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Abstract: Face biometrics is an automated method of recognizing a person’s face based on a physiological or be-
havioral characteristic. Face recognition works by first obtaining an image of a person. This process is usually
known as face detection. In this paper, we describe an approach for face detection that is able to locate a human
face embedded in an outdoor or indoor background. Segmentation of novel or dynamic objects in a scene, often
referred to as background subtraction or foreground segmentation, is a critical early step in most computer vision
applications in domains such as surveillance and human-computer interaction. All previous implementations aim
to handle properly one or more problematic phenomena, such as global illumination changes, shadows, highlights,
foreground-background similarity, occlusion and background clutter. Satisfactory results have been obtained but
very often at the expense of real-time performance. We propose a method for modeling the background that uses
per-pixel time-adaptive Gaussian mixtures in the combined input space of pixel color and pixel neighborhood.
We add a safety net to this approach by splitting the luminance and chromaticity components in the background
and use their density functions to detect shadows and highlights. Several criteria are then combined to discrimi-
nate foreground and background pixels. Our experiments show that the proposed method possesses robustness to
problematic phenomena such as global illumination changes, shadows and highlights, without sacrificing real-time
performance, making it well-suited for a live video event like face biometric that requires face detection and recog-
nition.

Key–Words: Background Modeling, Face Detection, Biometric Identification.

1 Introduction
Face detection is the first critical processing stage in
all kinds of face analysis and modeling applications.
These applications have become increasingly attrac-
tive in modern life. Video surveillance, facial ani-
mation, facial expression analysis, video conferenc-
ing, etc. are some of the emerging applications that
lure people of both academic and commercial interests
over the past decade. Although many laboratory and
commercial systems have been developed, most of the
proposed methods aim at detecting faces over still im-
ages. Since still images convey only visual cues of
colors, textures and shapes in the spatial domain, the
difficulty and complexity in detecting faces surges as
the conveyed spatial-domain cues become vague or
noisy. Observing the above-mentioned applications,
we find that the major source of faces to be detected is
in video data. Video data carries not only the spatial
visual information, but also the temporal motion in-
formation. The addition of temporal motion informa-
tion removes some of the ambiguity suffered in spa-

tial visual cues, lowering down the difficulty in face
detection. Many of the currently developed systems
design their algorithms by trading off detection accu-
racy for higher speeds, or vice versa. With the inclu-
sion of temporal motion information, many complex
situations that require lots of processing time or suffer
from detection accuracy become simpler. Therefore,
incorporating both spatial and temporal cues for face
detection offers an inspirational solution to the prob-
lem.

Background subtraction is a method that takes ad-
vantage of both spatial and temporal cues to identify
and track regions of interest. If these regions of inter-
est, also known as foreground object, can be detected
precisely and effectively, then subsequent image pro-
cessing stages will be presented with a much limited
processing area within an image. This reduction will
lead to better efficiency, accuracy and computational
cost for the complete vision system. Within the lit-
erature, various techniques that employ background
subtraction can be found. Most of these techniques
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use a background reference image to perform back-
ground subtraction. This reference image is obtained
after the background is mathematically modeled. In
the final step, the current image is subtracted from
the reference image to produce a mask that highlights
all foreground objects. The process of image acquisi-
tion, background modeling and finally subtracting the
current image from the background reference image
is implemented in what is known as the background
subtraction algorithm. Needless to say, a proper com-
bination of the three is required to obtain satisfactory
results for a specific application.

Several background subtraction algorithms have
been proposed in the recent literature. All of these
methods try to effectively estimate the background
model from the temporal sequence of the frames. One
of the simplest algorithms is frame differencing [1].
The current frame is subtracted from the previous
frame. This method was extended such that the refer-
ence frame is obtained by averaging a period of frames
[2] [3] [4] also known as median filtering. A second
extension applied a linear predictive filter to the period
of frames [5] [6]. A disadvantage of this method is
that the coefficients used (based on the sample covari-
ance) needs to be estimated for each incoming frame,
which makes this method not suitable for real-time
operation. [7] and [8] proposed a solution to this us-
ing a much higher level algorithm for removing back-
ground information from a video stream. A further
computationally improved technique was developed
by [9] and it is reported that this method is success-
fully applied in a traffic monitoring system by [10]. In
these types of time averaging algorithms, the choice
of temporal distance between frames becomes a tricky
question. It depends on the size and speed of the mov-
ing object. According to [11], background subtrac-
tion using time averaging algorithms, at best, only tell
where the motion is. Though this is the simplest al-
gorithm, it has many problems; interior pixels of a
very slow-moving object are marked as background
(known as the aperture problem) and pixels behind the
moving object are cast as foreground (known as the
ghost effect problem). Multi-model algorithms were
then developed to solve this shortcoming. A paramet-
ric approach which uses a single Gaussian distribution
[12] or multiple Gaussian distribution [13] [14] [15]
can be found in the literature. Various improvements
techniques like the Kalman filter to track the changes
in illumination [16] [17], updating of Gaussian dis-
tributions [18] [19], inclusion of image gradient [20]
and the modeling and detection of shadows and high-
lights [21] [22] [23] have been done to improve the
accuracy of background subtraction. Non-parametric
approaches have also been attempted in [24] and [25].
These approaches use a kernel function to estimate the

density function of the background images.
Face biometric applications require the modeling

of environmental lighting changes, shadows and re-
flections that appear on a face and the background. In
the case of online surveillance, the application must
operate in real-time. Although much as been done on
individual techniques as can be seen in the numerous
methods described above, very few have concentrated
on real-time capabilities [26]. Very few of the above
mentioned methods can be executed at a frequency
of more that 15Hz. Like most image processing ap-
plications, a trade-off has to be made between speed
and accuracy in order to obtain an advantage of one
over the other. Hence, the focus of this paper is the
development of a background subtraction algorithm
which can be run in real-time and is accurate enough
for the purpose of face detection to be used in a face
biometric application. We propose solutions with low
computational cost to solve problems like illumina-
tion changes, static thresholds, shadows, model up-
dating and background clutter. Our algorithm is able
to perform background subtraction on a image of size
640 × 480 at a frequency of about 32Hz. Indoor and
outdoor experiments are presented at the end of this
paper together with the discussion about the results.

2 Background Modeling
The background modeling and the subtraction pro-
cess is shown in Figure 1. There are four major
steps in our background subtraction algorithm; pre-
processing, consists of transforming the input images
from the raw input video format into a format that
can be processed by subsequent steps. Background
modeling then learns each video frame to estimate
a background model. This background model pro-
vides a statistical description of the entire background
scene. Foreground detection then identifies pixels in
the video frame that cannot be adequately explained
by the background model, and outputs them as a bi-
nary candidate in a foreground mask. Finally, data
validation examines the candidate mask, eliminates
those pixels that do not correspond to actual objects,
and outputs the final foreground mask. We describe
the four major steps in the following subsections.

2.1 Preprocessing
In this stage, we firstly use simple temporal and spa-
cial smoothing to reduce camera noise. Smoothing
can also be used to remove transient environmental
noise. Then to ensure real-time capabilities, we have
to decide on the frame-size and frame-rate which are
the determining factors of the data processing rate.
Another key issue in preprocessing is the data format
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Figure 1: Block diagram of the background subtrac-
tion algorithm.

used by the particular background subtraction algo-
rithm. Most of the algorithms handle only luminance
intensity, which is one scalar value per each pixel.
However, color image, in either RGB or YUV color
space, is becoming more popular these days. In the
case of a mismatch, some time will be spent on con-
verting the output data from the driver of the camera
to the required input data type for the algorithm.

2.1.1 Color Model
The input to our algorithm is a time series of spa-
tially registered and time-synchronized color images
obtained by a static camera in the YUV color space.
This allows us to separate the luminance and chroma
components which has been decoded in a 4:2:0 ratio
by our camera hardware. The observation at pixel i at
time t can then be written as:

IC = (Y,U, V ) (1)

2.1.2 Texture Model
In our implementation, we used the texture informa-
tion available in the image in our algorithm by includ-
ing and considering the surrounding neighbors of the
pixel. This can be obtained several ways. In our im-
plementation, we have decided to take the image gra-
dient of the Y component in the x and y directions.
The gradient is then denoted as follows:

IG = GY = (Gx, Gy)

=
√
G2

x +G2
y (2)

This is obtained using a Sobel operator. The Sobel
operator combines Gaussian smoothing and differen-
tiation so the result is more robust to noise. We have
decided to use the following Sobel filter after experi-
menting with several other filters. 1 2 1

2 0 2
1 2 1

 (3)

Figure 2 shows the behavior of the camera sensor to
the neighboring pixel and the effect of the surrounding
pixels for any given pixel. Notice that the edges of the
red, blue and green color zones are not uniform.

Figure 2: The neighbor pixel effect to the camera sen-
sor.

2.1.3 Shadow Model
At this point, we still have a major inconvenience in
the model. Shadows are not translated as being part of
the background and we definitely do not want them to
be considered as an object of interest. To remedy this,
we have chosen to classify shadows as regions in the
image that differ in Y but U,V rest unchanged. The
shadow vector Is is then given as follows:

IS = (YS , U, V ) (4)

where YS = Y ± ∆Y . This is in fact not a disad-
vantage. Since the Y component is only sensible to
illumination changes, it is in fact redundant for fore-
ground or background object discrimination.

2.2 Learning Vector Model
We can now form the final vectors which we are going
to observe at pixel level. They are given as follows:

B1 = (GY , U, V )

B2 = (YS)

B3 = (U, V ) (5)

whereB1 is the object background model which com-
bines the color and texture information but ignores
luminance that is incorporated in B2 which is the
shadow background model and B3 is taken as a safety
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net vector which measures the chromaticity compo-
nent of the background. The choice of the safety net
vector is empirically chosen from the conducted ex-
periments.

We decided to use the Mixture of Gaussian
(MoG) method to maintain a density function at pixel
level. This choice is made for each pixel after study-
ing the behavior of the camera sensor. Figure 3 shows
very clearly that the behavior of the camera sensor
used in our experiment is Gaussian. However, to en-
able real-time computations, we assumed that the den-
sity function of each channel have only a single distri-
bution which is obtained by considering only the high-
est peak from the graph.

Figure 3: Camera sensor used in our experiments have
a Gaussian behavior.

In the MoG method, at each pixel, the variation
in the observed vectors B1, B2 and B3 can be each
modeled separately by a mixture of K Gaussian. The
probability P (B) then of belonging to the background
is given by:

P (Bj) =
K∑

i=1

ωi f( Bj , µi , Ci ) (6)

where j = 1, 2, 3, K denotes the number of Gaus-
sian distributions used to model the density function,
µ the mean value vector of the Gaussian, C the co-
variance matrix associated with this Gaussian and ω
is the weight assigned to the Gaussian distribution.
In our approach, B2, B3 and B1 are each modeled
separately as a one, two and three component density
function. These density functions can be viewed as a
curve, surface and ellipsoid respectively. But, since
each density function of each component is assumed
to only have a single peak, K = ω = 1 ∀ j = 1, 2, 3.

3 Background Subtraction Algo-
rithm

In this section, we describe how the background
model is constructed and used to discriminate fore-
ground and background pixels. The background

model that is constructed is stored in an image called
a background reference image. During run-time, the
reference image is subtracted from the current image
to obtain a mask which will highlight all foreground
objects. Once the mask is obtained, the background
model can be updated. There a four major steps in the
background subtraction algorithm. These are detailed
in the following subsections.

3.1 Background Learning
In this stage, for each incoming frame, at pixel level,
we store the number of samples n, the sum of the ob-
served vector a, b, c grouped as U and the sum of
the cross-product of the observed vector d, e and f
grouped as V .

n =
N∑

i=1

1

a =
N∑

i=1

B1 , b =
N∑

i=1

B2 , c =
N∑

i=1

B3

d =
N∑

i=1

(B1 ×B1) , e =
N∑

i=1

(B2 ×B2)

f =
N∑

i=1

(B3 ×B3) (7)

This stage will be defined as the learning phase
and is required for initialization. From our experi-
ments, about 100 frames is necessary to sufficiently
learn the variations in the background. This corre-
sponds to about 2 to 4 seconds of initialization using
our camera.

3.2 Parameter Estimation
At the end of the learning phase, the required variables
for the Gaussian models need to be calculated. They
are given as follows:

µ1 =
a

n
, µ2 =

b

n
, µ3 =

c

n

CB1 =
1
n

(d)− 1
n2

(a× aT )

CB2 =
1
n

(e)− 1
n2

(b× bT )

CB3 =
1
n

(f)− 1
n2

(c× cT ) (8)

These variables are calculated in a very efficient
manner such that real-time compatibility is always
maintained. In our implementation this stage is re-
ferred to the Gaussian distribution parameter estima-
tion stage.
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3.3 Foreground Detection
Foreground detection compares the input video frame
with the background reference image and identifies
candidate foreground pixels from the input frame. The
most commonly used approach for foreground detec-
tion is to check whether the input pixel is signifi-
cantly different from the corresponding background
estimate. In the MoG method, we can do this by ex-
panding the characterizing equation for each Gaussian
distribution.

P (Bj) = f( Bj , µj , CBj )

= ( 2π
n
2 ×

√
|CBj | )−1

× exp { (Bj − µj)T

× C−1
Bj
× (Bj − µj) } (9)

where j = 1, 2, 3. To compute this probability, it is
not entirely necessary to evaluate the whole expres-
sion. The first term is a constant and the remain-
ing term is popularly known as the Mahalanobis Dis-
tance (MD). Hence, the decision making process is
streamed down to the following three categories,

MDj = (Bj − µj)T × C−1
Bj
× (Bj − µj) (10)

for j = 1, 2, 3. This expression evaluates the dif-
ference between the reference image and the current
image using the three density functions. The differ-
ence is decomposed into there MD’s. Applying suit-
able thresholds yields an object category which indi-
cates the type of the pixel. As mentioned before, static
thresholds are unsuitable for dynamic environments.
In order to make the threshold adaptive, their values
are derived form the magnitude of the covariance ma-
trices of each Gaussian distribution which indicates
the extent of variation in the observed values. We
note here that we do not ignore inter-channel depen-
dency in the computation of our covariance matrices
and their inverses as some authors do. Our method
classifies a given pixel into the following three cate-
gories,

OB if


MD1 > ε1|CB1 |
MD2 > ε2|CB2 |
MD3 > ε3|CB3 |

SH if


MD1 > ε1|CB1 |
MD2 > ε2|CB2 |
MD3 < ε3|CB3 |

BG if


MD1 < ε1|CB1 |
MD2 < ε2|CB2 |
MD3 < ε3|CB3 |

(11)

where ε1, ε2 and ε3 are constants which depend on the
camera sensor and the output from the camera driver.

They are determined empirically during the experi-
ments.

3.4 Model Update
In order to fully capture the changing dynamic envi-
ronment, the background model has to be updated. In
the proposed algorithm, we need to update the mean
vector, the covariance matrix and its inverse. In order
to avoid recalculating all the coefficients altogether, a
recursive update is preferred. The will allow us to ob-
tain the new values of the model parameters from the
old ones. From the general expression for the mean
vector and the correlated Gaussian distributions,

µt =
Ut

nt

Ct =
1

nt−1 + 1

×
{[
Vt−1 + (Bt ×BT

t )
]

−
[(Ut−1 +Bt)× (UT

t−1 +BT
t )

nt−1 + 1

]}
(12)

we can then obtain a simplified expression for the up-
dated mean vector and the updated inverse covariance
matrix,

µt =
µt−1nt−1 +Bt

nt−1 + 1
C−1

t = (Ct−1 +BtB
T
t )−1

= C−1
t−1 −

C−1
t−1BtB

T
t C

−1
t−1

1 +BT
t C

−1
t−1Bt

(13)

The updating of covariances matrices and the mean
values are only done to pixels which were assigned as
background (BG). Once the covariances matrices are
updated, the respective thresholds are also updated.
The updated inverse covariance matrices are used in
subsequent decision making process.

4 Data Validation
We define data validation as the process of improving
the candidate foreground mask based on information
obtained from outside the background model. Inac-
curacies in threshold levels, signal noise and uncer-
tainty in the background model can sometimes lead
to pixels easily mistaken as true foreground objects
and typically results in small false-positive or false-
negative regions distributed randomly across the can-
didate mask. The most common approach is to com-
bine morphological filtering and connected compo-
nent grouping to eliminate these regions. Applying
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morphological filtering on foreground masks elimi-
nates isolated foreground pixels and merges nearby
disconnected foreground regions. Opening and clos-

Figure 4: Image before applying morphological filter.

ing are two important operators that are both derived
from the fundamental operations of erosion and dila-
tion. These operators are normally applied to binary
images. The basic effect of an opening is somewhat
like erosion in that it tends to remove some of the
foreground (bright) pixels from the edges of regions
of foreground pixels. However, it is less destructive
than erosion in general. Figure 5 shows the result af-

Figure 5: Image after applying the erosion filter.

ter applying the opening (erosion) filter to Figure 4
which eliminates the foreground pixels in the scene
that is misjudged by the background subtraction al-
gorithm or due to improper thresholding. We use a
5 × 5 mask to eliminate this foreground noise that is
not part of the scene or the object of interest. Another
added advantage of using this filter is to remove any
unconnected pixel that does not belong to the object.
The size of the mask is determined empirically from
our experiments. Closing is similar in some ways to

dilation in that it tends to enlarge the boundaries of
foreground (bright) regions in an image (and shrink
background color holes in such regions), but it is less
destructive to the original boundary shape. Figure 6

Figure 6: Image after applying erosion and dilation
filter.

shows the result of applying an opening and closing
filter to Figure 4. We apply a 5 × 5 closing mask af-
ter applying the opening filter. The effect of apply-
ing both operators is to preserve background regions
that have a similar shape to the structuring element, or
that can completely contain the structuring element,
while eliminating all other regions of background pix-
els. The advantage of this is that the foreground pix-
els which are misjudged as background pixels make
the object to look as if it is not connected. Opening
and closing are themselves often used in combination
to achieve more subtle results. It is very clear that ap-
plying morphological opening and closing filters has a
positive effect on the process of extracting object from
the scene by removing the noise from the subtracted
foreground.

5 Face Localization
The target of this research is to use background sub-
traction technique to detect an object in the scene. The
object of interest to us is the human face which is re-
quired for biometric identification. Every object or
target has its own methods for uniquely recognizing
themselves based upon one or more inherent physical
or behavioral character. Our implementation is to de-
tect the face of a human when the subject is standing
in front of a camera and then by initiating a capture se-
quence. The hardware for this has been developed and
attached to the system through an RS-232 communi-
cation port interface. The space between the camera
and the subject should ideally be around 1m to 1.5m.

WSEAS TRANSACTIONS on COMPUTERS K. Sundaraj

ISSN: 1109-2750 1767 Issue 10, Volume 7, October 2008 



This would normally give us an image that shows the
head of the subject and part of its shoulder. Figure
7 shows the analysis of an image (one frame) of size
M × N after the background is subtracted and data
validation completed. The only object that appears
in the scene is the face and part of the shoulder. We
then proceed to calculate the vertical (V) and horizon-
tal (H) density of the image (binary image) and obtain
the density graphs as shown in Figure 7. The height of

Figure 7: Face localization using vertical and horizon-
tal densities.

the graph bars will be considered from the top of the
image. With a suitable algorithm, we can compute the
vertical and horizontal density of the mask as follows:

V (x) =
M∑

x=1

I(x, y) ∀ x = {1, N}

H(y) =
N∑

y=1

I(x, y) ∀ y = {1,M} (14)

From these values, we can then localize the center of
the face and the face size. Next, we proceed to obtain
a rectangular mask and apply it to our image. This
will give us the first results for face detection. These
results can be easily saved in a database or compared
with an existing image in a database for biometric pur-
poses or for personnel identification. After the rectan-
gle mask is obtained, we can then refine the result to
obtain an ellipse mask around the face based on the
side lengths of the rectangle. A simple approach can
be used to determine the center of the ellipse, the ma-
jor axis and the minor axis.

6 Experimental Results
The background subtraction algorithm that is pro-
posed in this paper was tested in various outdoor and

indoor scenes in various environmental conditions. In
our experiments, we used a Marlin FO33C 1/2” pro-
gressive scan color CCD firewire camera connected to
a Pentium IV 2.8 GHz PC operating under Windows
XP environment to capture and process the incom-
ing frames in Visual C++ 6.0 programming language.
Five examples scenes are presented in this paper. The
first is a closed environment inside the office as shown
in Figure 8 and the second is outside the main office
in an outdoor environment as shown in Figure 9. The
third test shown in Figure 10 focuses on background
clutter while the fourth test shown in Figure 11 con-
siders highlights. In Figure 12, the final test aims at
shadow detection and removal. The first image (a) is
the scene that the algorithm will learn. The second im-
age (b) is the subject in front of the camera and when
capture is initialized manually. The results after ap-
plying the background subtraction algorithm is shown
in the third image (c). This is a binary image. Mor-
phological filters cleans the obtained results as shown
in the fourth image (d). The fifth image (e) is the face
located in the scene and the sixth image (f) is the face
ellipse. The obtained results are fairly good and shows
that the proposed algorithm is accurate.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Experimental results of indoor scene test.

From the results, we find that the proposed al-
gorithm is tolerant to illumination changes and back-
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Experimental results of outdoor scene test.

Table 1: Average error rate (%) of 25 frames for vari-
ous experimented scenes.

Scene / Method [20] [21] Ours
Illumination Change 13.4 7.2 6.5
Background Clutter 15.6 8.9 5.4
Shadows 23.4 8.1 5.9

ground clutter. The indoor and outdoor scenes were
repeated numerous times under different lighting con-
ditions and background texture. We also experi-
mented with various outdoor scenes with moving
leaves, waving branches and moving clouds. In all
these experiments, the proposed algorithm success-
fully executed in real-time (≈ 32Hz), which makes it
well suited for systems that require online monitor-
ing. During these experiments, we also found that
with a higher number of learning frames, accuracy
can be improved. Figure 12 shows the shadow de-
tection results of our proposed method. Shadows are
detected and removed from the image, thus prevent-
ing undesired corruption to the final result which may
lead to problems such as the detected object’s shape
being distorted or the object’s shape being merged.
This will introduce inaccuracies in the estimation of

(a) (b)

(c) (d)

(e) (f)

Figure 10: Experimental results of background clutter
scene test.

Table 2: Average frame rate (Hz) of experimented
methods.

Method [20] [21] Ours
Frame rate 9.6 12.3 32.5

face location. In order to test the robustness of the
proposed algorithm, we benchmarked our algorithm
with that of [20] and [21]. In the benchmark test, 25
frames from the results of the background subtraction
algorithm of various experiments of indoor and out-
door scenes were compared to obtain the recognition
rate of correctly assigned background pixels. Subjects
were told to move around in all experiments. The er-
ror rate is based on manually obtained predetermined
ratio of the correct number of background pixels to
the correct number of foreground pixels. The results
of this benchmark is tabulated in Table 1 and 2.

7 Conclusion
This paper presents the implementation details for a
fast background subtraction algorithm to detect an lo-
calize a human face from a dynamic background scene
that contains shading and shadows using color im-
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Experimental results of highlight scene
test.

ages. The experimental results in real-time applica-
tions shows that the propose method is accurate, ro-
bust, reliable and computed efficiently. This method
was designed under an assumption that the back-
ground scene although dynamic, can be effectively
modeled by allowing the system to update adaptively
during runtime. The background reference model
which is obtained from the fast update contributes to
the efficiency of this algorithm. We have implemented
these routines as efficient as possible. Like all learn-
ing algorithms, caution must be observed because al-
gorithms can be fed with information that might lead
to wrong learning or too little information leading to
insufficient learning. Several benchmarks concerning
accuracy and speed have been presented. In this paper,
we have implemented a system that uses an image size
of about 640× 480 pixels. Using this option, we have
found that the system runs at about 30 to 35 frames
per second which is generally sufficient for real-time
applications.
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