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Abstract: - In this paper we survey several aspects related to normal forms of hyperedge replacement 
grammars. Considering context free hyperedge replacement grammars we introduce, inspired by string 
grammars, Chomsky Normal Form and Greibach Normal Form. The algorithm of conversion is quite the same 
with the algorithm for string grammars. The important difference is related to the fact that hyperedge grammars 
are two-dimensional and that’s why parsing productions, in order to transform into string grammars, can be 
done only nondeterministic. A detailed example of conversion to both normal forms is introduced to clarify all 
the algorithm steps. 
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1 Introduction 
In many fields of computer science, the information 
is represented by diagrams rather than strings. 
That’s why a study in domain of graphs and 
formalizations of graphs could be very interesting. 
A hypergraph represents a generalized graph and 
consists by a number of hyperedges [2]. A 
hyperedge is an atomic item labeled with a label in a 
nonempty set, called alphabet, and a fixed number 
of tentacles. On each tentacle is attached a node. 
Nodes are involved in hyperedge replacement. With 
labeled hyperedges we can define productions. 
Productions consist of a label as left hand side and a 
replacing structure as right hand side. If a labeled 
hyperedge, with the left hand side of a production is 
replaced with the right hand side, then this is called 
direct derivation. So, we can define a language as a 
set of structures derivable from the start structure. 

In this paper we consider the alphabet of 
labels divided into two disjoint sets: the alphabet of 
terminals, which labels only structures as right hand 
side of some productions, and the alphabet of 
nonterminals, which labels structures as both sides 
of productions, same as in string grammars is. 

Some hyperedge grammars have only one 
set of labels [3]. In that case the set of nonterminals 
is empty and the terminal structures are not labeled.  
In this grammars derivations could be maximum 
parallel such as are in Lindenmayer systems. The 
languages generated by such grammars include 
visual structures like fractals [8], because the grown 

take place in all directions in the same time. With 
hyperedge replacement grammars we can generate 
digital images or we can recognize images [12].   

In this paper all the grammars considered 
are context free. So, it does not matter how we 
choose the starting hyperedge in the replacement 
and it is not relevant how many times we repeat the 
replacement, but it’s important to have, in each step 
of the derivation, a production where the label of the 
replaced hyperedge exists on its left side. 

In the main section of this paper we’ll 
consider a grammar without λ-productions and 
without rewritings.  As it’s shown in [4] this could 
be done.  The algorithm is nondeterministic, that 
means it doesn’t matter how we’ll split the left side 
of the production because the choice doesn’t 
influence the result. Parsing has different aspects as 
we can see in [1] or [11]. 
  
 
2 Problem Formulation 
2.1 Definitions and notations 
In this section, we recall the basic notions and 
results on hyperedge replacement.  
 It is well known that a graph is a pair G 
= (V, E), where V is a set of nodes and E is a 
set of 2-element subsets of V, called edges. 

Definition 1: [5] Hypergraph - a tuple 
(V, E, att, lab, ext) where V is the finite set of 
nodes, E is the finite set of hyperedges, att: E → 
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V* is the application of attaching, which assigns 
a sequence of pair wise distinct nodes to every 
hyperedge, lab: E → C is the application of 
labeling, which assigns a label to every 
hyperedge from arbitrary but fixed and not 
empty set C, and ext∈V* is a sequence of 
pairwise distinct external nodes.  
 In this paper we denote by ℵC the set of 
hypergraphs over C. 

Definition 2: [5] Type of a hyperedge – 
type: C → N, type(lab(e)) = ⎪att(e)⎪, e∈E, 
E∈H, H∈ℵC. 
 We denote by type(H), the type of the 
hypergraph H∈ℵC, and understand the number 
of external nodes. 
 

Fig. 1 
 

In Fig. 1 we represent a hypergraph 
with: V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5, 
e6}, att(e1) = v1v4, att(e2) = v3v4, att(e3) = v2v3, 
att(e4) = v1v2, att(e5) = v3, att(e6) = v1v2v3v4, 
lab(e1) = A, lab(e2) = F, lab(e3) = D, lab(e4) = B, 
lab(e5) = E, lab(e6) = C, type(A) = 2, type(B) = 
2, type(C) = 4, type(D) = 2, type(E) = 1, type(F) 
= 2. We consider e1 as a 2- edge, e2 as a 2-edge, 
e3 as a 2-edge, e4 as a 2-edge, e5 as a 1-edge, e6 
as a 4-edge.  The previous hypergraph has type 
2. 

Definition 3: [5] Hyperedge 
Replacement Grammar – a system HRG = (N, 
T, P, S), where N is the set of nonterminals, T is 
the set of terminals, N and T are disjoint, 
N∪T⊆C, P is the set of productions, P = 
{(A,R)⎪A∈N, R∈ℵC with type(A) = type(R)}, 
and S∈N is the starting symbol. 

We denote by H[e⎪R] the hypergraph 
obtained from H replacing hyperedge e, e∈H, 

by hypergraph R. Then replacing process is 
made by cutting the hyperedge e from H and 
adding the hypergraph R so that the i-th 
external node of R is glued over the i-th 
attached node of e with i = 1,type(e). Moreover, 
the external nodes of H[e⎪R] are the same with 
the once of H. 

Definition 4: [5] Direct derivation using 
productions of P, H ⇒ H’, H∈ℵC, if and only 
(labH(e), R)∈P and H’ = H[e⎪R]. 

A sequence of direct derivations of the 
form H0 ⇒ H1 ⇒ … ⇒ Hk is called derivation 
of length k.  

The language generated by an hyperedge 
replacement grammar, HRG, is denoted by 
L(HRG), and represents all hypergraphs labeled 
in T and obtained starting with the hypergraph 
labeled with S using productions of P. 

 
 

2.2 Context Freeness 
We study in this paper the properties of 
hyperedge context free grammars. Intuitively 
this means, during derivation, at a specific step, 
starting with a hypergraph in which the 
hyperedges are labeled with nonterminals, 
applying a production depends only on the 
existence of a hyperedge labeled with a 
nonterminal and modifies nothing else from the  
initial hypergraph. Context freeness says 
something more, doesn’t matter which 
hyperedge is the first one in the derivation 
process and which one is next. 
 Inspired from string grammars we 
defined in [4] a λ – production by a production (A, 
R)∈P where A∈N and R is a set of external 
nodes. 
 For each context free hyperedge 
replacement grammar there is an equivalent one 
λ-free. That was proved in [4]. λ - freeness means 
that the set of productions have no λ - productions  
or if have then the only λ – production has the 
starting symbol S but, S doesn’t appear in any 
production as right hand side.  
 We say that a production (A, R)∈P is a 
rewriting if the hypergraph R has only one 
hyperedge and the number of external nodes 
equals the number of attachment nodes. We can 
build an equivalent grammar without rewritings 
as is proved in [4]. 
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 In conclusion we can build a normal-
form inspired by Chomsky Normal Form. 
 Theorem 1: Chomsky Normal Form – 
for a hyperedge replacement grammar, HRG = 
(N, T, P, S), without rewritings and λ-free, there 
is an equivalent grammar HRGNF = (N1, T, P1, 
S) in Chomsky Normal Form. That means all 
productions in P1 are of the form (A, H), where 
A∈N and |lab(e)| = 1, lab(e)∈T, e∈H or |lab(e)| 
= 2, lab(ei)∈N, ei∈H, i = 1,2. 
 
 
3 Greibach Normal Form 
In Greibach Normal Form for string grammars 
[6] each production has the right hand side 
starting with a terminal perhaps followed by 
some nonterminals.   

The algorithm which builds a hyperedge 
replacement grammar in Greibach Normal 
Form has as input a hyperedge replacement 
grammar in Chomsky Normal Form, HRG = 
(N, T, P, S).  
 Step 1: In order to introduce Greibach 
Normal Form we define the set of A – 
productions. 
 Definition 5:  For each nonterminal 
symbol, A∈N, we define the set of A-
productions using operator “⎪”. Let  (A, Ri), i = 
1,nA, with Ri a hypergraph having exact 2 
hyperedges labeled in N or exact one hyperedge 
labeled in T, be all productions in P with 
variable A on the left. We define the set of A – 
productions by (A, R1⎪R2⎪…⎪RnA). 
 After transformation we have in HRG n 
sets of A-productions (A, R1⎪R2⎪…⎪RnA), for 
all A∈N, where ⎪N⎪=n. Obvious HRG contains 
the same productions but reordered.  
 Step 2: In this step we give to each 
nonterminal label a rank, S to be A1 and so on.  
 A hypergraph as right-hand side of a 
production can be described as an ordered string 
of two nonterminals, AiAj, with i≤j, or as a 
string of one terminal. In the first case this 
could be done by parsing the hypergraph 
starting with the label of minimum index and 
continuing with the other one.   
 After that, in all sets of productions, 
starting with A1 and proceeding to An we 
modify productions such as if Ai → Ajγ is a 
production, then j>i. Let say that we are in the 

set of Ak – productions where we have Ak → 
Ajγ a production with j<k. We’ll generate a new 
set of Ak - productions by substituting Aj with 
the right-hand side of each production from the 
set of Aj – productions.  Let Aj → β1 ⎪ β 2 ⎪ … ⎪ 
βnAj be the set of Aj – productions. The new set 
of Ak - productions will be Ak → β1γ ⎪ β 2γ ⎪ … 
⎪ βnAjγ. By repeating the process k-1 times, at 
most, we obtain productions of the form Ak → 
Alγ with l≥k or starting with a terminal. It’s 
quite obvious that the new set of productions 
generate the same language. 
 Step 3: In this step we’ll replace all the 
productions Ak → Alγ, with l = k. An arbitrary 
set of A – productions is divided into two 
subsets.  Let A → Aα1 ⎪ Aα2 ⎪ … ⎪ Aαr be the 
subset of A - productions for which A is the 
leftmost symbol of the right-hand side and A → 
β1 ⎪ β2 ⎪ … ⎪ βs be the remaining subset of A – 
productions. We construct a new hyperedge 
replacement grammar, HRG1 = (N ∪ {B}, T, 
P1, S), by adding the symbol B to V and 
replacing all productions from the set of A - 
productions by: (1) A → βi, A → βiB, i = 1,s 
and (2) B → αi, B → αiB, i = 1,r. 
 Lemma 1: L(HRG) = L(HRG1). 
 Proof: “⊆” We consider in G the 
sequence of replacements: A ⇒ Aαi1 ⇒ Aαi2αi1 

⇒ … ⇒ Aαipαip-1…αi1 ⇒ βjαipαip-1…αi1. This 
sequence can be replaced in G1 by: A ⇒ βjB ⇒ 
βjαipB  ⇒ βjαipαip-1B  ⇒ … ⇒ βjαipαip-1…αi2B ⇒ 
βjαipαip-1…αi1. 
 “⊇” In the same way we can proof the 
reverse transformation. § 
 We repeat the above process for each 
variable and finally we have only productions 
by the forms: (1) Ai → Ajγ, with j>i, (2) Ai → 
aγ, with a∈T or (3) Bi → γ, with γ∈(N∪{B1, 
B2, …, Bi-1})*. 
 Step 4: In this step we transform all sets 
of Ai – productions, i = 1,n, such as the right 
side of each production starts with a terminal 
symbol. The process begins with the set of An - 
productions. Since An is the highest-numbered 
variable, the leftmost symbol on the right-hand 
side of any production for An is a terminal. We 
continue with all sets of Ai – productions, i = n-
1,1.  All these productions have the leftmost 
symbol, on the right-side, a terminal or a 
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nonterminal of rank greater than i. We replace 
nonterminal symbol by the right-hand side of 
the productions corresponding to the set of Aj - 
productions, j = i+1,n. The grammar resulting 
from this step generates the same language as 
the initial grammar. We proved that in step 2.   

v1  1 

 Step 5: In this step we exam only the 
productions for the variables B1, B2, … , Bn. 
Because HRG is in Chomsky Normal Form and 
because of previous transformations, we have, 
in all Bi sets, productions by the forms: (1) Bi 
→ Aiγ, with γ not empty, or (2) Bi → aγ, a∈T,  
i = 1,n. Now we have to apply again the step 4 
for all productions having Bi as right-hand side. 
 Finally we have a new grammar GNF = 
(N1, T, P1, S), where N1 is the set of 
nonterminals having the nonterminals symbols 
from HRG and some new ones, T is the set of 
terminals having same symbols as HRG, S is 
the start symbol and P is the set of productions 
by the form X → aα, where X is a nonterminal 
symbol, a is a terminal symbol and α is a 
possibly empty string of nonterminal symbols.  
 Theorem 2: Greibach Normal Form – 
every context free language L without empty 
words can be generated by a grammar for which 
every production has the right-hand side formed 
by a terminal and a possibly empty string of 
nonterminals. As we proved above L(HRG) = 
L(GNF). 
 After the process of normalization the 
number of productions could be square than 
initial.  
 Example 1:  This example will present 
the algorithms which transform a hyperedge 
replacement grammar into a Greibach Normal 
Form via Chomsky Normal Form.  

We consider the grammar introduced in 
[4]. This grammar is special because it 
represents an example of generative power of 
hyperedge replacement grammars. As we have 
shown the generative power of context free 
hyperedge replacement grammars is grater than 
the generative power of context free string 
grammars.  

Let HRG = ({S, A}, {a, b, c}, P, S) be 
the grammar, with P = {(S, H1|H2), (A, H3|H4)}. 
In a graphic representation productions are:  

 
 

 
Fig. 2 

 
 In Fig. 2 we have 4 hypergraphs defined 
by: 
 H1:  VH1 = {v1, v2, v3, v4, v5, v6}, 
  EH1 = {e1, e2, e3, e4}, 

 attH1(e1) = v1v3, attH1(e2) = v6v4, 
attH1(e3) = v6v5, attH1(e4) = v3v4v5v2, 
 labH1(e1) = a, labH1(e2) = b, 
labH1(e3) = c, labH1(e4) = A, 
 extH1 = v1v2.   
 
H2:  VH2 = {v1, v2, v3, v4}, 

  EH2 = {e1, e2, e3}, 
 attH2(e1) = v1v2, attH2(e2) = v2v3, 
attH2(e3) = v3v4, 
 labH2(e1) = a, labH2(e2) = b, 
labH2(e3) = c, 
 extH2 = v1v4.  
 
H3:  VH3 = {v1, v2, v3, v4, v5, v6, v7}, 

  EH3 = {e1, e2, e3, e4}, 
 attH3(e1) = v1v5, attH3(e2) = v2v6, 
attH3(e3) = v3v7, attH3(e4) = v5v6v7v4, 
 labH3(e1) = a, labH3(e2) = b, 
labH3(e3) = c, labH3(e4) = A, 
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 extH3 = v1v2v3v4. 
 
H4:  VH4 = {v1, v2, v3, v4, v5}, 

  EH4 = {e1, e2, e3}, 
 attH4(e1) = v1v2, attH4(e2) = v2v3, 
attH4(e3) = v4v5, 
 labH4(e1) = a, labH4(e2) = b, 
labH4(e3) = c, 
 extH4 = v1v3v4v5.  
 
 
A derivation in this grammar is shown in 

[4]. The language generated by this grammar is 
L(HRG) = {(anbncn)●, n≥1}. We denote by 
(anbncn)● the hypergraph labeled in nonterminal 
set and parsed linearly. Note: the result graph is 
a linear graph that’s why parsing is 
deterministic.  
 First, we transform this grammar into an 
equivalent Chomsky Normal Form. It is 
obvious that the HRG grammar is λ – free and 
without rewritings. The definitions for λ – free 
and rewritings are introduced in [4]. Also there 
you can find the algorithms to eliminate λ - 
productions and rewritings.  
 Step 1.1. We may begin by replacing 
terminals on the right with new nonterminals. 
With these new nonterminals we make new 
productions. The resulting set of productions is: 
 

   

 

 
Fig. 3 

Step 1.2. In this step we replace the 
productions longer than 3 variables with 
corresponding number of productions where 
each member from right hand side has exactly 2 
variables. The productions involved are in set of 
S – productions and A – productions. We 
introduce 6 more productions such as the final 
sets of productions are: 
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Fig. 4 

 
In Fig. 4 we have the graphic 

representation of 10 sets of productions which 
define a hyperedge replacement grammar in 
Chomsky Normal Form CNF = (NC, T, PC, S) 
with N = {S, A, Aa, Ab, Ac, A1, B1, C1, D1, E1}, 
T = {a, b, c} and PC = {(S, H1|H2), (A1, H3), 
(B1, H4), (A, H5|H6), (C1, H7), (E1, H8), (D1, H9), 
(Aa, H10), (Ab, H11), (Ac, H12)}.   

We can make a nondeterministic 
linearization of PC which leads to string 
productions. A result of this is shown bellow: 
 

  S   → AaA1 | AaB1 
 A1 → AB1 
 B1 → AbAc 
  A  → AaC1 | D1Ac 
 C1 → E1Ab 
 E1 → AAc 
 D1 → AaAb 
 Aa → a 
 Ab → b 
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 Ac → c 
 

In the next stage we transform this 
grammar into an equivalent one in Greibach 
Normal Form, accordingly to the algorithm of 
normalization. 
 Step 2.1. In G we already have ten sets 
of A – productions. 
 Step 2.2. We denote variables as 
follows:  S with S1, Aa with S2, A1 with S3, B1 
with S4, A with S5, Ab with S6, Ac with S7, C1 
with S8, D1 with S9 and E1 with S10. So, PC has 
the following productions: 
 

 S1 → S2S3 | S2S4 
 S2 → a 
 S3 → S5S4 
 S4 → S6S7 
 S5 → S2S8 | S9S7 
 S6 → b 
 S7 → c 
 S8 → S10S6 
 S9 → S2S6 
 S10 → S5S7 
 

Since the right-hand side of productions 
for S1, S2, S3, S4, S6, S7, S8 start with terminal or 
higher-numbered variable, we focus of the 
productions S5 → S2S8, S9 → S2S6, S10 → S5S7 
and substitute the left-most appearance of S2 
with the right-hand side of S2 – productions and 
of S5 with the right-hand side of S5 – 
productions, respectively. 

The resulting set of productions is: 
 

S1 → S2S3 | S2S4 
S2 → a 
S3 → S5S4 
S4 → S6S7 
S5 → aS8 | S9S7 
S6 → b 
S7 → c 
S8 → S10S6 
S9 → aS6 
S10 → aS8S7 | S9S7S7 

 
 The only production which doesn’t 
respect the rules for this step is S10 → S9S7S7. 
So, we have to substitute the left-most 

appearance of S9 with the right-hand side of S9 
– production. The last production became: 
 

S10 → aS8S7 | aS6S7S7 

 
Step 2.3. We don’t have to take care 

about this step because we don’t have 
productions where the variable from the left 
hand side has the same number as the leftmost 
variable from the right hand side. 
 Step 2.4. S9 – productions and S10 – 
productions start with terminals. These are used 
in previous productions. The result is the 
following: 
 

S1 → S2S3 | S2S4 
S2 → a 
S3 → S5S4 
S4 → S6S7 
S5 → aS8 | aS6S7 
S6 → b 
S7 → c 
S8 → aS8S7S6 | aS6S7S7S6 
S9 → aS6 
S10 → aS8S7 | aS6S7S7 

 
The set of S6 - production is involved in 

S4 – production. So, S6 variable is replaced 
from the leftmost position of S4 – production. 
The set of S5 - production is involved in S3 – 
production. So, S5 variable is replaced from the 
leftmost position of S3 – production. The set of 
S2 - production is involved in S1 – production. 
So, S2 variable is replaced from the leftmost 
position of S1 – production. The new set of 
productions is now: 
 

S1 → aS3 | aS4 
S2 → a 
S3 → aS8S4 | aS6S7S4 
S4 → bS7 
S5 → aS8 | aS6S7 
S6 → b 
S7 → c 
S8 → aS8S7S6 | aS6S7S7S6 
S9 → aS6 
S10 → aS8S7 | aS6S7S7 

 
Step 2.5. All the productions are starting 

in the right hand side with a terminal and 
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continuing with some nonterminals. Because 
we don’t have new variable symbols introduced 
into the process of normalization the Step 5 is 
not required. 
 Thus, the equivalent grammar with G, in 
Greibach Normal Form, is GNF = (N1, T, P1, 
S1), where N1 = {S1, S2, S3, S4, S5, S6, S7, S8, S9, 
S10} and P1 is the previous set of string 
productions. In terms of hyperedge replacement 
grammars these can be written as follows: {(S1, 
H1|H2), (S2, H3), (S3, H4|H5), (S4, H6), (S5, 
H7|H8), (S6, H9), (S7, H10), (S8, H11|H12), (S9, 
H13), (S10, H14|H15)} and graphic represented 
bellow: 
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 In Fig. 5 we have 15 hypergraphs 
defined by: 
 H1:  VH1 = {v1, v2, v3, v4, v5}, 
  EH1 = {e1, e2}, 

 attH1(e1)=v1v2, attH1(e2)=v3v4v5v2, 
 labH1(e1) = a, labH1(e2) = S3,
 extH1 = v1v5.   
 
H2:  VH2 = {v1, v2, v3}, 

  EH2 = {e1, e2}, 
 attH2(e1) = v1v2, attH2(e2) = v2v3,  
 labH2(e1) = a, labH2(e2) = S4,  
 extH2 = v1v3.  
 
H3:  VH3 = {v1, v2}, 

  EH3 = {e1}, 
 attH3(e1) = v1v2, 
 labH3(e1) = a, 
 extH3 = v1v2. 
 
H4:  VH4 = {v1, v2, v3, v4, v5}, 

  EH4 = {e1, e2, e3}, 
 attH4(e1) = v1v2, attH4(e2) = 
v2v3v4v5, attH4(e3) = v3v4, 
 labH4(e1) = a, labH4(e2) = S8, 
labH4(e3) = S4, 
 extH4 = v1v3v4v5 
 
H5:  VH5 = {v1, v2, v3, v4, v5}, 

  EH5 = {e1, e2, e3, e4}, 
 attH5(e1) = v1v2, attH5(e2) = v2v3, 
attH5(e3) = v3v4, attH5(e4) = v4v5, 
 labH5(e1) = a, labH5(e2) = S6, 
labH5(e3) = S4, labH5(e4) = S7, 
 extH5 = v1v3v4v5.   
 
H6:  VH6 = {v1, v2, v3}, 

  EH6 = {e1, e2}, 
 attH6(e1) = v1v2, attH6(e2) = v2v3,  
 labH6(e1) = b, labH6(e2) = S7,
 extH6 = v1v3.  
 
H7:  VH7 = {v1, v2, v3, v4, v5}, 

  EH7 = {e1, e2}, 
 attH7(e1)=v1v2, attH7(e2)=v2v3v4v5, 
 labH7(e1) = a, labH7(e2) = S8,
 extH7 = v1v3v4v5. 
 
H8:  VH8 = {v1, v2, v3, v4}, 

  EH8 = {e1, e2, e3}, 
 attH8(e1) = v1v2, attH8(e2) = v2v3, 
attH8(e3) = v3v4, 
 labH8(e1) = a, labH8(e2) = S6, 
labH8(e3) = S7, 
 extH8 = v1v2v3v4.  
 
H9:  VH9 = {v1, v2}, 

  EH9 = {e1}, 
 attH9(e1) = v1v2, 
 labH9(e1) = b, 
 extH9 = v1v2  
 
H10:  VH10 = {v1, v2}, 

  EH10 = {e1}, 
 attH10(e1) = v1v2, 
 labH10(e1) = c, 
 extH10 = v1v2. 
 
H11:  VH11 = {v1, v2, v3, v4, v5, v6, v7}, 

  EH11 = {e1, e2, e3, e4}, 
 attH11(e1) = v1v2, attH11(e2) = v3v4, 
attH11(e3) = v6v5,  attH11(e4) = v6v4v7v2, 
 labH11(e1) = a, labH11(e2) = S6, 
labH11(e3) = S7, labH11(e4) = S8, 
 extH11 = v1v3v5v7 
 
H12:  VH12 = {v1, v2, v3, v4, v5, v6, v7}, 

  EH12 = {e1, e2, e3, e4, e5}, 
 attH12(e1) = v1v2, attH12(e2) = v2v3, 
attH12(e3) = v3v4, attH12(e4) = v5v6, 
attH12(e5) = v6v7,  
 labH12(e1) = a, labH12(e2) = S6, 
labH12(e3) = S6, labH12(e4) = S7, labH12(e5) 
= S7, 
 extH12 = v1v4v5v7. 
 
H13:  VH13 = {v1, v2, v3}, 

  EH13 = {e1, e2}, 
 attH13(e1) = v1v2, attH13(e2) = v2v3,  
 labH13(e1) = a, labH13(e2) = S6,  
 extH13 = v1v3,   
 
H14:  VH14 = {v1, v2, v3, v4, v5, v6}, 

  EH14 = {e1, e2, e3}, 
 attH14(e1) = v1v2, attH14(e2) = v4v5, 
attH14(e3) = v3v2v5v6 
 labH14(e1) = a, labH14(e2) = S8, 
labH14(e3) = S7, 
 extH14 = v1v3v4v6.  
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H15:  VH15 = {v1, v2, v3, v4, v5, v6},  a 

  EH15 = {e1, e2, e3, e4}, 
 attH15(e1) = v1v2, attH15(e2) = v2v3, 
attH15(e3) = v4v5, attH15(e4) = v5v6, 
 labH15(e1) = a, labH15(e2) = S6, 
labH15(e3) = S7, labH15(e4) = S7, 
 extH15 = v1v3v4v6.   
A derivation in this grammar could be: 

 

 

 

 

 
 
 The word resulted by parsing the 
generated linear graph of this derivation is 
a4b4c4. 
 During entirely derivation we kept the 
number of exterior nodes and those positions. 
 
4 Conclusions 
Context free hyperedge replacement grammars 
have a behavior very much like context-free 
Chomsky grammars. The important difference 
is related to transformation of a planar structure 
into a linear one. All the algorithms involved in 
transformations are nondeterministic. The 
reason why we introduced these normal forms 
for hyperedge replacement grammars is to make 
a step forward to create some recognizing 
machines like push down transducers for string 
grammars.  
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