
An Arbitration Web Service for E-learning based on XML Security
Standards

ROBERT ANDREI BUCHMANN, SERGIU JECAN

Business Information Systems Dpt.
Faculty of Economic Sciences and Business Administration

Babes Bolyai University Cluj Napoca
Str. Th. Mihali 58-60, Cluj Napoca

ROMANIA
robert.buchmann@econ.ubbcluj.ro, sergiu.jecan@econ.ubbcluj.ro

Abstract: This paper promotes a non-repudiation system for student evaluation in an e-learning environment
based on web services, AJAX frameworks and PEAR packages in order to implement XML security standards,
to provide improved user experience, asynchronous data exchange and message authentication for on-line test
papers. The motivation of this research is the need to arbitrate on-line evaluation for both parties, the e-teacher
and the e-student, the evaluation criteria and the rating against open answers.

Keywords: - e-learning, XML, digital signature, AJAX

1 Introduction
E-learning already provides a mature model for
educational processes. However, the separation of
parties in time and space is bound to communication
gaps causing situations where an arbitration system
should provide trust mechanisms between the
student and the teacher.

The proposed application model is an evolutionary
step of the XML-driven e-commerce application
previously implemented for Flash 2004 with XML
support and currently migrated under an AJAX
framework and within an e-learning context based
on trust managed through XML Signatures. The
Flash-XML application model was previously
presented in [1] and more details are provided on
the mapping of relational data on an XML
repository in [2].

2 Problem Formulation
Student evaluation must be treated as a contracting
operation: in real life, the test paper is a contract
signed by both parties, one providing an evaluation
service and signing for the rating and criteria offered
with this service, and the other one signing a request
for participating to and consuming the evaluation
service in a manner similar to atomic transactions -
the participation to an exam is fully acknowledged
by both parties and cannot be rolled back or
replayed against the teaching institution regulations.
A test paper is part of a limited number of

evaluation processes with respect to the tariffs paid
for the inclusion into the e-learning process. The
results of a test paper would affect clauses in the
studying contract, which could involve limitation of
access to more advanced courses and even future
payments for subsequent trials to overcome a failed
exam.

The practical problem approached by the authors’
research effort is the need to arbitrate the evaluation
process within an e-learning environment, as
established popularly in modern universities. The
authors are involved in setting up and conducting
distance learning processes based on the e-learning
platform provided by the represented institution.
Within this context, arose the issue of arbitration in
contestation processes, especially in tests based on
open questions, but also in multiple choice tests
with no immediate answer validation.

The proposed solution is an extension to traditional
e-learning application models, regarding the
evaluation module, based on XML-based digital
signature and improved usability through AJAX
frameworks. The solution evolved in two versions: a
light version using PHP scripts to build and manage
an XML signature repository [3], and a more robust
version, with the XML signature repository hidden
behind a web service.

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1742 Issue 10, Volume 7, October 2008

3 Problem Solution

3.1 Instrumentation

a. The proposed application model is defined on an
AJAX framework (Prototype being the chosen
framework for the prototype implementation) with a
server-side based on PHP scripts that build XML
documents signed with XML Signature based on
session data and the data provided by the student
(questions and answers) and the teacher (proper
answers referring questions, the weight of the
question in the average grade and the rating resulted
from the teacher’s evaluation).
AJAX is becoming a mainstream solution for Web
applications due to its heavily promoted
advantages[4]:

• Increased usability and improved user
experience;

• AJAX aligns with the trend of evolving
usage patterns in Web applications;

• Parts of the processing effort is moved on
the client-side, together with parts of the
business tier;

• The development process does not involve
commercial software and the application is
easier to deploy compared with other Rich
Client solutions.

Prototype1 is one of the most successful framework
providing high level JavaScript functions that
encapsulate and hide most of the disadvantages of
AJAX programming: cross-browser decisions, try-
catch structures and heavy syntax. Some of the most
relevant advantages brought by the Prototype library
are:

• Simplifies the JavaScript syntax for
accessing elements by id and accessing their
attributes;

• Provides new functions for accessing DOM
nodes, based on CSS selectors, in many
cases preferable to access by id or tag name;

• Provides new objects for transferring data
and encapsulating XMLHttpRequest and
cross-browser issues;

• Provides Ruby-inspired iteration functions
for operating on arrays;

1 The library is open source and can be downloaded from
http://prototypejs.org

• Provides a high-level element positioning
system, which is the foundation for the
Script.aculo.us JavaScript effects library[5];

• Simplifies the access to form and their
fields and simplifies frequent operations
such as toggling element visibility, field
focusing, enabling, disabling, selecting;

• Simplifies the snippet insertions in the user
interface, using the Insertion class, an
AJAX pattern encouraged by Rails
frameworks.

c. The structure of an XML Signature, as defined
in the W3C recommendation, is the following
(cardinality explanation on the right side)2:

<Signature>
<SignedInfo>
<CanonicalizationMethod>
<SignatureMethod>
(<Reference (URI=)? > 0 or 1 occurrences
(<Transforms>)? 0 or 1 occurrences
<DigestMethod>
<DigestValue>
</Reference>)+ 1 or more occurrences
</SignedInfo>
<SignatureValue>
(<KeyInfo>) ? 0 or 1 occurrences
(<Object>) * 0 or more occurrences
</Signature>

The components of the signature are embedded
within two elements:

• <SignedInfo> contains the list of resources’
locations to be covered by the signature
each with preliminary hashes (digest);

• <SignatureValue> contains the definitive
hash signature resulted from signing
<SignedInfo>.

Additional and optional elements are those
providing information on the key (public key or
certificate) and various object-resources contained
within the signature[6].

Three types of signatures are possible using the
XML Signature standard:

• The enveloped signature, contained within
the signed document, a type of signature
that, in order to be verified, must reference a
transformation that removes the signature
before hashing its contents;

2 The latest W3C recommendation for the standard is available
at: http://www.w3.org/TR/xmldsig-core/

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1743 Issue 10, Volume 7, October 2008

• The enveloping signature, containing the
signed document in the Object tag;

• The detached signature, separated from the
signed resources, it also guarantees the
integrity of online resources against
tampering and defacement, since the
signature breaks if the signed URIs cannot
be dereferenced.

The type of signature used on the "test paper"
documents by the proposed application is the
detached one. This provides a complete separation
between the signed and the signature files, whereas
enveloping or enveloped signatures are more useful
in signing SOAP messages used by the web service
version of the application.

An example of mixed signing, with a signature
detached to some content, enveloped in other
content and enveloping other, based on the
algorithm RSA and the hash function SHA1, is the
following:

<Contract>
<ContractContent Id=”SignedContract”>
...........
</ContractContent>
<Signature Id=”SignedPicture”>
<SignedInfo>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rs
a-sha1"/>
<Reference URI="http://localhost/signedfile.xml">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#s
ha1"/>
<DigestValue>..............</DigestValue> (1)
</Reference>
<Reference
Type=”http:/www.w3.org/2000/9/xmldsig#Object”
URI="#pic">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#s
ha1"/>
<DigestValue>...............</DigestValue> (2)
</Reference>
<Reference
Type=”http:/www.w3.org/2000/9/xmldsig#
SignatureProperties” URI=”#Assertions”>
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#
sha1"/>
<DigestValue>...............</DigestValue> (3)
</Reference>
<Reference URI="#SignedContract”>

<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#s
ha1"/>
<DigestValue>..............</DigestValue> (4)
</Reference>
</SignedInfo>
<SignatureValue>.................................. (5)
</SignatureValue>
<Object Id=”pic” MimeType=”image/gif”
Encoding=”http:/www.w3.org/2000/9/xmldsig#
Base64”>
.. (6)
</Object>
<Object>
<SignatureProperties>
<SignatureProperty
Id=”Assertions” Target=”#SignedPicture”>
<ValidUntil>year 2020</ValidUntil>
</SignatureProperty>
</SignatureProperties>
</Object>
</Signature>
</Contract>

Element (1) contains the hash value of signedfile.
Element (2) contains the hash value for the
enveloped resource pic which is a GIF picture
converted from binary to Base-64, at (6). Element
(3) contains the hash for additional signature
assertions, such as the validity time-stamp. Element
(4) contains the hash value for the contract that
envelops the signature. Element (5) contains the
definitive hash (mixed signature) for all the
resources. If one Reference does not have an URI
attribute, it is supposed to refer the content after the
SignatureValue.

<Object> embeds all types of additional information
needed to the signature, even the signed resource
itself as binary data encoded in a text format
(usually Base-64), and declared with a MimeType
attribute. Its child, <SignatureProperties>, permits
the description of the signature functionality, such
as a time-frame for signature validity or a carrier
identity, hashed as resource number (3). The Target
of each property must refer to the signature ID. The
recipient must be able to process this information.
For compliance with the Directive 1999/93/EC of
the European Parliament and of the Council of 13
December 1999 on a Community framework for
electronic signatures, the syntax of XML Signature
has been extended to XAdEs (XML Advanced
Electronic Signature) which provide six additional
forms of signatures with additional property
elements used to impose and check signer identity,

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1744 Issue 10, Volume 7, October 2008

time stamps, certificate references and other details
needed for non-repudiable signatures3.

Optionally, the <KeyInfo> element separates the
trust semantics from the signature structure. The
recipient application may use a trust mechanism in
order to validate signatures semantically (beyond
their schema rules). The trust mechanism must
retrieve the key information from the XML parser
and check the signature against a trusted set of X509
certificates or public keys.

Compared to traditional PKCS#7 signing, which
allows multiple documents to be linked in one
document, XML Signature allows multiple
signatures on the same document and the same
signature for multiple documents. In the proposed
application a test paper, structured as an XML
document, is partially signed by both student and
teacher, each signing the content for which he is
responsible. On the other hand, the signature file of
a teacher signs all the test papers in which he is
involved.

XML Signature also finds multiple uses in the web
service version of the application:

• Persistent integrity: in web service
environments, integrity protection is present
on many OSI levels (SSL for example), but
it is not persistent, it only works during
communication; persistent integrity is
particularly useful in scenarios with
multiple signers of the same document;

• Nonrepudiation links signature to identity
so the signer (teacher, student) cannot deny
the fact that he created the document; the
KeyInfo tag of the XML Signature refers
the public key of the signer and provides
hints to the discovery of the private key; the
signature may also involve changing data
such as timestamps in order to prevent
replay attacks; also, digital certificates may
be included and validated using an XKMS
(XML Key Management Specifications)
trust service (not included at this point in
the proposed application);

• Authentication is possible if the KeyInfo
data is linked to an identity defined by a
digital certificate.

3 XAdEs Reccomendation: http://www.w3.org/TR/XAdES/

3.2 Application architecture and
implementation details

Ajax User Interface

PHP signature engine
- Signature generator
- Signature validator)

PHP Evaluation engine
 - Test generator
- XML exam generator

- Test sheet formatter

Fig.1. The 3-tier architecture of the application

Relational
database
(Questions,
Answers,
Students,
Teacher data)

XML signed
repository
(Exam docs)

Ajax User Interface

PHP service consumer, user interface updater, test sheet
formatter

Signature engine
- Signature generator
- Signature validator)

Evaluation engine
 - Test generator
- XML exam generator

XML Signature
repository
(Sig files)

Relational
database
(Questions,
Answers,
Students,
Teacher data)

XML Signature
repository
(Sig files)

XML signed
repository
(Exam docs)

Fig.2. The service oriented architecture of the
application

By using an AJAX framework, multiple choice
questions can be easily validated and rated in an
automated fashion as the respondent is checking his
answers, a usability improvement inspired by the

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1745 Issue 10, Volume 7, October 2008

evolved interaction of validated AJAX forms. By
handling events such as bluring and focusing, the
server provides instant answers to the student,
through the Ajax.Updater object provided by the
Prototype library:

argument={
asynchronous: true,
method:"get",
parameters: data,
onFailure: failurehandler
}
updtr=Ajax.Updater(element,url,argument)

where:

• element is the id of the div tag which will
have its content replace with the server
response;

• url indicates the server script;
• failurehandler is a JavaScript variable of the

“function” type, referring a handler; several
such handlers may be defined for each state
of the XMLHttpRequest transfer and each
of them have the request object as an
implicit argument.

Ajax.Updater encapsulates the full functionality of
XMLHttpRequest, including cross-browser
instantiation and page element replacement,
combined with the Prototype extended class named
Insertion, which provides means of inserting HTML
snippets (or formatted XML) at any point of the
document relative to other elements or arrays of
similar elements (form fields, table rows, div sets
etc.). Thus, Ajax.Updater performs both updating of
page elements and insertion without defining an
event handler (although this is possible, if the arrival
of server response has more consequences than the
updating/inserting operation).

The instant validation of choice answers is provided
by notification mechanisms such as displaying a
flashing icon besides the answer, using the
Script.aculo.us library of effects:

function answercheck(answer, question, notify)
{
data="question="+question+"&answ="+$F(answer)
new Ajax.Updater (notify, "script.php",
 {
 asynchronous: true,

method: "get",
parameters: data,
onCreate: notification,

 })

function notification(obiectxhr)
{
Element.show(notify)
new Effect.Pulsate(notify)
}

}

However, our main challenge is to define an
arbitration system based on integrity preservation
and message source authentication during the
evaluation process, even in the case of mixed
evaluation (open answers and choice answers). By
mimicking real-life formalities, both the student and
the teacher should be able to sign their input
(answers and evaluation data, respectively) and
verify each others signature. In the end, the data set
built during an exam should have a carbon copy
version obtained after both digital signatures were
validated on the same data set (document).

XML Signature permits partial digital signatures on
element level, in the same XML document or
multiple documents. The carbon copy version is
obtained in our application model by processing an
XSLT stylesheet over the signed "test sheet"
document.

The basic use scenario of the application follows the
steps:

• The student user fills and submits a test
paper presented as an AJAX form, with the
possibility of having immediate evaluation
on the multiple choice questions;

• The server builds dynamically an XML
document with the student’s answers and
digitally signs it by building an XML
Signature via DOMDocument;

• The digitally signed document with the
student’s answers is stored in an XML
repository and can be formatted with an
XSLT stylesheet;

• The teacher user is able to verify the
authenticity of the student’s answers;

• The teacher user signs the part of the
document containing his evaluation data
(ratings, criteria);

• The student may authenticate the teacher’s
evaluation;

The digital signature is built with a PHP script by
building the XML Signature structures (based on
SHA-1 hashing for the prototype in works). Both
the student’s and the teacher’s signatures are stored

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1746 Issue 10, Volume 7, October 2008

in separate files. The student and the teacher’s data
regarding one “test paper” are stored in the same
document, which is partially signed by the two
different signatures. XML Signatures allow partial
signing of the document (element signing), or
multiple signing of the same document.

The following would be the core structure of a test
sheet:

examS111T111.xml:

<exam ID=”ex1” date=”...” student=”S111”
teacher=”T111” course=”C111”>
<evalset ID=”eset1” teachername=”John Smith”>
<question IDREF=”q1”
properA=”.......” weight=”...” rating=”...” />
<question IDREF=”q2”
properA=”........” weight=”...” rating=”...” />
..........................
</evalset>
<questionset ID=”qset1” studentname=”John Doe”>
<question ID=”q1” Q=”......” A=”........” />
<question ID=”q2” Q=”......” A=”........” />
..................
</questionset>
</exam>

The evaluation data set is inserted before the
question set in order to increase performance, by
minimizing the number of passes for the SAX
parsing window (this is kept in perspective, since
the current state of the implementation uses DOM).
Most elements are using the empty model with
attributes also for performance reasons and
relational compatibility, as described in the
literature and one of our previous studies[7][8].

All exam files are stored by the server in an XML
repository with a granularity that defines one
document for each exam, and each document uses a
pseudo-namespace containing the identifiers of the
student and the teacher involved in the exam. These
identifiers will be also used to identify their
signature files.

Furthermore, each student and teacher has its own
file with XML Signature for the list of all their
associated elements from the exam documents:

• Teacher T111 has a file with signatures
hashing all his evalset elements, in all test
sheets;

• Student S111 has a file with signatures
hashing all his question set elements.

This is possible since XML Signatures uses double
hashing (and consequently, reclaims double
validation)[9]:

• Core validation, for the preliminary
hashing, applied as a digest of each of the
resources in the list of Reference elements;

• Signature validation, for the definitive
hashing, applied to the list of preliminary
hashes.

The signatures are detached, so they are referencing
fragment identifiers from the signed exam, as the
following example shows:

student111signatures.xml:

<Signature ID=”S111Sign”
xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315" />
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#d
sa-sha1"/>
<Reference URI=”examS111T222.xml#qset1”>
<DigestMethod
Algorithm=”http://www.w3.org/2000/09/xmldsig#s
ha-1” />
<DigestValue>.........preliminaryhash...........</Dige
stValue>
</Reference>
<Reference URI=”examS111T333.xml#qset1”>
.....................................
</Reference>
</SignedInfo>
<SignatureValue>......definitivehash.........</Signatu
reValue>
</Signature>

teacher222signatures.xml:
<Signature ID=”T222Sign”>
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315" />
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#m
d5"/>
<Reference URI=”examS111T222.xml#eset1” >
<DigestMethod
Algorithm=”http://www.w3.org/2000/09/xmldsig#s
ha-1” />
<DigestValue>.........preliminaryhash...........</Dige
stValue>
</Reference>

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1747 Issue 10, Volume 7, October 2008

http://www.w3.org/2000/09/xmldsig#sha-1
http://www.w3.org/2000/09/xmldsig#sha-1
http://www.w3.org/2000/09/xmldsig

<Reference URI=”examS211T222” >
</Reference>
</SignedInfo>
<SignatureValue>.......definitivehash........</Signatu
reValue>
</Signature>

Both the signature creation and validation are
handled by PHP through DOMDocument methods
and several encoding functions:

• hash_algos() – returns the list of PHP-
registered hashing algorithms (depending on
the encryption modules which are installed);

• hash($algo,$string) – applies the chosen
algorithm for hashing;

• hash_file($algo,$file) – applies hashing on a
file;

• sha1($string) is one of the most used
hashing algorithms, preferred against md5()
due to superior security;

• base64_encode($string) provides the
conversion of hashed binaries to base64
characters that will be actually stored as
hash values;

• c14n($string) is a custom function that
provides canonicalization of the XML code,
in order to obtain a minimal logically
unaffected document; canonicalization is
important since every bit-level change
affects the hashing process and the XML
flexibility makes it possible for XML
documents that are syntactically different
(ex: containing white spaces) to be logically
equivalent;

• PEAR packages for signing and verifying
raw digital signatures such as Crypt_RSA
and Crypt_DSA, the latter being still a
proposal package4; these provide the value
for the SignatureValue element (based on a
custom key and formatted through base64
encoding), which is the definitive signature
for the canonicalized form of the string
obtained from the SignedInfo element.

Based on these functions, the PHP signature engine
suggested by Fig.1 provides several high-level
functions:

• Signature creation (see code below);
• Adding new test sheets to the signature

(opens the signature file and rehashes it);

4 The RSA PEAR package is available at
http://pear.php.net/package/Crypt_RSA

• Signature verification, by accessing the
XML exam file and validating its associated
signatures from the teacher and the student.

The next example provides details regarding the
signature creation script through DOM ($alg holds
the name for the algorithm of choice, currently
selected through a form by the signer), for the light
version of the application, using PHP scripts instead
of the web service:

....
if (file_exists('student111signatures.xml'))
$doc->load('student111signatures.xml');
else
{
$doc->formatOutput = true;
$elem=$doc->createElement('Signature');
$root=$doc->appendChild($elem);
$root->setAttribute("xmlns",
"http://www.w3.org/2000/09/xmldsig#");
$root->setAttribute("ID","S111Sign");
$elem=$doc->createElement('SignedInfo');
$si=$root->appendChild($elem);
$elem=$doc-
>createElement('CanonicalizationMethod');
$cm=$si->appendChild($elem);
$cm->setAttribute("Algorithm",
"http://www.w3.org/TR/2001/REC-xml-c14n-
20010315");
$elem=$doc->createElement('SignatureMethod');
$sm=$si->appendChild($elem);
$sm->setAtribute("Algorithm",
"http://www.w3.org/2000/09/xmldsig#".$alg);
$elem=$doc->createElement('SignatureValue');
$sv=$root->appendCild($elem);
$sv->appendChild($doc->CreateTextNode("0"));
}
..........

The next steps of the script would be:

• to access the fragment of the exam file to be
signed;

• using the functions previously enumerated,
to build the hash value for the fragment and
the signature for the SignedInfo converted
to string; as the standard suggests, the
hashes are finally converted to base64;

• to insert through DOM the values as text
nodes of the DigestValue and
SignatureValue elements.

Signature verification follows the steps:

• opens the exam file and the two associated
signature files;

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1748 Issue 10, Volume 7, October 2008

• checks the integrity of the signature files, by
rehashing its SignedInfo element and
comparing the result with the signature;

• checks the integrity of the exam file by
rehashing its two parts (identified by ID via
fragment identifiers) and comparing them to
the preliminary hashes from both parties.

Web services are modular, self-contained
applications that can be accessed over a network in
order to consume their output on the server-side
and, consequently, to render the user interface. Web
service traffic raises security issues, since,
generally, it is not distinguished by regular HTTP
traffic. In the latest development of our application
prototype, such a web service would provide, as
reusable functionality, the management of
evaluation document repository, the signature files,
the signed test papers and the database on which the
test papers are generated. On the other hand, it
implements SOAP-level message security to make
the service reusable over any networks (transport
security only protects data while in transit). Thus,
XML Signature is applied on two levels:

• the document signing;
• the SOAP message signing, through the

WS-Security standard;

The service interface permits inputs such as:

• the input of test generation request;
• signature validation request from both

parties;
and outputs:

• generates tests;
• validates test signatures for both parties.

According to [10], the web service security must be
synchronized with the enforcement of institutional
rules governing e-learning activities such as the
student evaluation process. Proactive risk avoidance
policies are, at least in IT security, much more
efficient than reactive measures.

A security architecture must implement the common
basics of contract laws and evidence. A law is an
agreement giving rise to obligations which are
enforced and recognized by that law. A valid
contract is comprised by components such as:

• Offer, clear and unambiguous (in student
evaluation, this is composed by the test
questions, the evaluation criteria and the
rating which must be signed and predefined
with respect to the evaluation moment);

• Acceptance, final and unequivocal (in
student evaluation, this is proved by the
signed answers to the test);

• Intention to create a relation between
parties, with clearly defined roles (student
vs. teacher as actors of a bigger studying
contract);

• Consideration or value – the evaluation
service has a certain value which was paid
for as part of the tuition fee (or even
precisely state, for certain type of exams).

Contracting over distributed applications depends
on the ability to prove:

• What was agreed: questions, criteria, rating
and answers – involves data security,
including SOAP message security for the
web service;

• When was it agreed: involves inclusion in
the signature of a timestamp of each of the
involved information in order to prevent
replay attacks (resending data);

• Who agreed with it (identity of participants)
– involves private key security, with keys
stored and allocated according to their roles,
to each user account, behind the web
service, since key storage is rather an
application decision than a standard
recommendation.

The contracting itself, in theory, does not depend on
any signature; it depends on the wills of the
contracting parties. The signature is a mean of
proving that the will existed and manifested at some
point in time. Additionally, the digital signature also
guarantees the contract/message integrity.

The digital signature created by our service involves
several operations:

• Preparation of an XML data string (a string
of questions generated from a set defined by
the teacher, a string of answers related to the
questions);

• Preparation of a hashed version of the data
string;

• Encryption of the hashed version with a
private key of the data creator (teacher,
student);

• Both student and teacher can request an
identity verification of the data creator
established through public key;

• Both student and teacher can request the
signature validation by asking the service
(through the server script) to rehash their

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1749 Issue 10, Volume 7, October 2008

data and compare it to the hash of the stored
test document.

The security implemented over SOAP is based on
the WS-Security specification, which defines an
XML vocabulary for embedding security tokens
within SOAP messages. The WS-Security standard
defines the following XML elements:

a. Security, contained in the SOAP header and
structured as follows:

<S:Envelope>
<S:Header>
<Security S:actor="" S:mustUnderstand=1>
</S:Header>
</S:Envelope>

The mustUnderstand attribute states that the
recipient of the SOAP message must process the
security header, otherwise message processing will
fail.

More Security elements may be targeted to multiple
receivers, thus the actor attribute establishes the
precise relationship between the security token and
the service.

b.UsernameToken defines the way of embedding
username-password in SOAP, where the data is
trasmitted along through a SAML authentication
assertion. Example:

c.BinarySecurityToken defines a way of embedding
binary data, such as an X.509 certificate. The
structure of the element is:

<BinarySecurityToken
Id=....
EncodingType=....
ValueType=....>
...encoded value...
<BinarySecurityToken>

The attributes provide identity for possible
referencing from the SOAP message, the type of
encoding for the binary data (Base-64, usually) and
the significance of the encoded data (certificate,
Kerberos ticket etc).

4 Conclusion
According to [11], the main challenge in e-learning
implementations is the actual control that
characterizes traditional training. E-learning, as any

other e-activity, covers a segment of the Semantic
Web pyramid by reaching the higher levels of trust
and proof in practical scenarios such as test
contestation. The XML Security package of
standards provide a flexible set for implementing
these levels. Reference is the core element that
brings to the XML Signature superior functionality
over the traditional binary methods. This element
identifies the signed resource and provides the
preliminary hash value for signature generation. Its
strengths reside in the fact that it can refer any
format of data, not only binary and not only XML,
either as a detached signature or by referring
elements that contain Base-64 encoding of the
resource. Thus, XML Signature proves to be a
universal signature tool rather than an XML-specific
solution. However, it is optimized for node set
processing, this being the case of any well-formed
XML resource. Our research continues on two
parallel directions: the development of a full XML
Security library for PHP and the potential in e-
learning-oriented metadata standards, such as those
promoted in [12].

5 Acknowledgment
This paper contains results of the research efforts
supported by the following grants financed by the
Romanian Research Authority through CNCSIS:

• the doctoral grant TD270/01.10.2007 code
169, managed by Ph. D. Student Jecan
Sergiu;

• the research grant 91-049 PNII developed
within the author's department.

References:
[1] 1. Buchmann Robert, XML as a Backbone

in Web Applications, WSEAS Transactions
on Information Science and Applications,
Issue3, Vol.4, 2007, pp.545-551

[2] 2. Buchmann Robert, XML Databases in E-
commerce Applications, Workshop-ul
Informatica Economica si Societatea
Informationala, Timisoara 2006, p.60-65

[3] 3. Buchmann Robert Andrei, Jecan Sergiu,
An Arbitration System for Student
Evaluation based on XML Signature,
Proceedings of the second European
computing conference ECC08, pp.211-216

[4] 4. Dave Crane, Eric Pascarello, AJAX in
Action, Manning, 2006

[5] 5. Dave Crane, Bear Bibeault, Prototype and
Scriptaculous in Action, Manning 2007

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1750 Issue 10, Volume 7, October 2008

[6] 6. Blake Dournaee, XML Security, Mcgraw-
Hill, 2002

[7] 7. Buchmann Robert, Modeling relational
data with XML, Infobusiness 2006 –
Proceedings of the International Conference
on Business Information Systems, 2006,
pp.386-395

[8] 8. Buchmann Robert Andrei – Rolul XML in
interoperabilitatea sistemelor informatice
pentru afaceri, Ed. Risoprint, 2007

[9] 9. Buchmann Robert Andrei, Jecan Sergiu,
On XML-based digital signature, Studia
Mathematica (Proceedings of the
International Conference on Knowledge
Engineering, Principles and Techniques),
2007, pp.30-38

[10] 10.Mark O'Neill et al. Web Services Security,
McGrawHill 2003

[11] 11.Chen-Wo Kuo,Quo-Ping Lin, An
Empirical Study on Evaluating Government's
E-learning to Council for Cultural Affairs,
WSEAS Transactions on Information Science
and Applications, Issue 3, Vol. 4, 2007,
pp.472-486

[12] 12. Fu-Ching Wang, Timothy Shih, Pao-Ta
Yu, Ming-Tsung Liu, The Development of
Metadata Standards for Teaching Domain in
Taiwan, WSEAS Transactions on Information
Science and Applications, Issue 3, Vol. 4,
2007, pp.486-492

WSEAS TRANSACTIONS on COMPUTERS
ROBERT ANDREI BUCHMANN,
SERGIU JECAN

ISSN: 1109-2750 1751 Issue 10, Volume 7, October 2008

