
Several Aspects of Context Freeness for Hyperedge Replacement
Grammars

SILVIU DUMITRESCU

Department of Informatics
Transilvania University of Brasov

Iuliu Maniu 50
ROMANIA

s.dumitrescu@info.unitbv.ro http://cs.unitbv.ro

Abstract: - In this paper we survey several aspects related to normal forms of hyperedge replacement
grammars. Considering context free hyperedge replacement grammars we introduce, inspired by string
grammars, Chomsky Normal Form and Greibach Normal Form. The algorithm of conversion is quite the same
with the algorithm for string grammars. The important difference is related to the fact that hyperedge grammars
are two-dimensional and that’s why parsing productions, in order to transform into string grammars, can be
done only nondeterministic. A detailed example of conversion to both normal forms is introduced to clarify all
the algorithm steps.

Key-Words: - Hyperedge Replacement Grammars, Normal Form, Chomsky, Greibach, Context Freeness,
Nondeterministic

1 Introduction
In many fields of computer science, the information
is represented by diagrams rather than strings.
That’s why a study in domain of graphs and
formalizations of graphs could be very interesting.
A hypergraph represents a generalized graph and
consists by a number of hyperedges [2]. A
hyperedge is an atomic item labeled with a label in a
nonempty set, called alphabet, and a fixed number
of tentacles. On each tentacle is attached a node.
Nodes are involved in hyperedge replacement. With
labeled hyperedges we can define productions.
Productions consist of a label as left hand side and a
replacing structure as right hand side. If a labeled
hyperedge, with the left hand side of a production is
replaced with the right hand side, then this is called
direct derivation. So, we can define a language as a
set of structures derivable from the start structure.

In this paper we consider the alphabet of
labels divided into two disjoint sets: the alphabet of
terminals, which labels only structures as right hand
side of some productions, and the alphabet of
nonterminals, which labels structures as both sides
of productions, same as in string grammars is.

Some hyperedge grammars have only one
set of labels [3]. In that case the set of nonterminals
is empty and the terminal structures are not labeled.
In this grammars derivations could be maximum
parallel such as are in Lindenmayer systems. The
languages generated by such grammars include
visual structures like fractals [8], because the grown

take place in all directions in the same time. With
hyperedge replacement grammars we can generate
digital images or we can recognize images [12].

In this paper all the grammars considered
are context free. So, it does not matter how we
choose the starting hyperedge in the replacement
and it is not relevant how many times we repeat the
replacement, but it’s important to have, in each step
of the derivation, a production where the label of the
replaced hyperedge exists on its left side.

In the main section of this paper we’ll
consider a grammar without λ-productions and
without rewritings. As it’s shown in [4] this could
be done. The algorithm is nondeterministic, that
means it doesn’t matter how we’ll split the left side
of the production because the choice doesn’t
influence the result. Parsing has different aspects as
we can see in [1] or [11].

2 Problem Formulation
2.1 Definitions and notations
In this section, we recall the basic notions and
results on hyperedge replacement.
 It is well known that a graph is a pair G
= (V, E), where V is a set of nodes and E is a
set of 2-element subsets of V, called edges.

Definition 1: [5] Hypergraph - a tuple
(V, E, att, lab, ext) where V is the finite set of
nodes, E is the finite set of hyperedges, att: E →

WSEAS TRANSACTIONS on COMPUTERS

Silviu Dumitrescu

ISSN: 1109-2750 1594 Issue 10, Volume 7, October 2008

mailto:s.dumitrescu@info.unitbv.ro

V* is the application of attaching, which assigns
a sequence of pair wise distinct nodes to every
hyperedge, lab: E → C is the application of
labeling, which assigns a label to every
hyperedge from arbitrary but fixed and not
empty set C, and ext∈V* is a sequence of
pairwise distinct external nodes.
 In this paper we denote by ℵC the set of
hypergraphs over C.

Definition 2: [5] Type of a hyperedge –
type: C → N, type(lab(e)) = ⎪att(e)⎪, e∈E,
E∈H, H∈ℵC.
 We denote by type(H), the type of the
hypergraph H∈ℵC, and understand the number
of external nodes.

Fig. 1

In Fig. 1 we represent a hypergraph
with: V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5,
e6}, att(e1) = v1v4, att(e2) = v3v4, att(e3) = v2v3,
att(e4) = v1v2, att(e5) = v3, att(e6) = v1v2v3v4,
lab(e1) = A, lab(e2) = F, lab(e3) = D, lab(e4) = B,
lab(e5) = E, lab(e6) = C, type(A) = 2, type(B) =
2, type(C) = 4, type(D) = 2, type(E) = 1, type(F)
= 2. We consider e1 as a 2- edge, e2 as a 2-edge,
e3 as a 2-edge, e4 as a 2-edge, e5 as a 1-edge, e6
as a 4-edge. The previous hypergraph has type
2.

Definition 3: [5] Hyperedge
Replacement Grammar – a system HRG = (N,
T, P, S), where N is the set of nonterminals, T is
the set of terminals, N and T are disjoint,
N∪T⊆C, P is the set of productions, P =
{(A,R)⎪A∈N, R∈ℵC with type(A) = type(R)},
and S∈N is the starting symbol.

We denote by H[e⎪R] the hypergraph
obtained from H replacing hyperedge e, e∈H,

by hypergraph R. Then replacing process is
made by cutting the hyperedge e from H and
adding the hypergraph R so that the i-th
external node of R is glued over the i-th
attached node of e with i = 1,type(e). Moreover,
the external nodes of H[e⎪R] are the same with
the once of H.

Definition 4: [5] Direct derivation using
productions of P, H ⇒ H’, H∈ℵC, if and only
(labH(e), R)∈P and H’ = H[e⎪R].

A sequence of direct derivations of the
form H0 ⇒ H1 ⇒ … ⇒ Hk is called derivation
of length k.

The language generated by an hyperedge
replacement grammar, HRG, is denoted by
L(HRG), and represents all hypergraphs labeled
in T and obtained starting with the hypergraph
labeled with S using productions of P.

2.2 Context Freeness
We study in this paper the properties of
hyperedge context free grammars. Intuitively
this means, during derivation, at a specific step,
starting with a hypergraph in which the
hyperedges are labeled with nonterminals,
applying a production depends only on the
existence of a hyperedge labeled with a
nonterminal and modifies nothing else from the
initial hypergraph. Context freeness says
something more, doesn’t matter which
hyperedge is the first one in the derivation
process and which one is next.
 Inspired from string grammars we
defined in [4] a λ – production by a production (A,
R)∈P where A∈N and R is a set of external
nodes.
 For each context free hyperedge
replacement grammar there is an equivalent one
λ-free. That was proved in [4]. λ - freeness means
that the set of productions have no λ - productions
or if have then the only λ – production has the
starting symbol S but, S doesn’t appear in any
production as right hand side.
 We say that a production (A, R)∈P is a
rewriting if the hypergraph R has only one
hyperedge and the number of external nodes
equals the number of attachment nodes. We can
build an equivalent grammar without rewritings
as is proved in [4].

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1595 Issue 10, Volume 7, October 2008

 In conclusion we can build a normal-
form inspired by Chomsky Normal Form.
 Theorem 1: Chomsky Normal Form –
for a hyperedge replacement grammar, HRG =
(N, T, P, S), without rewritings and λ-free, there
is an equivalent grammar HRGNF = (N1, T, P1,
S) in Chomsky Normal Form. That means all
productions in P1 are of the form (A, H), where
A∈N and |lab(e)| = 1, lab(e)∈T, e∈H or |lab(e)|
= 2, lab(ei)∈N, ei∈H, i = 1,2.

3 Greibach Normal Form
In Greibach Normal Form for string grammars
[6] each production has the right hand side
starting with a terminal perhaps followed by
some nonterminals.

The algorithm which builds a hyperedge
replacement grammar in Greibach Normal
Form has as input a hyperedge replacement
grammar in Chomsky Normal Form, HRG =
(N, T, P, S).
 Step 1: In order to introduce Greibach
Normal Form we define the set of A –
productions.
 Definition 5: For each nonterminal
symbol, A∈N, we define the set of A-
productions using operator “⎪”. Let (A, Ri), i =
1,nA, with Ri a hypergraph having exact 2
hyperedges labeled in N or exact one hyperedge
labeled in T, be all productions in P with
variable A on the left. We define the set of A –
productions by (A, R1⎪R2⎪…⎪RnA).
 After transformation we have in HRG n
sets of A-productions (A, R1⎪R2⎪…⎪RnA), for
all A∈N, where ⎪N⎪=n. Obvious HRG contains
the same productions but reordered.
 Step 2: In this step we give to each
nonterminal label a rank, S to be A1 and so on.
 A hypergraph as right-hand side of a
production can be described as an ordered string
of two nonterminals, AiAj, with i≤j, or as a
string of one terminal. In the first case this
could be done by parsing the hypergraph
starting with the label of minimum index and
continuing with the other one.
 After that, in all sets of productions,
starting with A1 and proceeding to An we
modify productions such as if Ai → Ajγ is a
production, then j>i. Let say that we are in the

set of Ak – productions where we have Ak →
Ajγ a production with j<k. We’ll generate a new
set of Ak - productions by substituting Aj with
the right-hand side of each production from the
set of Aj – productions. Let Aj → β1 ⎪ β 2 ⎪ … ⎪
βnAj be the set of Aj – productions. The new set
of Ak - productions will be Ak → β1γ ⎪ β 2γ ⎪ …
⎪ βnAjγ. By repeating the process k-1 times, at
most, we obtain productions of the form Ak →
Alγ with l≥k or starting with a terminal. It’s
quite obvious that the new set of productions
generate the same language.
 Step 3: In this step we’ll replace all the
productions Ak → Alγ, with l = k. An arbitrary
set of A – productions is divided into two
subsets. Let A → Aα1 ⎪ Aα2 ⎪ … ⎪ Aαr be the
subset of A - productions for which A is the
leftmost symbol of the right-hand side and A →
β1 ⎪ β2 ⎪ … ⎪ βs be the remaining subset of A –
productions. We construct a new hyperedge
replacement grammar, HRG1 = (N ∪ {B}, T,
P1, S), by adding the symbol B to V and
replacing all productions from the set of A -
productions by: (1) A → βi, A → βiB, i = 1,s
and (2) B → αi, B → αiB, i = 1,r.
 Lemma 1: L(HRG) = L(HRG1).
 Proof: “⊆” We consider in G the
sequence of replacements: A ⇒ Aαi1 ⇒ Aαi2αi1

⇒ … ⇒ Aαipαip-1…αi1 ⇒ βjαipαip-1…αi1. This
sequence can be replaced in G1 by: A ⇒ βjB ⇒
βjαipB ⇒ βjαipαip-1B ⇒ … ⇒ βjαipαip-1…αi2B ⇒
βjαipαip-1…αi1.
 “⊇” In the same way we can proof the
reverse transformation. §
 We repeat the above process for each
variable and finally we have only productions
by the forms: (1) Ai → Ajγ, with j>i, (2) Ai →
aγ, with a∈T or (3) Bi → γ, with γ∈(N∪{B1,
B2, …, Bi-1})*.
 Step 4: In this step we transform all sets
of Ai – productions, i = 1,n, such as the right
side of each production starts with a terminal
symbol. The process begins with the set of An -
productions. Since An is the highest-numbered
variable, the leftmost symbol on the right-hand
side of any production for An is a terminal. We
continue with all sets of Ai – productions, i = n-
1,1. All these productions have the leftmost
symbol, on the right-side, a terminal or a

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1596 Issue 10, Volume 7, October 2008

nonterminal of rank greater than i. We replace
nonterminal symbol by the right-hand side of
the productions corresponding to the set of Aj -
productions, j = i+1,n. The grammar resulting
from this step generates the same language as
the initial grammar. We proved that in step 2.

v1 1

 Step 5: In this step we exam only the
productions for the variables B1, B2, … , Bn.
Because HRG is in Chomsky Normal Form and
because of previous transformations, we have,
in all Bi sets, productions by the forms: (1) Bi
→ Aiγ, with γ not empty, or (2) Bi → aγ, a∈T,
i = 1,n. Now we have to apply again the step 4
for all productions having Bi as right-hand side.
 Finally we have a new grammar GNF =
(N1, T, P1, S), where N1 is the set of
nonterminals having the nonterminals symbols
from HRG and some new ones, T is the set of
terminals having same symbols as HRG, S is
the start symbol and P is the set of productions
by the form X → aα, where X is a nonterminal
symbol, a is a terminal symbol and α is a
possibly empty string of nonterminal symbols.
 Theorem 2: Greibach Normal Form –
every context free language L without empty
words can be generated by a grammar for which
every production has the right-hand side formed
by a terminal and a possibly empty string of
nonterminals. As we proved above L(HRG) =
L(GNF).
 After the process of normalization the
number of productions could be square than
initial.
 Example 1: This example will present
the algorithms which transform a hyperedge
replacement grammar into a Greibach Normal
Form via Chomsky Normal Form.

We consider the grammar introduced in
[4]. This grammar is special because it
represents an example of generative power of
hyperedge replacement grammars. As we have
shown the generative power of context free
hyperedge replacement grammars is grater than
the generative power of context free string
grammars.

Let HRG = ({S, A}, {a, b, c}, P, S) be
the grammar, with P = {(S, H1|H2), (A, H3|H4)}.
In a graphic representation productions are:

Fig. 2

 In Fig. 2 we have 4 hypergraphs defined
by:
 H1: VH1 = {v1, v2, v3, v4, v5, v6},
 EH1 = {e1, e2, e3, e4},

 attH1(e1) = v1v3, attH1(e2) = v6v4,
attH1(e3) = v6v5, attH1(e4) = v3v4v5v2,
 labH1(e1) = a, labH1(e2) = b,
labH1(e3) = c, labH1(e4) = A,
 extH1 = v1v2.

H2: VH2 = {v1, v2, v3, v4},

 EH2 = {e1, e2, e3},
 attH2(e1) = v1v2, attH2(e2) = v2v3,
attH2(e3) = v3v4,
 labH2(e1) = a, labH2(e2) = b,
labH2(e3) = c,
 extH2 = v1v4.

H3: VH3 = {v1, v2, v3, v4, v5, v6, v7},

 EH3 = {e1, e2, e3, e4},
 attH3(e1) = v1v5, attH3(e2) = v2v6,
attH3(e3) = v3v7, attH3(e4) = v5v6v7v4,
 labH3(e1) = a, labH3(e2) = b,
labH3(e3) = c, labH3(e4) = A,

v3

A

1

2

c

b

a a

v6

v4

v5

v1

v2

1

2

3

4

S:=
b

c

v2

v3

2 v4

A::=

v5

A

1
1

a v1 a v1 1
v6

v7

v3

v2
2

3

4 c

v4

2 v2 b

3 c

v4

4

v5

3

4

b 2

v3

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1597 Issue 10, Volume 7, October 2008

 extH3 = v1v2v3v4.

H4: VH4 = {v1, v2, v3, v4, v5},

 EH4 = {e1, e2, e3},
 attH4(e1) = v1v2, attH4(e2) = v2v3,
attH4(e3) = v4v5,
 labH4(e1) = a, labH4(e2) = b,
labH4(e3) = c,
 extH4 = v1v3v4v5.

A derivation in this grammar is shown in

[4]. The language generated by this grammar is
L(HRG) = {(anbncn)●, n≥1}. We denote by
(anbncn)● the hypergraph labeled in nonterminal
set and parsed linearly. Note: the result graph is
a linear graph that’s why parsing is
deterministic.
 First, we transform this grammar into an
equivalent Chomsky Normal Form. It is
obvious that the HRG grammar is λ – free and
without rewritings. The definitions for λ – free
and rewritings are introduced in [4]. Also there
you can find the algorithms to eliminate λ -
productions and rewritings.
 Step 1.1. We may begin by replacing
terminals on the right with new nonterminals.
With these new nonterminals we make new
productions. The resulting set of productions is:

Fig. 3

Step 1.2. In this step we replace the
productions longer than 3 variables with
corresponding number of productions where
each member from right hand side has exactly 2
variables. The productions involved are in set of
S – productions and A – productions. We
introduce 6 more productions such as the final
sets of productions are:

S:=

v2 1

v3

v4

v1 1

2

3

2

v5

4

Aa 1 2

 A1

v1

v2

1

Ac

 B1

1

1

2

2
v3 2

S:=

v3

A

1

2

v6

v4

v5

v1

v2

1

2

3

4

v2

v3

v1 1

2

1 2

2

2

1

1

 Aa

 Ab

 Ac

 Aa

 Ab

 Ac

1

1

1

2

2

2
v4

Aa:=

v2

1
a

v2

v2 v1

v1

v1

2

b

c

Ab:=

Ac:=

1 2

2 1

A:=

v5

A

1

v6

v7

v3

v1

v2

1

2

3

4

v4

2

3

v4

4

v5

3

4

v2

1

v1

v3

2

1 1 2 Aa Aa 2

1 2 Ab 2 Ab
1

1 2 Ac

1

Ac

2

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1598 Issue 10, Volume 7, October 2008

Fig. 4

In Fig. 4 we have the graphic

representation of 10 sets of productions which
define a hyperedge replacement grammar in
Chomsky Normal Form CNF = (NC, T, PC, S)
with N = {S, A, Aa, Ab, Ac, A1, B1, C1, D1, E1},
T = {a, b, c} and PC = {(S, H1|H2), (A1, H3),
(B1, H4), (A, H5|H6), (C1, H7), (E1, H8), (D1, H9),
(Aa, H10), (Ab, H11), (Ac, H12)}.

We can make a nondeterministic
linearization of PC which leads to string
productions. A result of this is shown bellow:

 S → AaA1 | AaB1
 A1 → AB1
 B1 → AbAc
 A → AaC1 | D1Ac
 C1 → E1Ab
 E1 → AAc
 D1 → AaAb
 Aa → a
 Ab → b

v2

v3

1

B1:=

v1

2

2

1

1

2

 Ab

 Ac

1

A1:=

1

2

3

4

4

 A

2

3

 B1

1

2

Aa:=

v2

1
a

v2

v2 v1

v1

v1

2

b

c

Ab:=

Ac:=

1 2

2 1

D1:=

v1

v2

1

Aa

Ab

1

1

2

2
v3 2

v5

E1:=

v1

1

v2

v4 v3

1

2

3

4

3

2

Ac
1 2

4

 A

v5

C1:=

v1

1

A:=

v5 1

v3

v4

v2

1

2

3

4

2

3

4

 Ab
1 2

 E1

v3

v1

v2

1

3

4

v3

2

 Aa
1 2

2

v1

v2

1

2

 D1

2

1

3

 C1

4

v4

3

4

 Ac

2

1

v4

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1599 Issue 10, Volume 7, October 2008

 Ac → c

In the next stage we transform this
grammar into an equivalent one in Greibach
Normal Form, accordingly to the algorithm of
normalization.
 Step 2.1. In G we already have ten sets
of A – productions.
 Step 2.2. We denote variables as
follows: S with S1, Aa with S2, A1 with S3, B1
with S4, A with S5, Ab with S6, Ac with S7, C1
with S8, D1 with S9 and E1 with S10. So, PC has
the following productions:

 S1 → S2S3 | S2S4
 S2 → a
 S3 → S5S4
 S4 → S6S7
 S5 → S2S8 | S9S7
 S6 → b
 S7 → c
 S8 → S10S6
 S9 → S2S6
 S10 → S5S7

Since the right-hand side of productions
for S1, S2, S3, S4, S6, S7, S8 start with terminal or
higher-numbered variable, we focus of the
productions S5 → S2S8, S9 → S2S6, S10 → S5S7
and substitute the left-most appearance of S2
with the right-hand side of S2 – productions and
of S5 with the right-hand side of S5 –
productions, respectively.

The resulting set of productions is:

S1 → S2S3 | S2S4
S2 → a
S3 → S5S4
S4 → S6S7
S5 → aS8 | S9S7
S6 → b
S7 → c
S8 → S10S6
S9 → aS6
S10 → aS8S7 | S9S7S7

 The only production which doesn’t
respect the rules for this step is S10 → S9S7S7.
So, we have to substitute the left-most

appearance of S9 with the right-hand side of S9
– production. The last production became:

S10 → aS8S7 | aS6S7S7

Step 2.3. We don’t have to take care

about this step because we don’t have
productions where the variable from the left
hand side has the same number as the leftmost
variable from the right hand side.
 Step 2.4. S9 – productions and S10 –
productions start with terminals. These are used
in previous productions. The result is the
following:

S1 → S2S3 | S2S4
S2 → a
S3 → S5S4
S4 → S6S7
S5 → aS8 | aS6S7
S6 → b
S7 → c
S8 → aS8S7S6 | aS6S7S7S6
S9 → aS6
S10 → aS8S7 | aS6S7S7

The set of S6 - production is involved in

S4 – production. So, S6 variable is replaced
from the leftmost position of S4 – production.
The set of S5 - production is involved in S3 –
production. So, S5 variable is replaced from the
leftmost position of S3 – production. The set of
S2 - production is involved in S1 – production.
So, S2 variable is replaced from the leftmost
position of S1 – production. The new set of
productions is now:

S1 → aS3 | aS4
S2 → a
S3 → aS8S4 | aS6S7S4
S4 → bS7
S5 → aS8 | aS6S7
S6 → b
S7 → c
S8 → aS8S7S6 | aS6S7S7S6
S9 → aS6
S10 → aS8S7 | aS6S7S7

Step 2.5. All the productions are starting

in the right hand side with a terminal and

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1600 Issue 10, Volume 7, October 2008

continuing with some nonterminals. Because
we don’t have new variable symbols introduced
into the process of normalization the Step 5 is
not required.
 Thus, the equivalent grammar with G, in
Greibach Normal Form, is GNF = (N1, T, P1,
S1), where N1 = {S1, S2, S3, S4, S5, S6, S7, S8, S9,
S10} and P1 is the previous set of string
productions. In terms of hyperedge replacement
grammars these can be written as follows: {(S1,
H1|H2), (S2, H3), (S3, H4|H5), (S4, H6), (S5,
H7|H8), (S6, H9), (S7, H10), (S8, H11|H12), (S9,
H13), (S10, H14|H15)} and graphic represented
bellow:

Fig. 5

S9:=

v2

1
a

v1
S6

1 2 v3

2

b

v2

v3

S4:=

v1

1

2

1

2 S7

v1

1

v2

S8

1

v3

v5

v4

v1 1

2

3

3

2

v6

4

v4

3

4

 a

S7
1 2

 S7

v3

2
v2

 a

S6
1

2

2

1

S10:=

S7 v5

v6

1

2

4

v2

S8

1

v4

v6

v3

v1

v2

1

2

3

4

v4

2

3

v7

4

v5

3

4

 a

S6

S7

1

1

2

2

 S7

v1

1

v3
2

v2

 a

S6

1

2

2

1

S8:= S6 2

1

S7 v6

v7

1

2

S7:=

v2

1
c

v1

2

S6:=

v2

1
b

v1

2

v1 1

v4

v5

3

4

 S7

2

1

S5:=

v2

v5

1

v4

v1

v3

1

3

4

2

3

4

 a

2
v2

2

 a

2

1 S8 S6

v3

S1:=

v2 1

S3:=

v2 1

v3

v4

v1 1

2

3

4

v5

4

 a

 S8 S4 2

3

1

2

v1

1

2

 a

v2

 S6
1

2 2
v3

 S4

 S7v4

1

1 2
3

S2:=

v2

1
a

v1

2

v3

v4

v1 1

2

3

2

 a

v5

4

 S3

v1

v2

1

 a

 S4
1

2

v3 2

4

v5

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1601 Issue 10, Volume 7, October 2008

 In Fig. 5 we have 15 hypergraphs
defined by:
 H1: VH1 = {v1, v2, v3, v4, v5},
 EH1 = {e1, e2},

 attH1(e1)=v1v2, attH1(e2)=v3v4v5v2,
 labH1(e1) = a, labH1(e2) = S3,
 extH1 = v1v5.

H2: VH2 = {v1, v2, v3},

 EH2 = {e1, e2},
 attH2(e1) = v1v2, attH2(e2) = v2v3,
 labH2(e1) = a, labH2(e2) = S4,
 extH2 = v1v3.

H3: VH3 = {v1, v2},

 EH3 = {e1},
 attH3(e1) = v1v2,
 labH3(e1) = a,
 extH3 = v1v2.

H4: VH4 = {v1, v2, v3, v4, v5},

 EH4 = {e1, e2, e3},
 attH4(e1) = v1v2, attH4(e2) =
v2v3v4v5, attH4(e3) = v3v4,
 labH4(e1) = a, labH4(e2) = S8,
labH4(e3) = S4,
 extH4 = v1v3v4v5

H5: VH5 = {v1, v2, v3, v4, v5},

 EH5 = {e1, e2, e3, e4},
 attH5(e1) = v1v2, attH5(e2) = v2v3,
attH5(e3) = v3v4, attH5(e4) = v4v5,
 labH5(e1) = a, labH5(e2) = S6,
labH5(e3) = S4, labH5(e4) = S7,
 extH5 = v1v3v4v5.

H6: VH6 = {v1, v2, v3},

 EH6 = {e1, e2},
 attH6(e1) = v1v2, attH6(e2) = v2v3,
 labH6(e1) = b, labH6(e2) = S7,
 extH6 = v1v3.

H7: VH7 = {v1, v2, v3, v4, v5},

 EH7 = {e1, e2},
 attH7(e1)=v1v2, attH7(e2)=v2v3v4v5,
 labH7(e1) = a, labH7(e2) = S8,
 extH7 = v1v3v4v5.

H8: VH8 = {v1, v2, v3, v4},

 EH8 = {e1, e2, e3},
 attH8(e1) = v1v2, attH8(e2) = v2v3,
attH8(e3) = v3v4,
 labH8(e1) = a, labH8(e2) = S6,
labH8(e3) = S7,
 extH8 = v1v2v3v4.

H9: VH9 = {v1, v2},

 EH9 = {e1},
 attH9(e1) = v1v2,
 labH9(e1) = b,
 extH9 = v1v2

H10: VH10 = {v1, v2},

 EH10 = {e1},
 attH10(e1) = v1v2,
 labH10(e1) = c,
 extH10 = v1v2.

H11: VH11 = {v1, v2, v3, v4, v5, v6, v7},

 EH11 = {e1, e2, e3, e4},
 attH11(e1) = v1v2, attH11(e2) = v3v4,
attH11(e3) = v6v5, attH11(e4) = v6v4v7v2,
 labH11(e1) = a, labH11(e2) = S6,
labH11(e3) = S7, labH11(e4) = S8,
 extH11 = v1v3v5v7

H12: VH12 = {v1, v2, v3, v4, v5, v6, v7},

 EH12 = {e1, e2, e3, e4, e5},
 attH12(e1) = v1v2, attH12(e2) = v2v3,
attH12(e3) = v3v4, attH12(e4) = v5v6,
attH12(e5) = v6v7,
 labH12(e1) = a, labH12(e2) = S6,
labH12(e3) = S6, labH12(e4) = S7, labH12(e5)
= S7,
 extH12 = v1v4v5v7.

H13: VH13 = {v1, v2, v3},

 EH13 = {e1, e2},
 attH13(e1) = v1v2, attH13(e2) = v2v3,
 labH13(e1) = a, labH13(e2) = S6,
 extH13 = v1v3,

H14: VH14 = {v1, v2, v3, v4, v5, v6},

 EH14 = {e1, e2, e3},
 attH14(e1) = v1v2, attH14(e2) = v4v5,
attH14(e3) = v3v2v5v6
 labH14(e1) = a, labH14(e2) = S8,
labH14(e3) = S7,
 extH14 = v1v3v4v6.

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1602 Issue 10, Volume 7, October 2008

H15: VH15 = {v1, v2, v3, v4, v5, v6}, a

 EH15 = {e1, e2, e3, e4},
 attH15(e1) = v1v2, attH15(e2) = v2v3,
attH15(e3) = v4v5, attH15(e4) = v5v6,
 labH15(e1) = a, labH15(e2) = S6,
labH15(e3) = S7, labH15(e4) = S7,
 extH15 = v1v3v4v6.
A derivation in this grammar could be:

 The word resulted by parsing the
generated linear graph of this derivation is
a4b4c4.
 During entirely derivation we kept the
number of exterior nodes and those positions.

4 Conclusions
Context free hyperedge replacement grammars
have a behavior very much like context-free
Chomsky grammars. The important difference
is related to transformation of a planar structure
into a linear one. All the algorithms involved in
transformations are nondeterministic. The
reason why we introduced these normal forms
for hyperedge replacement grammars is to make
a step forward to create some recognizing
machines like push down transducers for string
grammars.

References:
[1] C. E. Aron, E. M. Popa, M. A. Musan,
Recursive Programs Analysis using Context
Free Languages, WSEAS Transactions on
Information Science & Applications, Vol. 4,
Issue 1, 2007, pg. 91 – 96.
[2] J. Dassow, A. Habel, St. Taubenger, Chain-
Code Pictures and Collages Generated by
Hyperedge Replacement, Graph Grammars and
Their Applications to Computer Science,
Springer-Verlag, 1996.
[3] F. Drewes, Tree Based Picture Generation,
Theoretical Computer Science, No. 246, 2000,
pg. 1 – 51
[4] S. Dumitrescu, Aspects of Context Freeness
for Hyperedge Replacement Grammars,
Foundations of Computing and Decision
Sciences, Vol. 30, No. 2, 2005, pg. 91 – 101
[5] S. Dumitrescu, Visual Structures and
Formal Languages, Transilvania University
Press, 2006
[6] S. Dumitrescu, About Closer Properties of
Hyperedge Replacement Grammars,

 b b

 a a a

 b b

 c c c c

1

 a

S6 b

 a a

 b

 c c

 a

S6

S7 S7

 a

S8

 b

 a a

 b

 c c

 a

S8
 b

 a

 S7

 a

S8
 b

 a

 c

 a a

S3

2

 a

S4 S8

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1603 Issue 10, Volume 7, October 2008

Proceedings - Several Aspects of Biology,
Chemistry, Computer Science, Mathematics and
Physics, 2005, pg. 135 - 140
[7] S. Dumitrescu, About Normal Forms for
Hyperedge Replacement Grammars,
Proceeding of the 12th WSEAS International
Conference on Computers, 2008, pg. 208 – 211.
[8] Deng Fang , Xi Li-Fneg, An Application of
L-system and IFS in 3D Fractal Simulation,
WSEAS Transactions on Systems, Vol. 7, 2008,
pg. 352 – 362.
[9] G. Rozenberg, Handbook of Graph
Grammars and Computing by Graph
Transformation, World Scientific, 1997
[10] A. Salomaa, Formal Language, Academic
Press, 1973
[11] L. Sangeorzan, M. Popescu, E. Helerea, C.
Aldea, S. Dumitrescu, W. Schwarz, M.
Popescu, Aspects Regarding the Quality of
Education on Process Based on Web 2.0
Technologies, Proceeding of the 8th WSEAS
International Conference on Applied
Informatics and Communications, 2008, pg.
499 – 505.
[12] P. Singh, S. Batra, HR Sharma, A Review
of Digital Signatures and Status in India,
WSEAS Transactions on Computers, Vol. 4,
Issue 4, 2005, pg. 408 – 410.

WSEAS TRANSACTIONS on COMPUTERS Silviu Dumitrescu

ISSN: 1109-2750 1604 Issue 10, Volume 7, October 2008

