 22, 2008.

[10] Tariq Jamil, “The Rijndael Algorithm – A
brief introduction to the new encryption
standard,” IEEE Potentials, Vol. 23, No. 2,
April/May 2004;

[11] R. Sedaghat, B. O’Brien, “ ASIC
Implementation of a Pseudo-random Test
Pattern Generator Using a 32-bit Linear
Feedback Shift Register (LFSR)”, Proc.
International Conference for Upcoming
Engineers, ICUE, 2003;

[12] Frank Tsui - LSI/VLSI Testability Design -
McGraw-Hill Book Company, 1987,
ISBN 0-07-065341-0;

[13] Rafael Alvarez, Francisco-Miguel Martinez,
Jose-Francisco Vicent, and Antonio Zamora:
A Matricial Public Key Cryptosystem with
Digital Signature - WSEAS
TRANSACTIONS on MATHEMATICS
Manuscript received Nov. 28, 2007; revised
March 17, 2008;

[14] Hema.S, Suresh Babu.V, Ramesh P: FPGA
Implementation of Viterbi Decoder
Proceedings of the 6th WSEAS Int. Conf. on
Electronics, Hardware, Wireless and Optical
Communications, Corfu Island, Greece,
February 16-19, 2007;

[15] Ranjan Bose: An efficient method to calculate
the free distance of convolutional codes -
Proceedings of the 6th WSEAS Int. Conf. on
Electronics, Hardware, Wireless and Optical
Communications, Corfu Island, Greece,
February 16-19, 2007;

[16] Nadia Nedjah, Luiza de Macedo Mourelle: A
Review of Modular Multiplication Methods
and Respective Hardware Implementations;

[17] Md. Mokammel Haque, Al-Sakib Khan
Pathan, and Choong Seon Hong: Securing U-
Healthcare Sensor Networks using Public
Key Based Scheme;

[18] Gareth Howells, Evangelos Papoutsis, Klaus
McDonald-Maier: Novel Techniques for
Ensuring Secure Communications for
Distributed Low Power Devices;

[19] Michael Scott: Optimal Irreducible
Polynomials for GF(2m) Arithmetic;

[20] Snehal Udar & Dimitri Kagaris: LFSR
Reseeding with Irreducible Polynomials;

Wesley Peterson W.: Error-Correcting Codes, MIT
Press, 1970.

[21] Mirella Amelia Mioc: Study of Using Shift
Registers in Cryptosystems for Grade 8
Irreducible Polynomials; WSEAS
Conference SMO 23-25 September 2008.

WSEAS TRANSACTIONS on COMPUTERS MIRELLA AMELIA MIOC

ISSN: 1109-2750 1817 Issue 10, Volume 7, October 2008

