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Abstract: - A splitting and a fully discrete second order and a third order semi discrete schemes are 
modified and adapted for a numerical solution of a hyperbolic system of a one dimensional 
electrostatic plasma fluid equation. Illustrations as to how the splitting and the NNT (fully discrete) 
and the semi-discrete (SD3) schemes capture the formation and evolution of ion acoustic solitons and 
shockwaves were performed. In this study we perform a comparison between a fully discrete NNT 
and the semi discrete SD3 high resolution schemes and the splitting scheme which is constructed for 
the first time for a one dimensional plasma systems in the present study. The results indicate that the 
splitting scheme demonstrates clear superiority over the NNT and SD3 schemes in the soliton solution 
where the numerical noise of the electron waves is reduced significantly. For the shock wave solution 
the NNT and SD3 schemes are similar to the splitting scheme but exhibit oscillations at the contact 
discontinuity. However the splitting scheme exhibit a smaller computational time than the NNT and 
SD3 schemes. It is thus advocated that in a one dimensional plasma system for solution and 
shockwaves simulations the splitting scheme and NNT /SD3 schemes be utilised respectively.  
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1 Introduction 

The central scheme algorithm such as the NNT 
and SD3 schemes is not sufficient to avoid 
oscillations especially for electron waves in the 
one dimensional plasmas. A more fundamental 
approach is required to understand the 
mechanism of the generation of over and 
undershoots in the numerical solutions of 
plasma fluids [2].   
The approach towards high resolution upwind 
schemes consists in preventing the generation 
of oscillations by acting upon their production 
mechanism. Central schemes allow oscillations 
to appear and subsequently damped by artificial 
dissipation terms.  The identification of upwind 
directions in the flux vector splitting methods is 
achieved with less effort than high resolution 
schemes leading to simpler more efficient 
schemes [7]. Hirsch [2] and Toro [7] points that 
the information concerning a flow field travels 

along characteristic lines. The upwind schemes 
are designed to numerically simulate more 
properly the direction of the propagation of 
information in a flow field along the 
characteristics curves. The central scheme does 
not always follow the proper flow of 
information through the flow fields [1]. In many 
cases central schemes draw numerical 
information outside the domain of dependence 
of a given grid point. This compromises 
accuracy of the solutions. Studies performed in 
plasma as in [3, 4], which are central schemes, 
indicates varying degrees of oscillations in the 
soliton and shockwave solutions. For an 
unsteady flow such as plasmas, which are 
common occurrences in power-electricity, 
laboratory and space situations, the value of the 
eigenvalue represents the velocity and the 
direction of the propagation of information 
along the characteristic lines. It would seem 
natural that a numerical scheme for solving the 
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flow equations should be consistent with the 
velocity and direction with which information 
propagates throughout the flow field. Hence the 
first time construction of a predictor-corrector 
splitting scheme for a numerical solution of the 
one dimensional plasma system in this study. 
 
 
2 Problem Formulation 

The model is considered to be in the general 
form  

( ) ( ) ( )( )txug
x
uf

t
txu ,,

=
∂

∂
+

∂
∂     (1)  

which is the one dimensional hyperbolic system 
of  partial differential equations? Here  

( )txu ,  is the m-dimensional vector function, 
( )uf  is the flux vector and ( )ug  is a 

continuous source vector, with x  the single 
spatial coordinate and t  is the temporal 
coordinate. Such equations can be used to 
model many physical systems including 
plasmas. Although high resolution schemes 
have been used on electrical plasma [4], 
numerical noise is still present in the numerical 
solutions.   

Toro [7] indicates that upwind numerical 
methods should feature the discretisation of the 
equations on a mesh according to the direction 
of propagation of information on that mesh. The 
flux splitting methods achieves this by being 
simpler and more efficient [7]. The drawback is 
its reliance on the homogeneity property of (1). 

The hyperbolic system (1) can be written as 
( ) ( )( )txug

x
uA

t
txu ,,

=
∂
∂

+
∂

∂     (2) 

where A
u
f
=

∂
∂  is the Jacobian. If Λ  is the 

diagonal matrix consisting of the eigenvalues 
then it is possible to write 1−Λ= KKA  where K 
is the transformation matrix with the 
eigenvectors. We may split the eigenvalues 

−+ += iii λλλ  such that 0,0 ≤> −+
ii λλ  and Λ  

maybe split as −+ Λ+Λ=Λ  resulting 
in. −++ Λ= KKA  and −−− Λ= KKA  and 

−+ += AAA [2] 

If the homogeneity property ( ) ( )uuAuf =  then 

−+ += fff ,  corresponds to the flux in the 
positive x direction with information being 
propagated from left to right by the positive 
eigenvalues opposite direction and −f  
corresponds to the flux from right to left by 
negative eigenvalues. We can write   

uAf ++ = , uAf −− = . 

However −
−

+
+

≠
∂
∂

≠
∂
∂ A

u
fA

u
f ,  but 

u
f
∂
∂ +

 has 

only positive eigenvalues and 
u

f
∂
∂ −

 has only 

negative eigenvalues. Hence separating the 
characteristics and wave speeds according to 
the directions in the numerical scheme is met 
which is the objective of this study.  

We now write the system (2) in conservation 
form although the eigenvalues are generally not 
equal to that of the Jacobian.A. 

( ) ( )( )txug
x

f
x

f
t

txu ,,
=

∂
∂

+
∂
∂

+
∂

∂ −+

[2]  (3) 

 
 
 
2.1 PLASMA FLUID SYSTEM  

( )
0=

∂
∂

+
∂
∂

x
vn

t
n kkk     (4) 

x
nq
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v
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v
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∂
−=

∂
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+⎟
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⎞

⎜
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⎛

∂
∂

+
∂
∂ φ  (5) 

The set is closed by the equations of state (for 
ideal gases) 

tconsnp k

kk tan=−γ     (6) 
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and the Poisson’s equation for the potential  

∑
=

−=
∂
∂

iek
kk nq

x ,
2

2

4πφ . We write the equations as  

( )uSuu
x

≡−=
∂
∂

212

2φ     (7) 

The Poisson’s equations were solved 
interatively as in [6].  

We define field variables as 

[ ] [ ]Tiieeie
T vnvnnnuuuuu ,,,,,, 4321 ==  and the 

flux variables as 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
++== 2

20

3
2

2

2
4

1
1

2
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434321 ,,,,,,
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uufffff ie
T μ

 and the source variables 

[ ] ⎥⎦
⎤

⎢⎣
⎡

∂
∂

−
∂
∂

==
x

u
x

uggggg e
φφμ 214321 ,,0,0,,,  

The index k=e(i) denotes electrons (ions) 
respectively and kkkkk mypvn ,,,,  and kq  are 
the respective component densities, flow 
velocities, partial pressures, adiabatic indices 
(=1 for isothermal electrons and =3 adiabatic 
ions), particle masses and charges and φ  is the 
electric potential. eT  and iT  are the respective 

electron and ion temperatures and 
i

e
e m

m
=μ  is 

the electron to ion mass ratio. The final 
equations are suitably normalized to time and 
spatial scales appropriate for the observation of 
ion-acoustic wave structures.[4] The Jacobian 
of the plasma fluid equations is given by  
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The Euler homogeneity is only satisfied when 
320 =u  which is close to unity. It will be 

acceptable to use the  homogeneity property in 
the plasma system. 

The eigenvalues of A are: eeTu
u

μλλ ±=
1

3
21 , , 

iT
u
u

u
u 3,

20

2

2

4
43 ±=λλ               (9) 

with corresponding eigenvectors  

TT

WW ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= 0,1,0,1,0,1,0,1,

21
21 λλ

 

TT

WWW ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
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     (10) 

There are four distinct eigenvectors and 
corresponding eigenvalues which are linearly 
independent. Hence the Jacobian is 
diagonalizable. 

We define the matrix K as the eigenvector 
matrix  
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                (11) 
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We define the diagonal matrix as  
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and 1−Λ= KKA  
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2.2 NUMERICAL MODELS  
 
 
2.2.1 SPLITTING SCHEME  

In (3)  can be replaced by a backward 

difference since  is associated only with 
information coming from upstream of grid point 

 ie. it corresponds with flux in the positive 
x direction with information being propagated 
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from left to right by positive eigenvalues  and 

. Again in (3)   can be replaced by a 

forward difference since  corresponds to a 
flux in the negative x direction, with 
information being propagated from right to left 

by the negative eigenvalues  and  and is 
associated with information coming from down 

stream of grid . Using the aforementioned 
phenomena the flux splitting method is 
designed to account for the physically proper 
transfer of information throughout the flow. 

Taking the flow from  a predictor-corrector 
scheme is designed as follows: 

 

( ) iiiiii tgffffuu Δ+−+−−= −−
+

+
−

+
110 λ -

predictor       (18)  

where  is the initial value and  

( ) 1111 gtffffuu iiiiii Δ+−+−−= −−
+

+
−

+λ -
corrector   
 
 
2.2.2  NNT  SCHEME 

We employ the modified Nessyahu and Tadmor 
numerical scheme [2,3,4]. The second order 
formula is given as follows: 
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where n
ju&&&  is the cell average at 

jx , 1
1 , n n

j jx x x t t t+
+Δ = − Δ = −  and t

x
λ Δ
=
Δ

 is 

the CFL value. 

As in shock calculations we shall employ the 
min-mod derivatives [5]: 
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where the nonlinear limiter MM is defined by  
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And where after some simplification: 
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Here again the ( )11 ,MM −+ −−= jjjjxj uuuuu  

Also useful in our applications is the more 
accurate UNO derivative [5] 

( )
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To apply the scheme, which is implicit in time, 
we use the predictor given in [4]  

( ) ⎥⎦
⎤

⎢⎣
⎡

Δ
−Δ+=+ n

x
nnn f

x
ugtuu 11            (21) 
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where the flux derivative n
xf

xΔ
1  are at the 

indicated time level n and can be evaluated 
using the MM function or calculated from the 
explicit form of ( )uf .  

2.3 SD3 SCHEME 
 
The semi-discrete numerical scheme is outlined 
in [3]. In applying this method we employ 
uniform spatial and temporal grids with 
spacings, jj xxx −=Δ +1 ; 

nn ttt −=Δ +1 (with j  and n  being suitable 
integer indices) together with the semi-discrete 
scheme (“SD3”)  
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We note in particular that the solution is 
updated by fitting on already computed or 
known cell average values { }n

jU  at time level n , 
piecewise polynomials of degree two on cells of 
size xΔ  central at jx namely 
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Where the forms (24) are respectively the left 
and right intermediate values at 

2
1

+j
x    and 

(.)ρ denotes the spectral radii of the respective 

flux Jacobian, defining the maximum local 
propagation speeds n

j
a

2
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±
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STABILITY  

3.1 NNT AND SD3 SCHEMES 

The NNT stability has been calculated using 
Roe’s stability formula [2]. The linear stability 
analysis of the NNT/SD3 scheme indicates that 
it should remain stable under CFL condition 

01.0≤
Δ
Δ

Λ
x
t

m  , where mΛ  is the spectral 

radius of the flux Jacobian. This is stronger than 
that for the NNT/SD3 scheme in [3] for 
electrostatic simulations.   

We take 0.001t ,1.0 =Δ=Δx . The CFL value 
can be calculated as  

01.0
1.0

001.0
==

Δ
Δ

=
x
tCFL

 
 
 
3.2 SPLITTING SCHEME 

Using the amplification factor G from the Von 
Neumann analysis  

[2] 

After some simplification by Hirsch[2] 
demonstrated that the stability of (18) can be  

written as  where  represent 
the maximum eigenvalue of the Jacobian A in 
(2).  

All boundary conditions were reflective. 

 Neumann homogeneous ( 0=
∂
∂

x
u ) [1].  

4. INITIAL CONDITIONS: 
4.1 SOLITON SOLUTION 
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Plasma system perturbation NNT and Splitting 
Waves are set as follows: 
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4.2 SHOCK SOLUTION: 

4.2.1 RIEMANN SHOCK TUBE  

 PROBLEM:  

It is the local solution of the Riemann problem 

which involves the solution of the Euler 

equations which are nonlinear.  An initial 

shockwave is set as follows: 

Where  is the left and right density 

respectively and  are the left and right 
momentum respectively for the shockwave. The 
following are SD3 shock initial conditions.  

⎪⎩

⎪
⎨
⎧

=

=

0.1

5.2

)()(

)(

ieie

ie

vn

n
, gridsxc  100<  

 

( )

( ) ( )⎪⎩

⎪
⎨
⎧

=

=

4.0
0.1

ieie

ie

vn
n

, gridsxc  100>  

 
The following are initial conditions for NNT 
initial conditions. 

 
 
 
 

5. Problem Solution 

TABLE 1: COMPUTATION TIME:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCHEME  COMPUTATION 
TIMES 

SPLITTING  105 

NNT  321 

SD3 679 
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Fig1: Solitons: 1~ in +1.5(ion density), 

2~ en (electron density), 3~potential+0.5, 
4~ ev -0.5 (velocity of electrons),5~ iv -1.5 (ion 

velocity). , ,t=time in 
1000 units. 

 

 

Fig2: Shockwaves: 1~electron density, 2~ ion 
density, 3~electron momentum 

4~ionmomentum, 5~potential ,  

,t=time in 1000 units 
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Fig 3: Formation and time evolution of a 
Gaussian-perturbation induced solitons in a 
plasma fluid with a NNT and SD3 schemes.  
Here the curve labelled 

1-~5 ,~4 , 5.0~3 ~2 ,5.0~1 e φiie vvnn ++
where ( )ie nn  is the electron/ion density, ( )ie vv  
is the electron/ion flow velocity, φ  is the 
electrostatic potential all in normalised units.  

 

 

 

 

50 75 100 125 150

-1

0

1

2

3

4

5

6

50 75 100 125 150
-1

0

1

2

3

4

5

6

50 75 100 125 150
-1

0

1

2

3

4

5

6

50 75 100 125 150
-1

0

1

2

3

4

5

6
t=2 t=3.9

t=0.1t=0

4

3

2

1

 
Fig 4: SD3 Shockwaves. Here the curve 
labelled 

1~4 , ~3  2.5,~2  ,5.3~1 e −++ iie vvnn  
where ( )ie nn  is the electron/ion density,           
( )ie vv  is the electron/ion flow velocity, all in 

normalised units. 

 

6 CONCLUSION 

In figure 1 we see that the splitting scheme for 
numerically integrating a system of fluid 
equations can be successfully applied to study 
important nonlinear wave structures, in 
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particular, solitons and shockwaves in a plasma 
fluid.  

The computational times in the table above 
indicates that the NNT scheme was much larger 
than the splitting scheme approximately three 
times. The soliton wave speed is slower than the 
splitting scheme indicating that the NNT 
scheme experiences a degree of damping.  

The NNT scheme exhibits numerical noise (see 
wave number 4 in figure 1) especially in the 
electron waves whilst in the spitting scheme the 
electron wave’s numerical noise seem to have 
been eliminated. The splitting scheme is able to 
contain spurious oscillations due to boundary 
reflections. 

Furthermore as time increases the NNT 
becomes less stable whilst the splitting scheme 
is stable over long time evolution of ion 
acoustic solitons in a plasma fluid (See Figure1 
and Figure 3).  

 Hence the splitting scheme is computationally 
less expensive and more stable than the NNT 
scheme in the soliton simulation. 

It is recommended that the splitting scheme is a 
better option as stable modelling engines in 
nonlinear plasma soliton studies.  
In figure 2 the shock wave solution for the split 
scheme exhibits mild oscillations at the contact 
regions (see wave number 3). As time 
progresses the shockwaves, contact waves and 
rarefaction waves becomes conspicuous for 
both schemes. The shockwaves travel faster in 
the split scheme than the NNT scheme. 
However the NNT scheme exhibits more 
accurate shockwave profile.  
 
In figure 3 we observe that the solitons 
exhibited by the NNT scheme exhibits much 
less numerical oscillations than the SD3 
scheme.  
In figure 4 we observe the SD3 shockwaves 
moving to the left and right together with the 
contact discontinuity moving to the right. Sharp 
electron waves are observed at the discontinuity 
whilst the ion waves remains relatively smooth. 

For larger times the density of the electron and 
ion waves tend to break-up at the discontinuity 
due to the fluctuation of the electric fields. The 
density and momentum propagation tend to be 
stable as time progresses.    
It is there recommended that the split scheme is 
better than the high resolution schemes in that it 
stabilises the electron waves by reducing the 
numerical noise. For shockwaves the split 
scheme, SD3 and NNT schemes exhibited the 
satisfactory waves although the high resolution 
schemes fare well in other examples such as 
gases [2].  
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