
Aspects of Dictionary Making Developing an In-House Text Parsing
Tool

LIVIA SANGEORZAN1, MARINELA BURADA2, KINGA KISS IAKAB1

1Department of Computer Science
2Department of Foreign Languages and Literatures

Transilvania University of Brasov
B-dul Eroilor, Nr. 25, 500030, Brasov

ROMANIA
sangeorzan@unitbv.ro, marinela.burada@gmail.com, kissjakab@gmail.com http://www.unitbv.ro

Abstract: - This paper reports on particular aspects of ongoing research funded by the National University
Research Council and conducted by an interdisciplinary team of academics from Transilvania University of
Braşov, Romania, of which the authors of the present contribution are members. Based on the results yielded by
a large-scale survey of seventy online bilingual/multilingual dictionaries involving the English and Romanian
domains, we begin with an assessment of the status quo in the area of glossaries and dictionaries available on
the internet; we then focus on one particular aspect of dictionary design, i.e. the development and operation of a
flexible, customizable scanner-parser that we designed with a view to optimizing the work associated with data
collection and dictionary compiling.

Key-Words: - accessibility, customizability, interstructure, Java, macrostructure, online dictionary, parsing tool

1 Introduction
The specialist literature provides ample evidence
of the impact that online dictionaries have in the
knowledge-based era. Their emergence and
prospective development have been hailed ([1])
as a qualitative leap from a finished, static
product to a dynamic, flexible service apt to
promptly meet the greatest variety of cognitive
demands and, at the same time, fall in step with
the ongoing process of language change.

The discussion below focuses on a particular
aspect in the research work behind the design and
implementation of a specialized bilingual online
dictionary, which is the main objective of our
research project. By and large, this research consists
of three main stages: first, the survey of a number of
seventy online dictionaries - a qualitative approach to
their macrostructure, micro-structure, and
interstructure; second, the development of an in-
house software support system designed to assist in
the various activities associated with online dictionary
compilation and implementation and third, piloting
and field-testing the online dictionary that we created.
In this context, the topic of this paper specifically
refers to research work conducted in the second stage
of the project: the description of a customized parsing
tool used in the selection of the relevant lexicographic
input to be included in our specialized bilingual
dictionary.

As already mentioned, the investigation conducted in
the first stage of our project has been based on a set of
qualitative criteria subsumed under three main
coordinates, i.e. the macrostructure, microstructure,
and interstructure of online dictionaries, which are
wide enough in scope to target both the lexicographic
input and the computer programming effort required
by the design and implementation of online
dictionaries
The rationale behind this investigation has been,
firstly, to identify, diagnose, and typify the problems
commonly encountered when using such internet
resources and secondly, to find solutions and design
tools aimed at amending them. The ultimate goal of
our research project is to optimise both the process
and the product of online dictionary design by
suggesting a set of reference criteria and standards
that online dictionaries involving the Romanian
domain should meet in order to increase their
reliability and accessibility.

2 Problem Formulation
As stated above, the design and implementation of a
professional online dictionary implies a preliminary
step of selecting the set of words which will become
entries in our dictionary. We propose to optimize this
process of headword selection by implementing an
automated text parsing tool. What does the concept of
text parsing mean? Informally, parsing refers to the

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1731 Issue 10, Volume 7, October 2008

mailto:sangeorzan@unitbv.ro
mailto:marinela.burada@gmail.com
mailto:kissjakab@gmail.com
http://www.unitbv.ro/

process of analyzing a sentence or language statement.
Parsing breaks down texts written in natural language
into grammatical units like sentences, words, etc. This
parsing tool has the effect of a lexical analyzer
combined with a syntactic analyzer [2]. The goal is to
recognize sentences and words so that they can serve
as input for processing and analysis by the team of
lexicographers and be subsequently introduced in the
database of our dictionary.
A retrospective overview of compilers shows that
there are various lexical analyzer generators and
syntactic analyzer generators. First there were Lex [6]
and Yacc [5] and later appeared different versions
like: Flex, Rex, Jlex, Jflex respectively Bison, Byacc,
Lalr, Byacc/J [3] for different programming languages
with different extensions. All types of scanner
generators and parser generators were developed for
the lexical and, respectively, the syntactic analysis of
any kind of input. We chose not to use any of these
tools, because we are trying to scan and parse
particular genres of natural language; furthermore, our
scope is to break down natural texts written in English
into sentences and words for later analysis. The
general scheme of this process targeted at building an
online bilingual dictionary is illustrated in Figure 1.

Fig. 1 The complete process from input to output

Our parsing process relies on the concept of regular
expressions which are closely related to regular
grammars. In this context, relevant new work was
done by S. Dumitrescu in [4] concerning replacement
grammars. Some volume of research towards
developing conditions for language modeling regular
expressions is associated to Popa in [16]. Applications
of regular expressions in the domain trainee-adaptive
tests and evaluation can be found in [17].

2.1 Related work
From a survey of the literature devoted to dictionaries
in general and to IT-supported dictionaries in
particular it becomes obvious that a good amount of
attention ([1], [9], [10]) has been paid to the technical
capabilities of databases and lexicons, i.e. the optimal
algorithms and mechanisms for optimal applications
used or to be used in the design of online resources.

Most of the authors seem to concern themselves with
the assessment of the finished product, while fewer
target particular aspects of dictionary design, e.g.
search and navigation options, lexical access and
associative networks building, text categorization
techniques ([18]) etc., highlighting the merits, the
advantages and/or the drawbacks thereof. By and
large, the responsibility for the lack or limited success
in accessing and decoding the information required is
shared jointly, as suggested in the literature ([11],
[12], [13]), by the dictionary user on one hand, and by
the dictionary itself, on the other. In sum, it appears
that the higher the potential for information supply,
the greater the demands, technology-wise, on the user,
whose computer (and/or dictionary) literacy seems to
be assumed de facto. While we agree that this may
well be the case in practice, our claim is that this need
not be so, if the complexity of the informational
content is counterbalanced by effective data storage,
as well as judicious word search and retrieval
facilities.

2.2 Some problems with online
dictionaries: the status quo
In what follows we shall briefly outline some of the
more conspicuous macrostructural and
interstructural flaws identifiable in the corpus of
dictionaries we investigated. For obvious reasons, we
will deliberately leave out the microstructural
problems, which are linguistic in nature and hence
not germane to the present discussion. It should also
be mentioned from the outset that the research corpus
has been considered and assessed from the perspective
of the sophisticated user rather than from the
computer specialist’s standpoint. Moreover, as might
be expected, the weaknesses highlighted below are not
endemic to the research corpus in its entirety; despite
that, they are frequent enough to provide a sense of
typicality.

Following Burke ([1]), we are using the term
macrostructure here to refer to the interface of online
dictionaries and to possible interaction routines, e.g.
the search options available to the dictionary user.
From among the macrostructure-related flaws
shortlisted as a result of our survey, we will include
only two interrelated features with a direct bearing on
user-friendliness: customizability, and accessibility.
Customizability is a direct result of the configurability
options that the programmers include when
developing the software for online dictionaries.
Customizability problems are particularly manifest
when users have little or no control over the search
they perform, or when they obtain less or more
information than originally requested. Therefore,

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1732 Issue 10, Volume 7, October 2008

while most dictionaries allow the reader to
modify/adapt/refine the search, there are also static
dictionaries which closely emulate their print
counterparts in giving the user virtually no search
options at all. Other information provided, such as the
number of words contained by each lexicon, the most
frequent/recent lookups have only statistical validity,
and do not enable the access to the linguistic data in
the dictionary. At the other end of the continuum, we
may versions of the fuzzy matching option – extreme,
in the sense that they indiscriminately include among
the results all the occurrences of the headword, in all
the definitions available in the dictionary.
Furthermore, one particular case that deserves
attention here and which can be accounted for in
terms of inaccurate use of the stemming method is the
lack of discrimination between stems proper (which
are typically used as headwords) and coincident
segments found in other words: e.g. for the Romanian
headword tratat (English treaty), a rather ludicrous
result was 'barker: ciine latratator’. Stemming as one
of the most popular feature-based extraction method
has been discussed by Janakova [18], who outlines the
constraints in its application when attempting to
categorize texts produced in the Czech language. The
points she makes are also pertinent to Romanian,
whose highly inflectional language system sometimes
makes stems rather difficult to recognize.
Apart from this, further illustrations of imperfect
customizability are some multilingual dictionaries
which by default present the search results
simultaneously in all the languages they operate with,
regardless of the target-language selected by the user.
A major drawback of online dictionaries is the surplus
of information. This redundancy is determined by the
results of the search and the way in which they are
structured, either because they are repetitive, or
because they are irrelevant in different ways. For
example, the user asks for the English counterpart of a
Romanian word and by default obtains the Italian,
German, Spanish and French translations; or s/he
searches for a certain word and also obtains results
which only bear a formal resemblance to the original
word, or results that are embedded in a large amount
of information that has no connection to the original
search.
Acessibility problems also relate to a number of
design and implementation errors which have an
adverse effect on the presentation/display of results,
i.e. misspellings/ typographical errors, incomplete
bracketing, inappropriate spacing, inadequate use of
sign and symbols, lack of diacritics, all of which
might be alienating to the end user. Moreover, some
dictionaries seem to be designed for a restricted
number of people that share some special, esoteric

knowledge of data accessing. A design flaw common
to almost all the dictionaries we investigated is the
lack of diacritics, usually signaled on the home page
or in the instructions. In the rest of the cases, the
impossibility to distinguish between words whose
forms are only slightly different because of the use (or
non-use) of diacritics determines a higher number of
search results making the whole process of selection
longer and more difficult.
Apart from such macrostructural aspects,
interstructure is also worth referring to. The term
interstructure is used to denote how an entry links to
resources outside the lexicon; in other words, to
indicate how it integrates these external resources in
order to provide more detailed information about the
headword. This element is particularly relevant for the
purposes of our dictionary. The reality of
interstructure is a direct consequence of the online
medium and represents a significant point of
distinction between print and online lexicons.
Moreover, Burke ([1]) emphasizes the usefulness of
interstructure in bilingual on-line lexicons as carriers
of extensive information about culture-specific terms
and, we might add, highly specialized terminology.
Obviously, this would be a desideratum for all
bilingual/multilingual online dictionaries; none of the
dictionaries under investigation, however, is even
close to the notion of interstructure. Even with the
very few dictionaries which actually make use of
hyperlinks, their use is restricted to facilitating the
user’s access to the information available internally,
that is, inside the dictionary itself. In other words,
instead of being a means of obtaining new
information, interstructure is, in this case, an
alternative way of accessing the same information.The
few points summarized above should be justificative
enough of the need for improvement in the design and
implementation of online dictionaries aimed at
interlingual transfers between Romanian and English.
As part of the remedial action undertaken to that
effect, the following section provides a description of
a text parsing programme designed for natural data
processing. As already mentioned above, this tool is
part of the software system devised for the
development of an in-house bilingual, bidirectional
dictionary of specialised terminology

3 Problem Solution
During the first stage of our research project the input
texts are selected and categorized non-automatically
into a number of predefined categories (legal/quasi-
legal, trade, politics); these texts will be permanently
stored in the dictionary database and will remain
accessible via the dictionary’s interstructure. Next,

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1733 Issue 10, Volume 7, October 2008

the input texts are parsed in order to select the
headwords to become dictionary entries. In this word-
based selection process the features are the frequency
of use, but also the frequency of sense, in the case of
polysemous items. In other words, the classification
task is based on the commonly used ‘bag-of-words’
approach, according to which each distinct word in a
text is a selection feature and the number of their
occurrences in the text corresponds to their value.
Apart from that, the organisational principle
underlying our dictionary is the alphabetical sequence
of headwords – a principle that replicates the linearity
of printed dictionaries. Despite the fact that,
according to some authors ([14], [15]), the thematic
and pragmatic grouping of headwords might be closer
to the way the human mind works, alphabetisation is
still considered more practical, considering that
dictionary users are already accustomed to it.

3.1 Text parsing
The formal goal of text parsing can be formulated as
follows: Given a text T = (x1, …, xn) in a natural
language L, derive the correct analysis for every
sentence xi ∈ T and every word yj ∈ xi for every
sentence xi.
From the theory of formal languages and automatons,
we know that words of some languages can be
recognized using grammars, automatons and regular
expressions

Definition 1.[19]
A grammar G is formally defined as the ordered quad-
tuple (N, Σ, P, S) with the following components:

• A finite set N of nonterminal symbols.
• A finite set Σ of terminal symbols that is

 disjoint from N.
• A finite set P of production rules, each rule

 of the form
 (Σ∪N)* N (Σ∪N)* → (Σ∪N)*
• where * is the Kleene star operator and ∪

denotes set union. That is, each production
rule maps from one string of symbols to
another, where the first string contains at least
one nonterminal symbol. In the case that the
second string is the empty string – that is, that
it contains no symbols at all – in order to
avoid confusion, the empty string is often
denoted with a special notation, often (λ, e or
ε).

• A distinguished symbol S∈N that is the start
 symbol.

Such a formal grammar is often called a rewriting
system or a phrase structure grammar in the literature.

The Chomsky hierarchy
When Noam Chomsky first formalized generative
grammars in 1956 [19], he classified them into types
now known as the Chomsky hierarchy. The difference
between these types is that they have increasingly
strict production rules and can express fewer formal
languages. Two important types are context-free
grammars (Type 2) and regular grammars (Type 3).
The languages that can be described with such a
grammar are called context-free languages and
regular languages, respectively. Although much less
powerful than unrestricted grammars (Type 0), which
can in fact express any language that can be accepted
by a Turing machine, these two restricted types of
grammars are most often used because parsers for
them can be efficiently implemented [20]. For
example, all regular languages can be recognized by a
finite state machine, and for useful subsets of context-
free grammars there are well-known algorithms to
generate efficient LL parsers and LR parsers to
recognize the corresponding languages those
grammars generate.

Definition 2. [19]
The Chomsky hierarchy consists of the following
levels:

• Type-0 grammars (unrestricted grammars)
include all formal grammars. They generate
exactly all languages that can be recognized
by a Turing machine. These languages are
also known as the recursively enumerable
languages. Note that this is different from the
recursive languages which can be decided by
an always-halting Turing machine.

• Type-1 grammars (context-sensitive
grammars) generate the context-sensitive
languages. These grammars have rules of the
form αAβ → αγβ with A a nonterminal and α,
β and γ strings of terminals and nonterminals.
The strings α and β may be empty, but γ must
be nonempty. The rule S → ε is allowed if S
does not appear on the right side of any rule.
The languages described by these grammars
are exactly all languages that can be
recognized by a linear bounded automaton (a
nondeterministic Turing machine whose tape
is bounded by a constant times the length of
the input.)

• Type-2 grammars (context-free grammars)

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1734 Issue 10, Volume 7, October 2008

generate the context-free languages. These are
defined by rules of the form A → γ with A a
nonterminal and γ a string of terminals and
nonterminals. These languages are exactly all
languages that can be recognized by a non-
deterministic pushdown automaton. Context
free languages are the theoretical basis for the
syntax of most programming languages.

• Type-3 grammars (regular grammars)
generate the regular languages. Such a
grammar restricts its rules to a single
nonterminal on the left-hand side and a right-
hand side consisting of a single terminal,
possibly followed (or preceded, but not both
in the same grammar) by a single nonterminal.
The rule S → ε is also allowed here if S does
not appear on the right side of any rule. These
languages are exactly all languages that can
be decided by a finite state automaton.
Additionally, this family of formal languages
can be obtained by regular expressions.
Regular languages are commonly used to
define search patterns and the lexical structure
of programming languages.

Definition 4. [21]
The set of generated words by a generative grammar
G is usually called generated language, denoted by
L(G). L(G)={w∈Σ*|S⇒w} (where the meaning of the
notation S⇒w is the following one: the word w can be
generated from S using the rules of the grammar G).

Notation 1.
Let us denote L0 the set of Type 0 generated languages
or recursive languages, L1 the set of Type 1 generated
languages or context-sensitive languages, L2 the set of
Type 2 generated languages or context-free languages
and L3 the set of Type 3 generated languages or
regular languages.

Every regular language is context-free, every context-
free language is context-sensitive and every context-
sensitive language is recursive and every recursive
language is recursively enumerable. These are all
proper inclusions, meaning that there exist recursively
enumerable languages which are not context-
sensitive, context-sensitive languages which are not
context-free and context-free languages which are not
regular. These relations can be represented as follows
in the next figure.

Fig. 2. Graphical representation of the Chomsky
hierarchy

Definition 5. [22]
A finite-state machine is a quintuple (Σ, S, s0, δ, F),
where:
• Σ is the input alphabet (a finite, non-empty set
 of symbols).
• S is a finite, non-empty set of states.
• s0 is an initial state, an element of S. In a
 nondeterministic finite state machine, s0 is
 a set of initial states.
• δ is the state-transition function: δ:S×Σ → S.
• F is the set of final states, a (possibly empty)
 subset of S.

Finite-state machine are generally used to determine if
a word is can be generated by one regular grammar
which is equivalent to the finite-state machine. So, the
finite-state machines are the deductive counterparts of
generative regular grammars.

Definition 6.[3]

Regular expressions can be defined by the following
recursive rules:
1. Every symbol of an alphabet Σ is a regular
expression;

2. The null symbol ε is a regular expression;

3. If r1 and r2 are regular expressions, so are (r1)
(association), r1r2 (concatenation), r1 | r2
(alternation), r1* (repetition);

4. Nothing else is a regular expression.

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1735 Issue 10, Volume 7, October 2008

Generative regular grammars, finite-state machines
and regular expressions represent equivalent
mechanism to generate/recognize Type 3, regular
languages. Our approach uses regular expressions for
the purpose of language structures and specially words
recognition.
So, a regular expression is a rule that defines exactly
the set of words that are valid tokens in a formal
language. The rules are built up on three operators:
concatenation, alternation and repetition.
One difficulty of parsing has traditionally been to
achieve robustness [7], where robustness can be
defined as the capacity of a system to analyze any
input sentence. The shortcomings of grammar-driven
systems in this respect can be traced back to the fact
that some input sentences xi in a text T are not in the
language L(G) defined by the formal grammar G.
We can distinguish two different cases where xi ∈ L
(G). In the first case, xi is a perfectly well-formed
sentence of the language L and should therefore also
be in L(G) but is not. In the second case, xi is
considered not to be part of L, and should therefore
not be in L(G) either, but nevertheless has a
reasonable syntactic analysis. However, even though
there are many clear-cut examples of both kinds, there
are also many cases where it is difficult to decide
whether a sentence that is not in L(G) is in L, at least
without resorting to a prescriptive grammar for the
natural language L. According to [8], there are
essentially two methods that have been proposed to
overcome the robustness problem for grammar-driven
systems. The first is to relax the grammatical
constraints of G in such a way that a sentence outside
L(G) can be assigned a complete analysis. The second
is to maintain the constraints of G but to recover as
much structure as possible from well-formed
fragments of the sentence. We intend to solve this
problem when we reach the final dictionary
implementation stage.

3.2 A Java scanner parser
Our approach to text parsing is top-down, as follows:
as a first step, the text is read in a text file which is
parsed by means of Java regular expressions. During
this step, the selection feature is the sentence, or
rather, the word string extending between, say, two
full stops. In other words, reading starts by selecting
and separating the well-formed sentences in English,
that is, the strings of words which start with a capital
letter and end in a punctuation mark such as a full
stop, exclamation/ question mark. The regular
expression used to that effect is [A-Z].+?[\\.\\?\\!].
The sentences thus identified and selected and their
number are saved in a file named
‘inputFileName_sentences.txt’. The next step is to

identify individual words in the text; numbers,
calendar dates, and suchlike are irrelevant to our
purposes, so the programme will ignore these as well
as other stop words like prepositions, conjunctions,
and pronouns.
The words in the text are separated from each other
by word boundaries marking the beginning and the
end of each word. The word cannot include special
symbols such as comma, apostrophe, semicolon, full
stop, exclamation/question mark, round/square/curly
brackets, numbers, and it must be at least one
character long. The Java regular expression is
\\b[^\\,\\'\\;\\.\\!\\?\\(\\)\\[\\]\\{\\}0-9]+?\\b.
Having identified all the words in the text, the
programme generates lists of non-identical words
because, obviously, there would be many recurring
lexical items. The number of the non-identical words
and their list is written in the file named
“inputFileName_differentwords.txt”. The next step
involves the elimination of non-words consisting of
one, two and three characters, as already pointed out
above. After this step, similar information about the
remaining words is saved in the file named
“inputFileName_wordsafterelimination.txt”. Next we
build a TreeMap-type structure able to memorize the
words and their frequency of occurrence in the input
text.
Having built this essential information we have
reached the stage at which the relevant results are
generated. Overall, a number of fifty-two files are
generated corresponding to the twenty-six letters of
the alphabet: twenty-six files for the upper case letters
and twenty-six files for the lower case ones. These
files will hold the following information: for example,
in the file “inputFileName _c_small.txt” the
programme will write the list of words starting with
lower case ‘c’. This folder will include information
relative to the frequency of occurrence of each
individual word as well as to the larger context (i.e.
the sentence) in which each word occurs.
Relative to context display, we have designed a
customized search allowing us to skip the mechanic
display of each context containing sublemmata (e.g.
‘commonly’ in relation to the lemma ‘common’). To
this effect, we have implemented a method which
allows the selection of sentences which include the
lemma, while opting out the contexts including the
sublemma(ta) thereof.
The data in these files are further processed by the
lexicographers in our team, who build up the
lexicographic repertoire of the future online
dictionary. This implies that parsing is a tool aimed at
automating the selection of headwords and of their
corresponding contexts.

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1736 Issue 10, Volume 7, October 2008

Our Java Scanner-Parser parses a natural English text
by determining the sentences and words of the text.
The general scanning-parsing process involves the
steps illustrated in Figure 3

Fig. 3. The scanner-parser process

In the parsing process the above listed actions from
the scanner-parser process are executed in the
previously specified order. The parsing tool is based
on the Java implementation of the following parsing
algorithm:

The Java tool has one text file as input file and several
output file also with txt extension. The input-output
diagram of the parsing tool is illustrated in the next
figure:

Fig. 4. Input-output diagram of the parsing tool

The usage of regular expressions in Java is facilitated
by the classes Pattern and Matcher which are
components of the package java.util.regex. The
general usage pattern of these classes can be observed
in the following sources code sequence, which parses
the text and determines the list of all its sentences.

1. Reading input file into one string

2. Delimitation of sentences from
the text

3. Delimitation of words form the
sentences

4. Elimination of repeating words

5. Elimination of “short” words

6. Determination of word
frequencies

7. Determination of word contexts

8. Writing output files for sentences
and words with information

public Vector sentences()

{
 Pattern pattern=Pattern.compile(“[A-Z].+?
 [\\.\\?\\!]”);
 Matcher matcher=pattern.matcher(text);
 Vector sentences=new Vector();
 while(matcher.find())

 {
 sentences.add(matcher.group());
 }
 return sentences;
 }

Similarly, to recognize all the words in the text, we
use the regular expression mentioned above as in the
following Java-code sequence:

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1737 Issue 10, Volume 7, October 2008

After determining the set of words in the text we
eliminate repeating words, meaning with determine
the list of different words in the text. This process can
be realized with the following Java method:

Finally, we eliminate the irrelevant “binding” words
like: a, an, the, and, or, so, etc. In this process all
words shorter than 4 characters are eliminated.

5 User’s Guide for the Java Parser
The authors of the present paper are members of the
NURC (The National University Research Council)
funded project called LEXICA. The research results
presented herein are part of the aforementioned
project and therefore all information, results and
advances in the project are freely available on the
Internet under presented herein are part of the
aforementioned project and therefore all information,
results and advances in the project are freely available
on the Internet under http://cerex.unitbv.ro/lexica/..
The structure and content of the project’s website is
outlined in Figure 5.

public Vector words()
{
 Pattern pattern=Pattern.compile(

"\\b[^\\,\\'\\;\\.\\!\\?\\(\\)\\[\\]\\
{\\}0-9]+?\\b");

Matcher matcher =
pattern.matcher(text);
 Vector words=new Vector();
 while (matcher.find())

 {
 words.add(matcher.group());
 }
 return words;
}

Fig. 5. Website of the LEXICA project

public Vector diffwords()
{
 Vector w=words();
 Vector diffwords=new Vector();

 for(int i=0;i<w.size();i++)
 if (!diffwords.contains(w.get(i)))
 diffwords.add(w.get(i));

 return diffwords;
}

In order to use the Splitter parsing tool, the user has to
upload his text in the form of a file with txt extension.
After the upload, the Java parser is takes the txt file as
an input and generates a set of output files. The web-
interface allows the users to see previously processed
input files and to browse their output files in the table
from the Figure 6 below.

public Vector afterEliminationWords()
{
 Vector ew=new Vector();
 Vector dw=diffwords();

 for(int i=0;i<dw.size();i++)
 if (((String)dw.get(i)).length()>=4)
 ew.add(dw.get(i));
 return ew;
}

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1738 Issue 10, Volume 7, October 2008

http://cerex.unitbv.ro/lexica/

Fig. 6. The web-interface of the “Splitter” parsing tool

When browsing output files, the user is allowed to
view the list of all output files, the date of their
creation and also their content. The editing of these
files is not allowed.

Fig. 7. The output files of the Splitter

The first generated output file is the one with the
sentences of the text. The parser separates all
sentences of the input text and writes statistical
information concerning the number of identified
sentences and the sentences themselves in the output
file.

Fig. 8. Structure of output file in_sentences.txt

The next lexical units after sentences are words, so in
the next step all words of the input text are identified.
The output file regarding words contains the total
number of different words in the text, respectively the
list of them.

Fig. 9. Structure of the output file
in_differentwords.txt

Text written in natural English language contains
many “binding” words like: a, the, so, and, or, etc.
which are not relevant for our future online dictionary.
This is why we first eliminate these words by

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1739 Issue 10, Volume 7, October 2008

eliminating all words which are shorter than 4
characters. The results after elimination can be viewed
in the output file which name ends in
“wordsafterelimination” as in the next figure.

Fig. 10. Structure of the output file

in_wordsafterelimination.txt

The final action of the parsing tool is the creation of
output files with words and their contexts in the text
classified by letters. For each letter in the English
alphabet a file is written with all words which begin
with that letter. First, the frequency of the word is
listed and after that all possible contexts of these
words are printed. This type of output files can be
easily processed by the members of the linguistics
team in the process of the dictionary development.

Fig. 11. Structure of the output file in_C_big.txt

4 Conclusion
In this paper we have attempted to make a case for the
need of improvement in the area of online dictionary
making targeting the English-Romanian domain.
More specifically, we have presented a stage in our
work to design and implement an online dictionary of
specialized terminology. One aspect of this process
has been the implementation of a scanning-parsing
tool which, overall, has at least two advantages over
standard variants of parsers: customizability and
flexibility of use, which mainly refer to its ability to
help build the corpus of specialized texts that our
dictionary draws on, as well as to its ability to
integrate with other programming languages used in
the design of our dictionary’s IT-support system. In
developing this tool we have used Java because Java
has regular expression handling features, which
entails that we do not have to allocate additional time
to learn some type of scanner and parser generator
languages. Furthermore, we believe that our Java
source code can be easily integrated in the finished
product of our work, i.e. a web-based dictionary.

References:
[1] Burke, S. M.: The Design of Online Lexicons,
 Northwestern University, Evanston, IL., 1998
[2] Aho, A. V., Ulman, J. D.: The theory of

parsing, translation, and compiling, ACM
Classic Books Series, 1972

[3] Aho, A. V., Sethi, R., Ullman, J. D.:
Compilers: Principles, Techniques, and
Tools, Addison-Wesley, 1986

[4] Dumitrescu, S.: About Normal Forms for
Hyperedge Replacement Grammars,
Proceedings of the 12th WSEAS International
Conference on Computers, 2008

[5] Johnson, S. C.: Yacc: Yet Another Compiler
Compiler, Computing Science Technical
Report No. 32, Bell Laboratories, 1975

[6] Lesk, M. E., Schmidt, E.: Lex — A Lexical
Analyzer Generator, Computing Science
Technical Report No. 39, Bell Laboratories,
1975

[7] Nivre, J.: Two strategies for text parsing, A
Man of Measure, Festschrift in Honour of
Fred Karlsson, 2006, pp. 440-448

[8] Samuelsson, C., Wirén, M.: Parsing
techniques, In Dale & al. (eds.), 2000, pp. 59–
91

[9] Swanepoel, Piet, Dictionary Quality and
Dictionary Design: A Methodology for
Improving the Functional Quality of
Dictionaries, on-line http

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1740 Issue 10, Volume 7, October 2008

://www.sabinet.co.za/abstracts/lexikos/lexiko
s_v11_a12.xml

[10] Boas, H. C.: Semantic Frames as Interlingual
Representations for Multilingual Lexical
Databases, International Journal of
Lexicography 2005 18(4): 445-478

[11] Tickoo, M. L.: Learners’ Dictionaries. State
of the Art Singapore: SEAMEO Regional
Language Center, 1989

[12] Winkler, B.: Students working with an
English learners’ dictionary on CD-ROM,
ITMELT 2001 Conference

[13] Scholfield, P.: Dictionaries on –line at
http: //www.llas.ac.uk/resources/
goodpractice.aspx?resourceid=229

[14] McArthur, T: Thematic Lexicography, in
‘The History of Lexicography’, R.R.K.
Harmann (ed), Amsterdam: J. Benjamins,
1986

[15] Nesi, H.: Dictionaries on Computer: How
Different Markets Have Created Different
Products, on-line at http://www.tu-
chemnitz.de/phil/english/chairs/linguist/real/i
ndependent/llc/Conference1998/Papers/Nesi.
htm

[16] Popa, E. M.: Regular expressions of
conditions for processing language modeling,
Proceedings 8th WSEAS International
Conference on Mathematical Methods and
Computational Techniques in Electrical
Engineering, 2006

[17] Boboila, C., Boboila, M. S.: Online
Evaluation with Trainee-Adaptive Tests,
Proceedings of the 4th WSEAS/IASME
International Conference on Engineering
Education, 2007

[18] Janakova, H.: Text categorization with
Feature Dictionary – Problem of Czech
Language, WSEAS Transactions on
Information Science and Applications Issue 1,
Volume 1, 2004

[19] Chomsky, N.: Three Models for the
Description of Language, IRE Transactions
on Information Theory 2 (2), 113–123, 1956

[20] Grune, D., Jacobs, C. H.: Parsing Techniques
– A Practical Guide, Ellis Horwood, England,
1990.

[21] Anderson, J. A.: Automata Theory with
Modern Applications, Cambridge University
Press, 2006

[22] Arbib, M. A.: Theories of Abstract Automata,
1st ed., Englewood Cliffs, N.J.: Prentice-Hall,
Inc, 1969.

WSEAS TRANSACTIONS on COMPUTERS
LIVIA SANGEORZAN,MARINELA
BURADA and KINGA KISS IAKAB

ISSN: 1109-2750 1741 Issue 10, Volume 7, October 2008

http://www.llas.ac.uk/resources/goodpractice.aspx?resourceid=229
http://www.llas.ac.uk/resources/goodpractice.aspx?resourceid=229
http://www.tu-chemnitz.de/phil/english/chairs/linguist/real/independent/llc/Conference1998/Papers/Nesi.htm
http://www.tu-chemnitz.de/phil/english/chairs/linguist/real/independent/llc/Conference1998/Papers/Nesi.htm
http://www.tu-chemnitz.de/phil/english/chairs/linguist/real/independent/llc/Conference1998/Papers/Nesi.htm
http://www.tu-chemnitz.de/phil/english/chairs/linguist/real/independent/llc/Conference1998/Papers/Nesi.htm

