
Managing Ontology Change and Evolution via a Hybrid Matching 
Algorithm  

 

Saravanan Muthaiyah 
George Mason University 

Department of Computer Science 
4400 University Dr 

Fairfax, VA 22030, USA 
smuthaiy@gmu.edu

Marcel Barbulescu 
George Mason University 

Department of Computer Science 
4400 University Dr 

Fairfax, VA 22030, USA 
mbarbulescu@gmu.edu 

Larry Kerschberg 
George Mason University 

Department of Computer Science 
4400 University Dr 

Fairfax, VA 22030, USA 
kersch@gmu.edu 

 
Abstract: - In this paper, we present the problem of ontology evolution and change management. We provide a 
systematic approach to solve the problem by adopting a multi-agent system (MAS). The core of our solution is the 
Semantic Relatedness Score (SRS) which is an aggregate score of five well-tested semantic as well as syntactic 
algorithms. The focus of this paper is to resolve current problems related to ontology upgrade and managing 
evolution amongst shared ontologies. This paper highlights issues pertaining to ontological changes in a shared 
ontology environment which includes creating, renaming, deletion and modification of existing classes. These 
changes will definitely impact shared concepts and users would have to update their local ontologies to be 
consistent with changes in the commonly shared ontology. We propose a less laborious method to achieve this by 
using a semi-automated approach where a bulk of the processing is carried out by matching agents that would 
eliminate extraneous data and hence would only recommend to the ontologist data that can actually be upgraded. 
We have also designed and built a prototype in the Java Agent DEvelopment Framework (JADE) for proof-of-
concept.  
 

Key-Words: - Hierarchical Repository, Semantic Matching, Syntactic Matching, Agent, Ontology 

 
1 Introduction 
 
Ontologies specify the conceptualization of a 
domain of knowledge and provide a shared 
understanding of that domain of knowledge [2]. It 
formally describes data concepts and their 
relationships to make them machine processable and 
understandable. This is determined via data 
interchange formats such as N-Triples, RDF 
(Resource Description Framework), Turtle (Terse 
RDF Triple Language) and OWL (Web Ontology 
Language). Agents are defined as software 
programs. They are autonomous entities, sometimes 
referred to as software robots (i.e. softbots). Multi-
agent systems (MAS) are systems in which many 
agents or softbots interact with each other to achieve 
a personal goal or a common goal. Ontologies 
provide necessary vocabulary for agents to run 
queries and make assertions for data that needs to be 
exchanged among them. The Semantic Web is a web  
 

 
 
of data. Several components are necessary for the 
creation of the Semantic Web, mainly ontologies, 
OWL, RDF, logic and reasoning capabilities for 
software agents. It is a distributed and collaborative 
environment where ontologies can naturally evolve 
and co-evolve. This is because evolution of 
knowledge is something inevitable. When new 
knowledge is discovered existing knowledge is 
updated to maintain consistency.  

Update involves inclusion of new data, renaming 
of existing data, adding annotations and removal of 
erroneous data [1][3]. Research in the area of 
ontology evolution is critical because these changes 
are unavoidable. Our literature survey shows that 
work done in managing ontology evolution so far is 
somewhat limited to single ontologies. Very little 
has been done for shared ontologies [3][7][14][15]. 
Our paper fills this void by leveraging agent systems 
that has been implemented in JADE [17].  

2 Background 
 

WSEAS TRANSACTIONS on COMPUTERS
 
 

Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1700 Issue 10, Volume 7, October 2008ISSN: 1109-2750



Ontologies are hand crafted by domain experts and 
as such it is impossible to find a perfect ontology 
that covers all aspects of a shared domain of 
knowledge. This is also in line with the evolving 
knowledge issue mentioned earlier. To facilitate 
knowledge reuse and at the same time allow experts 
to express their knowledge, even when they don’t 
completely agree on it, a shared hierarchical 
ontology becomes necessary.  
        This allows an ontologist to create their own 
definitions which would be domain specific and at 
the same time share common concepts from the 
hierarchical structure. In a shared hierarchical 
ontology, knowledge is organized in different levels, 
each inheriting knowledge from parent ontologies 
completely without partial inheritance.  
       For multiple inheritance relationships it is 
important for knowledge inherited to be consistent 
with no naming clashes. Figure 1 below, shows a 
shared hierarchical knowledge repository. It starts 
with knowledgebase (KB-O) on the top and expands 
down to KB-X on the left and KB-Y on the right. 
KB-X expands to KB-D1 and KB-D2 and KB-Y 
expands to KB-D3 and KB-D4. There are two agents 
AD-1 and AD-4 which use parts of the shared 
knowledge. They also have their own locally 
developed knowledge i.e. KB-A1 for agent AD-1 
and KB-A4 for agent AD-4. 

 
Fig.1 Shared Hierarchical Knowledge 

Repository 
 
Agent A-D1 manages three local ontologies KB-B1, 
KB-I1 and KB-A1. Agent AD-4 manages ontologies 
KB-B4, KB-I4 and KB-A4. The local ontology for 
agent AD-1 inherits knowledge from KB-D1, KB-X 
and KB-O. The local ontology for agent AD-4, 
inherits knowledge from KB-D4, KB-Y and KB-O. 

Agent AD-1 and AD-4 are aware that their inherited 
knowledge is common to KB-O (see figure 2), when 
they collaborate. Knowledge reuse becomes easier in 
this way. Particularly when creating a new ontology, 
we can determine which parent ontology to inherit 
from and start adding the new knowledge to what 
already exists. Also, contradictory pieces of 
knowledge can be encoded in different ontologies 
which are not in an inheriting relation (e.g. one is 
not a parent of the other).  

 

 
 
Fig.2 Collaboration between AD-1 and AD-4  

 
At the same time, the communication between 
agents becomes easier with this way as they share 
some common knowledge. The hierarchical structure 
helps knowledge reuse. However, it is not realistic to 
assume that all developed ontologies will be under 
one central control and available at all times. As 
such, a distributed model of a hierarchical repository 
is more appropriate (see figure 3).There are three 
servers which contain the knowledgebase and they 
are distributed. Ontologies in these knowledgebases 
have their own creator and inherit knowledge from 
other ontologies. To solve the availability problem, 
when a new ontology is inherits knowledge from 
another ontology, a copy of the inherited knowledge 
will be made available locally (e.g. KB-O). The 
reason for this is that the parent ontology does not 
have to be available online at all times in order to 
have all their children ontologies functioning 
properly. In the next section we discuss problems 
related to heterogeneity, ontology versioning and 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1701 Issue 10, Volume 7, October 2008ISSN: 1109-2750



evolution that is caused by these shared ontology 
structures. 
 

 
 

Fig.3 Distributed environment and collaboration 
 

3 The Heterogeneity Problem 
 
In a static environment where there are no updates 
made to an existing source ontology (SO) e.g. KB-O 
(see figure 3), heterogeneity is caused by mainly 
four problems. They are differences in ontological 
structures (structural heterogeneity), differences in 
data representation (semantic data heterogeneity), 
subjective mapping and atomic data storage [4]. 
Please refer to our work in [9][10] for detailed 
explanations. In a dynamic environment where 
changes are made to source ontology e.g. KB-O by 
its creator, such updates will create disparity to the 
shared concepts that are inherited by other 
knowledgebases e.g. (KB-D1, KB-X, KB-D4 and 
KB-Y) in servers 1 and 3 respectively. This is 
referred to as knowledge evolution problem and 
ontology versioning problem. This paper focuses on 
both static as well as dynamic environment 
problems. A definition is provided in the next 
section. Strategies to mitigate these problems are 
also discussed as part of our mediation framework. 
 
3.1 Knowledge Evolution 
Knowledge evolution is a situation where updates 
are continuously made to ontologies and as a result 
of that SO evolves to a new state. The critical thing 
here is to device a strategy to manage this evolution. 

We introduce a versioning strategy to enable sharing 
of static ontology versions. Let’s call KB-O as the 
upper ontology and the first time it’s published in 
the public domain, it is labelled as first version (v1). 
This version doesn’t change until its maintainers 
update it and release a new version. The new version 
is developed locally and released only when they are 
ready. Let’s call it KB-O (v2), where v2 is version 
two. The knowledgebases that inherited from v1 i.e. 
(KB-D1, KB-X, KB-D4 and KB-Y) now need to be 
upgraded to reflect changes of v2 of their parent 
ontology, KB-O (v2). 
 
3.2 Ontology Versioning 
 
Figure 3, shows a hierarchical ontology repository. 
Let’s consider that we have multiple versions 
available for the following ontologies (see Table 1). 
Suppose the direct parents of KB-D1 (v1) are KB-X 
(v1) and KB-Y (v1) and if the maintainer of the KB-
D1 decides to upgrade one of his parent ontologies, 
(i.e. KB-X (v1) or KB-Y (v1)) he has to upgrade it 
to inherit from other newer parent ontologies as 
well, due to version dependencies.  

The maintainer will update to inherit knowledge 
from KB-X (v2) as it still uses KB-O (v1) but cannot 
update to inherit knowledge from KB-Y (v2), as it 
inherits from KB-0 (v2). Also there are no versions 
of KB-X that inherit knowledge from KB-0 (v2) (see 
table 1). Given that only one version of the ontology 
can exist at any one time, inherited knowledge (i.e. 
KB-0 (v1) and (v2)) cannot be inherited at the same 
time, directly or indirectly, by the same ontology. 
This also applies to KB-D4 as it uses KB-O (v2) but 
KB-X update will be based on KB-O (v1). 
 

Table 1 Ontology Versions 
Ontology Versions (Inherit from) 

KB-0 v1, v2 
KB-X v1 (KB-0 v1), v2 (KB-0 v1) 
KB-Y v1 (KB-0 v1), v2 (KB-0 v2) 

KB-D1 v1 (KB-X v1, KB-Y v1) 
KB-D4 v1 (KB-Y v1, KB-X v1) 

 
After selecting the new versions of ontologies to 
inherit from, we put the inherited knowledge 
together. When attempting to upgrade to newer 
versions of inherited ontologies, naming clashes can 
happen as more than one version could have defined 
the same ontological concept. This would make both 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1702 Issue 10, Volume 7, October 2008ISSN: 1109-2750



ontologies “incompatible” and impossible to inherit 
from both versions at the same time.   
         If the operation of putting together the 
inherited knowledge succeeds, the next step is 
updating the locally defined ontology to 
accommodate the newly inherited knowledge. This 
also calls for an evolution log to be maintained. It 
would explicitly record changes made to the 
ontology so that changes will be easier to track in 
the ontology upgrading process. Changes to be 
logged are for all new elements, modified elements 
and deleted elements. In the next section we provide 
a summary of work that has been done to address 
these heterogeneity problems. 
 
4 Literature Review 
 
The change management approach examines 
ontology change management by addressing four 
major change environments such as consistent 
ontology evolution, repairing inconsistencies, 
reasoning with inconsistent ontologies and ontology 
versioning [16]. The authors emphasize on syntactic 
vs. semantic discrepancies, language dependent vs. 
language independent and functional or non-
functional change. Consistency occurs when the 
developer constantly updates changes in definitions 
affecting his shared ontology. Inconsistencies are 
dealt via a reasoning system e.g. Processing 
Inconsistent ONtologies (PION) which is a system 
implemented in XDIG, an extended description logic 
interface [16]. It verifies the relevance of a returned 
query and extends consistent sub-ontology for 
further reasoning. In the end the ontology is 
transformed to an updated version where previous 
data is not lost. The authors however, did not 
provide a methodology of how the hierarchical 
ontology classes were actually matched. This is 
where we make a significant contribution.  

 A multi-agent system (MAS) architecture and 
algorithm for multiple agents is proposed for 
managing and deploying ontologies in a dynamic 
environment [6][8]. Only [8] proposes implementing 
MAS for managing ontology evolution. The authors 
propose a three layered architecture which includes 
agents and other functionalities such as learning and 
rule generation to refine ontologies and map 
between multiple ontologies. However, how agents 
were specified in JADE was still unclear. Our 

implementation overcomes the limitations of this 
paper. 

  Change and Annotation Ontology (CHAO) was 
developed by the creators of Protégé to keep track of 
the changes that happens in the ontology [12]. 
Changes are represented as subclasses of Change 
class and Annotation class. Changes made by users 
are represented as instances of corresponding 
subclass of Change and contain information 
describing the change and the class, where the 
property or individual to which the change is 
applied. Change ontologies are populated either by 
ontology tools during the editing episodes or 
generated by specialized tools that compare two 
ontologies and extract structural changes (e.g. 
Prompt) [12][13]. This paper provides a good 
framework that we use for building our MAS. 

   Another approach focused on “is-a” relations 
between classes in a hierarchy [5]. The authors 
propose to derive the similarity between classes 
from the similarity of the associated instances. The 
instance-based matching technique used was based 
on “Minimum Similarity” (MS) of hierarchical 
ontology structures developed at the University of 
Leipzip. However, it still does not quite address the 
upgrading problems in the ontology. Also, it is only 
useful in ontology structures that do not have to be 
upgraded.  

We provide a hybrid approach for mapping 
concepts and instances to resolve this. Four 
algorithms out of thirteen linguistic and non 
linguistic matching algorithms were selected such as 
Lin, Gloss Vector, WordNet Vector and LSA 
(Latent Semantic Analysis) to determine our 
similarity scores (i.e. SRS). Our experiments have 
proven that the combination of these four measures 
provide highest reliability and precision compared to 
plain syntactic matching or any other combination of 
the thirteen algorithms [12]. In the next section we 
present our MAS architecture for the upgrade 
process. 

 

5 MAS and the UPGRADE operation 
We propose a MAS architecture (see figure 4) for 
the upgrade process (i.e. upgrade the local ontology 
to work with a new version of a shared ontology). 
Several agents are introduced for our architecture: 
• Ontology Agent (OA):  Used by other agents to 

get access to the ontology. It uses OWL 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1703 Issue 10, Volume 7, October 2008ISSN: 1109-2750



ontologies and stores the ontology modifications 
in an evolution log. It responds to queries like 
“what is the root class for wine?”, “what are the 
subclasses of red wine?” and performs ontology 
modification to create an instance as a child of 
white wine.  

• External Communication Ontology Agent 
(ECA):  Acts as a proxy to talk to agents in other 
platforms and handles inter-platform 
communication via agent communication 
language (ACL). The protocols used for 
communication are Common Object Request 
Broker Architecture (CORBA) and Remote 
Method Invocation (RMI). CORBA is used for 
inter-platform communication for example 
between platform 1 and 2 (see figure 4). Where 
as RMI is used for intra-platform 
communication for agents to communication 
locally in each platform.  

 

 

Fig.4. MAS architecture for the upgrade process 
• Match Agent (MA): Computes similarity 

between two given concepts or instances. It the 
core of the semantic mediation process and it’s 
based on the algorithms described in section 6. 

• Upgrade Agent (UA): The business logic behind 
the upgrade process is encapsulated in this 
agent.  

• User Interface Agent (UIA): Provides interface 
to the ontologist and handles actual 

reconfiguration of existing local ontologies 
during the upgrade process. It also services UA. 

• The OWL ontology and evolution log is 
maintained in a repository as shown in figure 4. 
Platform 1 shows the (v1) of a shared ontology 
and the local ontology maintained in it. Platform 
2 shows (v1) and (v2) of the shared ontology 
and its local ontology.  

 
5.1 Upgrade Operation 
 
The user or ontologist initiates the upgrading process 
through the UIA which communicates with the UA 
expressing the user’s intention.  
Then UA communicates with Ontology Agent 
(OA2) of Platform 2 via ECA (i.e. ECA1 and ECA2) 
and receives the differences from the current version 
of the shared ontology and the latest available 
version. The differences consist of atomic changes 
saved by the OA2 during previous ontology 
modification operations. They can be saved in an 
evolution log or can be used. The UA will show the 
user the differences through the UIA and will 
receive the permission to go on with the upgrade 
process or to abort it.  
       During the upgrade process UA will process the 
shared ontology differences. If the differences do not 
affect elements used in the definitions in the local 
ontology, they are performed directly without any 
modification of the local knowledge. Or else the 
differences need to be applied and the old version of 
the shared ontology is to be updated exactly to 
reflect the new version. Modifications if any, is done 
to the local ontology. We believe that if 
modifications need to be performed, semantic and 
syntactic mediation would play a major role in 
finding the best way of reorganizing the local 
knowledge. We provide a detailed example in 
section 5.2. 
      The goal of this paper is to give a concrete 
example where semantic and syntactic mediation can 
help in this process. Let’s consider a class from the 
shared ontology that was used in a local ontology as 
a super-class. If the shared class is deleted, one 
possibility is to redefine the deleted concept locally 
and this will keep the hierarchy intact. Another 
possibility is to use semantic mediation and look for 
a new parent class for all local orphaned classes.  
       Our matching algorithm does exactly that. It 
helps us to find classes that are the most similar to 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1704 Issue 10, Volume 7, October 2008ISSN: 1109-2750



the deleted classes. In the past ontologists would 
have to painstakingly find similar matches manually. 
Lately syntactic matching based on string, prefix and 
suffix matching have reduced their workload but did 
not give reliable matches. Our hybrid matching 
algorithm that is based on both syntactic and 
semantic matching overcomes this limitation.  
        The ontologist is presented with more accurate 
matches and he chooses one of these classes as the 
new parent class based on the highest similarity 
score (SRS). The benefit of this is that the algorithm 
presents matches that are above the threshold (see 
appendix 1) and filters extraneous data that would 
otherwise increase the workload of the ontologist. 
The symbiotic relationship between the ontologist 
and the matching system makes this a semi-
automated system. The algorithm is explained in 
section 6. 
5.2 Upgrade Example 
In this section we present an example to illustrate the 
upgrade process mentioned in section 5.1 using a 
wine ontology example. A local wine distributor, 
develops a wine ontology for his store. He develops 
this ontology by sharing general ontological 
concepts from the shared wine ontology and creates 
his own white wine definitions for his local ontology 
which is domain specific as he specializes only in 
retailing white wine.  

 

Fig.5. Local ontology classes for white wine 
He begins creating five new classes under white 
wine which is a shared upper class (see figure 5). 
The subclasses that he created were Paul Prieur, 
Loirre Valley Sancerre, Hungarian Pinot Blanc, 
Pouilly Sancerre and Clafornia Pinot Blanc. Figure 
6, shows classes in the local white wine ontology 
together with shared classes from the shared 
ontology highlighted by the dotted lines. Figure 7, 
shows a hierarchy where the local white wine 
ontology shares classes from the upper ontology. 

 

Fig.6. Shared ontology classes  
Figure 8 shows a hierarchy of shared and local 
ontology classes for the white wine ontology. The 
red dotted line indicates the shared ontology and the 
blue dotted line indicates all local white wine classes 
that are domain specific. Let’s assume that the 
shared or upper ontology was updated with new 
knowledge. For example if new concepts or classes 
were added on to the existing domain of white wine.  

 

Fig.7. Concepts shared from upper ontology 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1705 Issue 10, Volume 7, October 2008ISSN: 1109-2750



 

Fig.8. Shared and local ontology classes 
 

 
Fig.9. Newly updated classes in shared ontology 

 
Figure 9 above shows the newly added classes in the 
shared ontology. Chenin Blanc, Chardonnay and 
French Pinot Blanc are the classes that existed 
before the shared ontology was updated. The newly 
updated classes are Sancerre, Pino Blanc and 
Muscadet.  

6 Matching Algorithm and Similarity 
Definition 

In this section we provide a formal definition for 
similarity and define our hybrid matching algorithm 
that was discussed earlier [11].  
 
6.1 Similarity Definition 
 
Let’s first analyze the symbols used in our 
definition. (C) denotes concept or class, (c) denotes 
attributes or slots and (O) for ontology. Similarity (s) 
is a function of equality (E), inclusiveness (IC), 
syntactic similarity (SYN), semantic similarity 
(SEM) and consistency (CN) [11]. Thus producing 
the following function: 
 

(s) fx = { E, IC ,CN, SYN and SEM } (1) 
 

The similarity function negates all disjoint (D) 
concepts (C) and attributes (c). As such, the new 
function is:  
 

(s) fx = { E, IC,D,CN,SYN and SEM}  (2) 

Mappings are produced only after (s) is determined. 
Each component of the (s) function is described in 
the following sections. 

 
6.1.1 Equality (E)  

Concepts (C) are equal if, they: 1) have semantically 
equivalent data labels, 2) are synonyms or 3) have 
the same slots or attribute names.  
 
6.1.2 Inclusiveness (E)  

Concepts (C) are inclusive if, the attribute (c) of one 
is inclusive in the other. For example if ci = selling 
price and cj =price, then ci is a type of cj. In other 
words selling price is inclusive in price. This is 
applicable to hyponyms. 
6.1.3 Disjoint (D)  

Concepts (C) are disjoint if, their attributes (c), ci 
and cj have nothing in common s.t. c1 ∩ c2 = {}, 
results in an empty set. 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1706 Issue 10, Volume 7, October 2008ISSN: 1109-2750



6.1.4 Consistency (CN)  

Two classes are consistent if, their attributes for a 
given class, C1 (O1) i.e. name, location, rank and 
price have nothing in common (c1~name ≠ 
c2~location ≠ c3~rank ≠ c4 ~price) s.t. c1 ∩ c2 = {}. 
All slots (c1~name, c2~location, c3~rank, c4 ~price) 
must be subsets of C1 (O1).This is configured with 
RacerPro [19]. 
 
6.1.5 Syntactic Matching (SYN)  

Syntactic matching uses approximate string 
matching to integrate data labels. Based on a number 
of deletions, insertions and substitutions a source 
string is matched with a target string [20].In the next 
section we define semantic matching.    

 
6.1.6 Semantic Matching (SEM)  

Semantics uses representation of meaning to 
measure similarity between words. We measure 
semantics via linguistic and cognitive measures. 
Four out of thirteen linguistic and non linguistic 
matching algorithms such as Lin, Gloss Vector, 
WordNet Vector and LSA (Latent Semantic 
Analysis) was used to determine SRS scores. Our 
experiments have proven that the combination of 
these four measures provides higher reliability and 
precision [12].  

6.2 Matching Algorithm 

The following are the steps involved for the 
matching algorithm (see appendix 1): 

• Step 1 – Read loaded SO and TO 
taxonomies: Semantic engine reads 
taxonomies of the SO and TO. Prepare for 
detailed matching tests of data labels, go to 
step 2. 

• Step 2 – Equivalence Test: Test for the 
equivalence of source and target classes: 
Test 1) do they have semantically equivalent 
data labels, Test 2) are they synonyms or 
Test 3) do they have the same slots or 
attribute names. Equivalence also implies 
adjacent neighbours are equal.  If equivalent, 
proceed to step 3, 4 and 5. Else go to step 1.  

• Step 3 – Inclusive Test: Source and target 
classes or concepts (C) are inclusive if, the 
attribute (c) of one is inclusive in the other. 
In other words selling price (ci) is inclusive 
in price (cj), this is applicable to hyponyms. 
If inclusive, proceed to step 6.  

• Step 4 – Disjoint Test: Source and target 
classes or concepts (C) are disjoint if, the 
intersection of their two attribute sets (c), ci 
and cj  results in an empty set {} or ø. If 
match test is not disjoint, proceed to step 6.  

• Step 5 – Consistency Test: Source and target 
classes or concepts (C) are consistent if, all 
the attributes or slots (i.e. c1 and c2) in the 
class, have nothing in common s.t. c1 ∩ c2 = 
{}. All slots must belong to class that is 
being tested. This can be configured with 
RacerPro. If consistent, proceed to step 6. 

• Step 6 – Syntactic Match: Syntactic match 
similarity scores based on class prefix, 
suffix, substring matches are calculated. 
This calculation is performed for every class 
in the source and target ontology. Go to step 
7. 

• Step 7 – Semantic Match: Semantic match 
similarity scores based on cognitive 
measures such as LSA, Lin, Gloss Vector 
and WordNet Vector are used. This 
calculation is done for every class in the 
source and target ontology. Go to step 8. 

• Step 8 – Aggregate both similarity scores: 
Similarity inputs from step 6 and 7 are 
aggregated, to produce SRS. Go to step 9.  

• Step 9 –Populate similarity matrix: The 
aggregated values (SRS) from step 8 of 
candidate labels are populated into the 
similarity matrix.  Multiple matches are 
carried out. Values are to be verified against 
the threshold. Go to step 10.  

• Step 10 – Set threshold: Threshold value (t) 
is set based on scale used. For a scale 
between, 0 and 1 the threshold value is 
usually 0.5 (t >0.5). Those below threshold 
are logged in file in step 12. If greater than 
the threshold value, go to step 11. 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1707 Issue 10, Volume 7, October 2008ISSN: 1109-2750



• Step 11 – Domain Expert Selection: At this 
stage, candidates from step 10 are presented 
to domain expert by the system.  Input from 
step 12 is accepted at the discretion of the 
domain expert. 

• Step 12 – Manual Log: Selection is made 
manually only for those values below 
threshold. The domain expert uses his own 
cognitive judgment. Go to step 13.  

• Step 13– Mapping/Alignment/Merge: All 
the candidates for mapping, alignment or 
merge (i.e. integration) chosen from step 11 
and 12 are processed.  End. 

7 JADE for Upgrade Operation  
 
In this section we discuss the prototype that we have 
implemented in JADE for the upgrade operation of 
the local white wine ontology to reflect the new 
classes that have been added using our hybrid 
matching algorithm and SRS scores. The agents 
discussed in section 5 are loaded in the JADE 
platform. Figure 10 shows agents have been 
successfully loaded. This is also called the JADE 
agent management GUI. When all agents have been 
invoked and are ready to receive input, the upgrade 
process is ready to be executed.  
 
The UA will execute to find the differences in the 
shared ontology with input from the ontologist. This 
is done by clicking the differences icon (see figure 
11). UA communicates with OA (OA2) of Platform 
2 via ECA1 and ECA2 and receives the differences 
between the current version of the shared ontology 
and the latest available version. In this case the 
newly updated classes are those shown in figure 9 
earlier i.e. Sancerre, Pino Blanc and Muscadet. UA 
will show the ontologist the differences through the 
UIA (see figure 11). The ontologist would then 
proceed with the upgrade process. Changes are 
saved in an evolution log. 

 

Fig.10. Agents loading in JADE  

 

Fig.11. UIA showing all differences 

8 Experiments and Results 
 
We carried out an experiment to validate our 
approach. 50 questionnaires were distributed to 
domain experts and 38 responses were received 
giving this study a 76% response rate. The goal of 
the experiment was to test SRS against human 
cognitive responses (HCR) for ranking the similarity 
of word-pairs.  

The idea for our experiment was conceived by 
works of Miller and Charles [21].  The results we 
obtained clearly shows that SRS had a higher 
correlation compared to purely SYN matching which 
is currently being used by the industry. Figure 12 
shows the results that we had obtained and we had a 
significant positive correlation between the SRS and 
HCR i.e. r = + 0.919 (i.e. 91.9%). Table 2 shows 
significant correlation at 0.01, level (2-tailed) with 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1708 Issue 10, Volume 7, October 2008ISSN: 1109-2750



value (p) <0.05 thus (r =0.919, p <0.05) supports our 
null hypothesis (H0) below. 

 
(H0): Combined scores match expert responses 

(HCR Rank) 
(H1): Combined scores don’t match expert responses 

(HCR Rank) 
 

Table 2 Pearson Product Moment Correlation 
  Combined 

Rank 
HCR 
Rank 

Combined 
Rank 

Pearson 
Correlation 1 .919(**) 

 Sig. (2-tailed)  .000 
 N 30 30 

 
8.1 Precision and relevance of SRS 
 
For further validation SRS was measured for 
precision and relevance compared to SYN scores. 
SRS obtained a 40% score for precision whereas 
SYN obtained a 16.67% score. In terms of 
relevance, SRS obtained a 96.67% score whereas 
SYN obtained only a 73.33% score. In summary, 
SRS provided higher precision and relevance scores 
compared to SYN. 

9 Conclusion  
In this paper we have introduced a multi-agent 
system and matching algorithm where multiple 
agents collaborate and deploy the management of 
changes that take place in a shared hierarchical 
knowledge environment. We demonstrate this by 
providing an example of a wine ontology that has 
been updated in the shared repository. This was 
mainly to see if it were more appropriate for the new 
concepts i.e. Sancerre, Pino Blanc and Muscadet to 
be added as subclass of white wine at the same level 
of the other local white wines (i.e. Paul Prieur, 
Loirre Valley Sancerre, Hungarian Pinot Blanc, 
Pouilly Sancerre, Clafornia Pinot Blanc) or to 
include Pino Blanc as a subclass of Hungarian Pinot 
Blanc or Claifornia Pinot Blanc. The match agent 
provides exact matches and presents this for the 
consideration of the ontologist and our experiments 
validates that our approach has a higher precision 
and relevance compared to current matching 
algorithms. Thus we are convinced that our approach 
will reduce the workload of the ontologist who at 

this moment have to carry out all the matches 
manually. 

10 Acknowledgements  
 
Our matching algorithm expands the work carried 
out by researchers, Li Li, Baolin Wu and Yun Yang 
of the Faculty of Information and Communication 
Technologies, Swinburne University of Technology, 
Melbourne, Australia. In particular, steps 2 to 5 of 
our matching algorithm which is explained in 
section 6.2, incorporates the definitions provided in 
their work. We would like to thank Li Li, Baolin Wu 
and Yun Yang for their prototyping work inspired us 
to build our own prototype using the JADE platform 
which is described in section 7. 
 

11 References  
 
[1] Giunchiglia, F. and Zaihrayeu, I. “Making peer 

databases interact - a vision for an architecture 
supporting data coordination.” Proceedings of 
the Conference on Information Agents, Madrid, 
September 2002. 

[2] Gruber, T.R., Toward Principles of Design 
Ontologies Used for Knoweledge Sharing, 
1993. 

[3] H. Wache, T. Voegele, U. Visser, H. 
Stuckenschmidt, G. Schuster, H. Neumann, and 
S. Huebner. “Ontology-based integration of 
information - a survey of existing approaches”. 
Proceedings. of IJCAI, August 2001. 

[4] H. Stuckenschmidt, U. Visser and H. Wache, 
ISWC-Tutorial, Sundial Resort, Sanibel Island, 
Florida, USA, October 20, 2003. 

[5] Jun-ichi Akahani, Kaoru Hiramatsu, and Tetsuji 
Satoh “Approximate Query Reformation based 
on Hierarchical Ontology Mapping”, pp 1-4. 

[6] Jerry, F.,, Brad, P., Marian, N., and Bruce, B., 
Agent-Based Semantic Interoperability in 
InfoSleuth, SIGMOD Record 28:1, March, 
1999, pp. 60-67. 

[7] Kurgan, L, Swiercz, W and Cios, K “Semantic 
Mapping of XML Tags using Inductive 
Machine Learning”, Department of Computer 
Science and Engineering, University of 
Colorado at Denver.  

[8] Li Li, L.W., B.; Yang, Y. Semantic Mapping 
via Multi-Agent Systems in International 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1709 Issue 10, Volume 7, October 2008ISSN: 1109-2750



 

Conference on e-Technology, e-Commerce and 
e-Service, IEEE, April 2005: p. 54-57. 

[9] Muthaiyah, S and Kerschberg, L “Dynamic 
Integration and Semantic Security Policy 
Ontology Mapping for Semantic Web Services 
(SWS)”, IEEE, First International Conference 
on Digital Information Management 
(ICDIM’06), Bangalore, India, pp. 116-120 

[10] Muthaiyah, S and Kerschberg, L “Virtual 
Organization Security Policies: An Ontology-
based Mapping and Integration Approach”, 
Information Systems Frontiers (ISF), A Journal 
of Research and Innovation, Springer, USA, 
Special Issue on Secure Knowledge 
Management, 2007, pp. 505-515 

[11] Muthaiyah, S and Kerschberg, L “A Hybrid 
Ontology Mediation Approach for the Semantic 
Web”, Special Issue on Decision Technologies 
in E-Business, International Journal of E-
Business Research (IJEBR), Idea Group 
Publishing Inc, U.S.A. ISSN: 1548-1131, 
EISSN: 1548-114X. – forthcoming. 

[12] Natalya Fridman Noy, A.C., William Liu, Mark 
A. Musen. A Framework for Ontology 
Evolution in Collaborative Environments. in 
International Semantic Web Conference, 2006: 
p. 544 -558. 

[13] Noy, N.F.a.M.A.M. PROMPT: Algorithm and 
Tool for Automated Ontology Merging and 
Alignment. in Seventeenth National Conference 
on Artificial Intelligence and Twelfth 
Conference on Innovative Applications of 
Artificial Intelligence. 2000. Austin,Texas: The 
MIT Press. 

[14] Obrst, L., “Meditation and Data Sharing: 
Ontologies for Semantically Interoperable 
Systems”, Proceedings of the Twelfth 
International Conference on Information and 
Knowledge Management, November, 2003, pp. 
366-369 

[15] Park, J. and Ram, S., “Information Systems 
Interoperability: What Lies Beneath?”  ACM 
Transactions on Information Systems, Vol. 22, 
No. 4, October 2004, pp. 595-632  

[16] Peter Haase, F.H., Zhisheng Huang, Heiner 
Stuckernschmidt and York Sure, A Framework 
for Handling Inconsistency in Changing 
Ontologies Springer-Verlang Berlin Heidelberg, 
2005: p. 353-367. 

[17] http://jade.tilab.com/ 
[18] http://jena.sourceforge.net/ 
[19] http://www.racer-systems.com/ 
[20] http://www.nist.gov/dads/HTML/Levenshtein.h

tml 
[21] G.A. Miller and W.G. Charles. Contextual 

correlates of semantic similarity. Language and 
Cognitive Processes, 6(1), pp.1–28, 1991 

[22] Adrian Sergiu Darabant et al, The Similarity 
Measures and their Impact on OODB 
Fragmentation Using Hierarchical Clustering 
Algorithms, WSEAS Transactions on 
Computers, 5(9), September 2006, ISSN 1109-
2750. 

[23] W.Y.Zhang, F.R. Zhu and S.Zhang, A Service-
Oriented Multi-Agent System Architecture for 
Multidisciplinary Collaborative Design in the 
Semantic Grid, WSEAS Transactions on 
Computers, 5(9), September 2006, ISSN 1109-
2750. 

[24] David B.Bracewell, Fuji Ren and Shingo 
Kuroiwa, Building Frames of Knowledge for 
Causal Agents in WordNet, WSEAS 
Transactions on Computers, 5(9), September 
2006, ISSN 1109-2750. 

 
 
 
 

 

WSEAS TRANSACTIONS on COMPUTERS Saravanan Muthaiyah,Marcel Barbulescu and Larry Kerschberg

ISSN: 1109-2750 1710 Issue 10, Volume 7, October 2008ISSN: 1109-2750


	1 Introduction
	2 Background
	3 The Heterogeneity Problem
	4 Literature Review
	5 MAS and the UPGRADE operation
	7 JADE for Upgrade Operation 
	8 Experiments and Results
	9 Conclusion 
	10 Acknowledgements 
	11 References 



