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Abstract: - Grammatical Inference deals with the problem of learning structural models, such as grammars, from 
different sort of data patterns, such as artificial languages, natural languages, biosequences, speech and so on. This 
article describes a new grammatical inference tool, Grammar-based Classifier System (GCS) dedicated to learn 
grammar from data. GCS is a new model of Learning Classifier Systems in which the population of classifiers has a 
form of a context-free grammar rule set in a Chomsky Normal Form. GCS has been proposed to address both regular 
language induction and the natural language grammar induction as well as learning formal grammar for DNA 
sequence. In all cases near-optimal solutions or better than reported in the literature were obtained. 
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1   Introduction 
Grammatical Inference, also known as Grammar Induction 
(GI) [17], is about the problem of learning structural models 
from data. The data typically consist of sequences of discrete 
events from various domains such as natural language (NL) 
corpora, biosequences (DNA fragments, primary structure of 
proteins), speech, musical scores etc., but can also include 
trees, arbitrary graphs (such as metabolic networks and social 
networks) or automata. Typical models include formal 
grammars, and statistical models in related formalisms such 
as probabilistic automata, hidden Markov models, 
probabilistic transducers or conditional random fields. 

The main theorems of GI are that it is impossible to 
evolve suitable grammar (each of the four classes of 
languages in the Chomsky hierarchy) only from positive 
examples [17], and that even the ability to ask equivalence 
queries does not guarantee exact identification of context-free 
language (CFG) in polynomial time [1]. Effective algorithms 
exist only for regular languages (RL), thus construction of 
algorithms that learn CFG is critical and a still open problem 
of grammar induction [19]. 

The approaches taken are to provide learning algorithms 
with more helpful information, such as negative examples or 
structural information; to formulate alternative representation 
of CFGs; to restrict attention to subclasses of context-free 
languages that do not contain all finite languages; and to use 
Bayesian methods (for references see [30]); in [18] first-order 
logic environment is mixed with a knowledge base to acquire 
CFG. Many researchers have attacked the problem of 
grammar induction by using evolutionary methods to evolve 
(stochastic) CFG or equivalent pushdown automata ([55], for 
references see [56]), but mostly for artificial languages like 
brackets, and palindromes. For surveys of the non-
evolutionary approaches for CFG induction see [30]. 

In this article we examine RL and CFG induction using 
Grammar-based Classifier System (GCS) – a new model of 
Learning Classifier System (LCS). GCS [56], [57], [60] 
represents the knowledge about solved problem in Chomsky 
Normal Form (CNF) productions. GCS was applied with 
success to natural language processing [58], biosequences 
[59], and toy grammar [57]. In spite of intensive research into 
classifier systems in recent years [29] there is still a slight 
number of attempts at inferring grammars using LCS. 
Bianchi [7] revealed higher efficiency of LCS in comparison 
with evolutionary approach on the basis of experiments with 
bracket grammars, palindromes and toy-grammar. Cyre [12] 
inducted a grammar for subset of natural languages using 
LCS, but comparison to his results is hard since the usage of 
corpora is protected by trademarks. GCS tries to fill the gap 
by bringing up the grammar induction issues, as well. As was 
shown in [57], GCS achieves better results than Bianchi’s 
system with reference to artificial grammars. Although there 
are some approaches to handle with context-free grammar, 
there is no one work on inducing regular languages with 
LCS. This article describes GCS approach to the problem of 
inferring RL and non-stochastic CFG from natural language 
corpora and some kind of DNA sequences - biological 
promoter regions. 

The generic architecture of learning classifier system is 
presented in the second section. The third section contains 
description of GCS preceded by short introduction to context-
free grammars. The fourth and fifth sections show some 
selected experimental results in RL and NL grammar 
induction respectively, whereas the sixth section - in 
promoter region recognition. The article is concluded with a 
summary. 
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2   Learning Classifier Systems 
A Learning Classifier System, introduced by Holland [20], 
learns by interacting with an environment from which it 
receives feedback in the form of numerical reward. Learning 
is achieved by trying to maximize the amount of the reward 
received. There are many models of LCS and many ways of 
defining what a Learning Classifier System is. All LCS 
models, more or less, comprise four main components (see 
Fig. 1): 
1. A finite population of condition-action rules (classifiers), 
that represent the current knowledge of a system; 
2. The performance component, which governs the 
interaction with the environment; 
3. The reinforcement component, called credit assignment 
component), which distributes the reward received from the 
environment to the classifiers accountable for the rewards 
obtained; 
4. The discovery component responsible for discovering 
better rules and improving existing ones through a genetic 
algorithm. 

Classifiers have two associated measures: the prediction 
and the fitness. Prediction estimates the classifier utility in 
terms of the amount of reward that the system will receive if 
the classifier is used. Fitness estimates the quality of the 
information about the problem that the classifier conveys, and 
it is exploited by the discovery component to guided 
evolution. A high fitness means that the classifier conveys 
good information about the problem and therefore it should 
be reproduced more trough the genetic algorithm. A low 
fitness means that the classifier conveys little or no good 
information about the problem and therefore should 
reproduce less. 

 

 
Fig. 1. The architecture of Learning Classifier System ([22]) 

On each discrete time step t, the LCS receives as input the 
current state of the environment st and builds a match set 
containing the classifiers in the population, whose condition 
matches the current state. Then, the system evaluates the 
utility of the actions appearing in the match set; an action at is 
selected from those in the match set according to a certain 
criterion, and sent to the environment to be performed. 
Depending on the current state st and on the consequences of 
action at, the system eventually receives a reward rt. The 
reinforcement component distributes a reward rt among the 

classifiers accountable of the incoming rewards. This can be 
either implemented with an algorithm specifically designed 
for the Learning Classifier Systems (e.g. bucket brigade 
algorithm [21]) or with an algorithm inspired by traditional 
reinforcement learning methods (e.g., the modification of Q-
learning [63], see new version in [65]). On a regular basis, 
the discovery component (genetic algorithm) randomly 
selects, with the probability proportional to their fitness, two 
classifiers from the population. It applies crossover and 
mutation generating two new classifiers.  

The environment defines the target task. For instance, in 
autonomous robotics the environment corresponds roughly to 
the robot’s physical surroundings and the goal of learning is 
to learn a certain behavior [26][27]. In classification 
problems, the environment trains a set of pre-classified 
examples; each example is described by a vector of attributes 
and a class label; the goal of learning is to evolve rules that 
can be used to classify previously unseen examples with high 
accuracy [22], [61]. In computational economics, the 
environment represents a market and the goal of learning is to 
make profits [25].  

For many years, the research on LCS was done on 
Holland’s classifier system. All implementations shared more 
or less the same features which can be summarized as 
follows: (i) some form of a bucket brigade algorithm was 
used to distribute the rewards, (ii) evolution was triggered by 
the strength parameters of classifiers, (iii) the internal 
message list was used to keep track of past input [29]. 

During the last years new models of Holland’s system 
have been developed. Among others, two models seem 
particularly worth mentioning. The XCS classifier system 
[63] uses Q-learning to distribute the reward to classifiers, 
instead of bucket brigade algorithm; the genetic algorithm 
acts in environmental niches instead of on the whole 
population; and most importantly, the fitness of classifiers is 
based in the accuracy of classifier predictions, instead of the 
prediction itself. Stolzmann’s ACS [52] differs greatly from 
other LCS models in that ACS learns not only how to 
perform a certain task, but also an internal model of the 
dynamics of the task. In ACS classifiers are not simple 
condition-action rules but they are extended by an effect part, 
which is used to anticipate the environmental state. 
 
3   Grammar-based Classifier Systems 
GCS operates similarly to the classic LCS but differs from 
them in (i) representation of classifiers population, (ii) 
scheme of classifiers’ matching to the environmental state, 
(iii) methods of exploring new classifiers. 

The population of classifiers has a form of a context-free 
grammar rule set in a Chomsky Normal Form. Actually, this 
is not a limitation, because every CFG can be transformed 
into equivalent CNF. Chomsky Normal Form allows only for 
production rules, in the form of A → α or A → BC, where A, 
B, C are the non-terminal symbols and a is a terminal symbol. 
The first rule is an instance of terminal rewriting rule. 
Terminal rules are not affected by the GA, and are generated 
automatically as the system meets an unknown (new) 
terminal symbol. The left hand side of the rule plays a role of 
the classifier’s action while the right hand side - a classifier’s 
condition. The system evolves only one grammar according 
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to the so-called Michigan approach. In this approach, each 
individual classifier – or grammar rule in GCS – is subject of 
the genetic algorithm’s operations. All classifiers (rules) form 
a population of evolving individuals. In each cycle a fitness 
calculating algorithm evaluates a value (an adaptation) of 
each classifier and a discovery component operates only on a 
single classifier. 

The automatic learning CFG is realized with GI from the 
set of sentences. According to this technique, the system 
learns using a training set that in this case consists of 
sentences both syntactically correct and incorrect (see Fig. 2). 
Grammar which accepts correct sentences and rejects 
incorrect ones is able to classify sentences unseen so far from 
a test set. Cocke-Younger-Kasami (CYK) parser, which 
operates in Θ(n3) time [65], is used to parse sentences from 
the corpus. 

The environment of a classifier system is substituted by 
an array of CYK parser. The classifier system matches the 
rules according to the current environmental state (state of 
parsing) and generates an action (or set of actions in GCS), 
pushing the parsing process toward the complete derivation 
of the analyzed sentence. 

 

 
Fig. 2. The environment of GCS 

A value of adaptation (fitness) is assigned for each rule as 
soon as parsing of every sentence from a set is finished. The 
fitness value is expressed as: 

 

݂ ൌ ቐ
ܷݓ

ܷݓ  ܷݓ
ݎ݂    ܷ  ܷ ് 0

݂   ݂ݎ ܷ  ܷ ൌ 0
 

 
(1) 

 
where: 
ܷ – number of uses of rule while parsing correct 
sentence, 
ܷ – number of uses of rule while parsing incorrect 
sentence, 

݂ – fitness of classifier that wasn’t used in parsing, 
  – coefficients (commonly used settings are 1 andݓ,ݓ
2). 
Fitness value is used by genetic algorithm while searching 

for new classifiers.  
The following function ݂ீ  – is applied to evaluate fitness 

of each grammar. In the equation, PS is the positive set of 
sentences, NS is the negative set of sentences, P is the 

number of positive sentences parsed by grammar and N is the 
number of negative strings not parsed 

 

݂ீ ൌ
ሺܲ  ܰሻ  100%

|ܲܵ  ܰܵ|
 

(2) 

 
GCS uses two techniques that explore space of all 

possible classifiers – just like many other classifiers systems. 
First of them is genetic algorithm and the second is covering. 

Genetic algorithm in GCS works on a population of 
classifiers like in other LCS but because of the different 
representation it operates only on production rules in form of 
A → BC. System uses roulette-wheel or random selection 
(chosen in the options), classic crossover and mutation, and 
crowding technique in order to keep diversity in population. 
Genetic operators are launched with given probability once 
analyzing of the train set ends. 

Covering works regardless of genetic algorithm and 
during trains set analysis. It adds productions that allow 
continuing of parsing in the current state of the system. In 
GCS there are following sorts of covering: 
terminal covering: a production rule in the form of A → a is 
created when system finds unknown (new) terminal symbol 
while parsing, 
one-length covering: a production rule in the form of S → a 
is created for one-length, correct sentences, 
two-length covering: a production rule in the form of S → B 
is created if productions A → a and B → b exist in the 
population and there is two-length correct sentence, 
full-covering: a production rule in the form of S → AB is 
created if symbols A and B can be derived and the last cell in 
the CYK array is considered and there is a correct sentence 
currently parsed, 
aggressive-covering: a production rule in the form of 
C → AB is created if symbols A and B can be derived and 
there is a correct sentence currently parsed. 

In [60] the set of experiments on bracket grammars, 
palindromes, toy-NL grammar, and tiny natural language 
corpora was presented. It was observed that while learning 
natural language corpora fitness graph shows sudden changes 
of the fitness value. The most probable reason of this is 
strong cooperative nature of grammar production rules. 
Deletion or modification of a rule can deactivate a huge set of 
connected productions. This can decrease overall grammar’s 
fitness. On the other hand creation or proper modification of 
existing rule can activate new set of rules, and dramatically 
increase overall fitness. Modifying discovery component 
could be one of the solutions to this problem. Discovery 
component could look at the rule’s position at the derivation 
tree (rule’s fertility) and more carefully remove rules that 
may be important to the parsing process. 

According to the concept of the rule’s fertility we 
introduced in [57] new formula for fitness value of rule: 

 

݂ ൌ
ݓ ݂  ݓ ݂

ݓ  ݓ
 

(3) 

 
where: 

݂ –  “classic” fitness of classifier expressed by (1), 
 , –   - coefficientsݓ, ݓ
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 ݂ – normalized fitness of classifier’s fertility expressed 
as: 

݂ ൌ
 െ ݀ െ ݂

݂௫ െ ݂| 
(4) 

 
where: 
p – (profit) sum of credits of the classifier scored while  
parsing correct sentence, 
d – (debt) sum of credits of the classifier scored while  
parsing incorrect sentence, 

݂, ݂௫ – minimal / maximal credits in the set of 
classifiers. 
The classifier receives the specific credit (equal 

renounced amount factor * base amount) from each rule in 
the derivation tree placed below. The terminal rule is 
rewarded by constant value (so-called base amount). 

 
4 Regular Language Induction 
 
4.1 Preliminaries 
We are interested in inducing a grammar that accepts a 
regular language (type 3) [23], [24] given a finite number of 
positive and negative examples drawn from that language. 
Learning regular languages is equivalent to the problem of 
learning Deterministic Finite Automata (DFA). Both 
problems have been extensively studied in the literature and it 
has been proved that learning DFA or regular languages is a 
hard task by a number of criteria [43]. Note, that induced 
DFA should not only be consistent with the training set, but 
also DFA should proper estimate membership function for 
unseen examples. 

The approaches to learning DFA or equivalent regular 
languages base mainly on evolutionary algorithms [13], [34], 
[33], recurrent neural network [16], [62] or combination of 
these two methods [3]. While speaking about DFA/RL 
induction, one cannot help mentioning one of the best known 
algorithm for learning DFA – Blue-Fringe EDSM [10], which 
relies on heuristic compressing an initially large DFA down 
to a smaller one, while preserving perfect classification 
before and after each compression. 
 
4.2 Experimental testbed 
The datasets most commonly used in DFA learning is Tomita 
sets [53]. The definition of Tomita languages is as follows: 

 
L1:  a*, 
L2:  (ab)*, 
L3:  (b|aa)*(a*|(abb(bb|a)*)) 

any sentence without an odd number of consecutive 
b’s after an odd number of consecutive a’s, 

L4:  a*((b|bb)aa*)*(b|bb|a*) 
any sentence over the alphabet a,b without more 
than 3 consecutive a’s, 

L5:  ((aa|bb)*((ba|ab)(bb|aa)*(ba|ab)(bb|aa)*)*(aa|bb)* 
any sentence with an even number of a’s and an 
even number of b’s, 

L6:  ((b(ba)*(a|bb))|(a(ab)*(b|aa)))* 
any sentence such that the number of a’s differs 
from the number of b’s by 0 modulo 3, 

L7:  b*a *b*a*. 
 
By the way, it is worth mentioning that the L3 language 

given in [34] comprises improper, i.e.  not according to the 
definition, two sentences baaabbaaba and aabaaabbaab. The 
same work gives incorrect definition of L5 language, 
permitting sentences which contain odd number of symbols a 
and b. 

Grammatical inference methods that employ DFAs as 
models can be divided into two broad classes: passive and 
active learning methods [9]. In passive methods, a set of 
training data is known before learning. In active learning 
approaches, the algorithm has some influence over which 
training data is labeled by the target DFA for model 
construction. 

Passive methods, and to this class belongs GCS, usually 
make some assumption about the training data. In [42], [44], 
[13], [28] a learning data was selected at random from sample 
data, in [39], [40] a learning data consisted of a structurally 
complete set, [37] assume a characteristic sample; and [4] 
assumes a live complete set. Luke et al. [34] and Lucas and 
Reynolds [33] used equal amounts of positive and negative 
training examples when inferring the Tomita languages, so a 
learning set was balanced as in [53], [2], [62]. In passive 
methods once the sample data has been generated and 
labeled, learning is then conducted. 

In this article Grammar-based Classifier System, a 
method which employs evolutionary computation for search, 
will be compared against the evolutionary method proposed 
by Lucas and Reynolds [33], and Luke et al. [34]. [33] as 
well as [34] present one of the best-known results in the area 
of DFA/regular language induction. All of compared 
evolutionary methods will assume the same training and test 
sets. Some comparisions will be made also to EDSM method 
[10], the current most powerful passive approach to DFAs 
inference. 

Table 1. RL learning and test data sets. 

Lang. |U| |U+| |U–| |T| |T+| |T–| 
L1 16 8 8 65 534 15 65 519
L2 15 5 10 65 534 7 65 527
L3 24 12 12 65 534 9447 56 087
L4 19 10 9 65 534 23 247 42 287
L5 21 9 12 65 534 10 922 54 612
L6 21 9 12 65 534 21 844 43 690
L7 20 12 8 65 534 2515 63 019

 
Table 1 shows the details of applied data sets: number of 

all learning examples |U|, number of positive learning 
examples |U+|, number of negative learning examples  |U–|, 
number of all test examples |T|, number of positive test 
examples |T+|, and number of negative test examples |T–|. 
Note, that test sets are not balanced, and contain much more 
negative sentences than positive once. 
 
4.3 Experiments 
A comparison set of experiments with GCS was performed 
on the above Tomita corpora. Fifty independent experiments 
were performed, evolution on each training corpus ran for 
5,000 generations, with the following genetic parameters: 
number of nonterminal symbols 19, number of terminal 
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symbols 7, crossover probability 0.2, mutation probability 
0.8, population consisted of maximal 40 classifiers where 30 
of them were created randomly in the first generation, 
crowding factor 18, crowding size 3.  

In the first attempt GCS was compared to the approach 
presented in [34] (denoted by GP). GP applies gene 
regulation to evolve deterministic finite-state automata. In 
this approach genes are states in the automaton, and a gene-
regulation-like mechanism determines state transitions. Each 
gene has Boolean value indicating whether or not it was an 
accepting state. The main results are summarized in Table 1. 
For each learning corpus, the table shows the target language, 
and three sets of results. The first indicator nSuccess is the 
number of runs with success gained by GCS within 50 
experiments and compared approach presented in [34]. The 
second one nEvals indicates the average number of 
generations needed to reach the 100% fitness, and the last one 
nGen is the percentage of all unseen strings correctly 
classified. 

Lucas i Reynolds [33] used different method to evolving 
DFA. In contrary to [34], only transition matrix was evolved, 
supported by a simple deterministic procedure to optimally 
assign state labels. This approach is based on evolutionary 
strategy (1+1). Three versions of induction algorithm were 
prepared: an approach in which both the transition matrix and 
the state label vector evolve (Plain), so-called Smart method 
evolving only the transition matrix and the number of the 
states was fixed and equal to 10, and finally nSmart method 
in which the number of the DFA states is equal to the size of 
minimal automata. Recall that both GP and GCS belong to 
the so-called variable size methods, whereas Plain, Smart, 
and nSmart approaches represent the fixed-size structure 
methods. In general, the second group of methods gains 
better results. 

Table 2. Comparison of GCS with GP approach [34]. 

Lang. nSuccess nEvals nGen 
GP GCS GP GCS GP GCS 

L1 31/50  50/50 30 2 88.4 100 
L2 7/50 50/50 1010 2 84.0 100 
L3 1/50  1/50 12 450 666 66.3 100 
L4 3/50 24/50 7870 2455 65.3 100 
L5 0/50 50/50 13 670 201 68.7 92.4 
L6 47/50  49/50 2580 1471 95.9 96.9 
L7 1/50 11/50 11 320 2902 67.7 92.0 

 
For compared methods induction of L3 language 

appeared to be hard task. Both in GP and in GCS only the 
one run over 50 successfully finished. But GP found the 
solution in 12450 iterations, whereas GCS in only 666 steps. 
For the same language GCS correctly classified all of the 
unseen examples, while GP achieved 66%. As to an indicator 
nGen, GP was not able correctly classified unseen strings for 
any language from the tested corpora, while GCS induced a 
grammar fully general to the language in 4 cases. It is 
interesting to compare the results of induction for L5 
language. GP approach could not find the proper grammar 
(DFA) for any run, while GCS found the solution in all runs, 
on average in 201 steps. While learning L1 and L2 languages, 
GP found the proper grammars not in all runs, whereas for 
GCS this task appeared to be trivial (100% nGen, 50/50 
nSuccess, and nEvals 2 steps). 

Table 3 shows the cost of induction (an indicator nEvlas) 
for the methods Plain, Smart, and nSmart taken from [33], 
GP approach, and GCS. 

Table 3. Cost of induction (nEvals) for different evolutionary 
methods. 

Lang. Plain Smart nSmart GP GCS 
L1  107 25  15     30    2 
L2  186 37  40   1010    2 
L3 1809 237 833 12 450  666 
L4 1453 177 654   7870 2455 
L5 1059 195 734 13 670  201 
L6  734 93  82   2580 1471 
L7 1243 188 1377  11 320 2902 

 
GCS obtained the best results for the L1 and L2 languages 

among comparable methods. The result 201 steps for L5 is 
comparable with the best result of 195 reached by nSmart. 
Although GCS reached similar result for language L3 as the 
best method (666 for GCS, and 237 for Smart), it is hard to 
compare for this language these methods, because of low 
value of nSuccess for GCS – only one run over 50 finished 
with success (see table 2). For the languages L4, L6, and L7 
fixed-size structured methods achieved better results than 
variable-size methods. 

Table 4. Percentage of all unseen strings correctly classified (nGen) 
for different methods. 

Lang. Smart nSmart EDSM GP GCS 
L1 81.8 100 52.4 88.4 100 
L2 88.8 95.5 91.8 84 100 
L3 71.8 90.8 86.1 66.3 100 
L4 61.1 100 100 65.3 100 
L5 65.9 100 100 68.7 92.4 
L6 61.9 100 100 95.9 96.9 
L7 62.6 82.9 71.9 67.7 92 

 
Table 4 shows the percentage of all unseen strings 

correctly classified (an indicator nGen) for the methods 
Smart, nSmart, EDSM, GP, and GCS. Recall that the EDSM, 
as a heuristic and non-evolutionary method, was single-time 
executed during learning phase. Model GCS achieved the 
best results from all tested approaches for L1, L2, L3, and L7 
languages. For the language L4 the same 100% accuracy was 
obtained by proposed method, nSmart, and EDSM. For the 
L5 and L6 languages GCS obtained the second result, higher 
than 90%. 
 
5 Natural Language Grammar Induction 
 
5.1 Preliminaries 
Syntactic processing, one of the complex tasks on natural 
language processing (NLP), has always been considered to be 
paramount to a wide range of applications, such as machine 
translation, information retrieval, speech recognition and the 
like. It is therefore not surprising that natural language syntax 
has always been one of the most active research areas in the 
field of NLP. All of the typical pitfalls in language like 
ambiguity, recursion and long-distance dependencies, are 
prominent problems in describing syntax in a computational 
context. Historically, most computational systems for 
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syntactic parsing, employ hand-written grammars, consisting 
of a laboriously crafted set of grammar rules to apply 
syntactic structure to a sentence. But in recent years, a lot of 
research efforts are trying to automatically induce workable 
grammars from annotated corpora (for example [50]), 
although the use of LCS in GI is still insignificant. 
 
5.2 Experimental testbed 
Bianchi [7] was not trying to use his system to induct a 
grammar for huge NL corpora. However such an experiment 
was performed using pure genetic algorithm and CFG by 
Aycinena et al. [6]. Although [6] is unpublished project 
report, to the author's knowledge is the first approach to build 
non-probabilistic CFG for huge NL using grammar induction. 
Their system used grammar in CNF and a CYK parser, and 
as a corpora extensive part of various children books and the 
Brown linguistic data. The corpora were part-of-speech 
tagged using a Brill tagger. All English words were then 
removed – leaving only the tags themselves, and number of 
tags was reduced to 7 categories: 
a – nouns, pronouns (NN, NNP, NNPS, NNS, PRP, WP), 
b – verbs, helping verbs (MD, VB, VBD, VBG, VBN, VBP, 
VBZ), 
c – adjectives, numeral, possessives (CD, JJ, JJR, JJS, PRP$, 
WP$), 
d – adverbs (RB, RBR, RBS, WRB), 
e – prepositions, particles (IN, RP, TO), 
f – conjunctions, determiners (CC, DT, EX, PDT, WDT), 
g – other (foreign words, symbols, and interjections) (FW, 
SYM, UH). 

The corpuses were divided into two parts, every third 
sentence was used for testing evolved grammar, and the 
remaining part of the corpora for inducing the grammars. The 
incorrect sentences were generated randomly from uniform 
distribution of length from 2 to 15 tags. The corpora include a 
selection of children’s books (denoted children, 986 learning 
correct sentences, and 986 learning incorrect sentences), The 
Wizard of Oz (wizard, 1540/1540), Alice in Wonderland 
(alice, 1012/1012), Tom Sawyer (tom, 3601/3601), and five 
Brown corpora: brown_a (2789/2789), brown_b (1780/1780), 
brown_c (1099/1099), brown_d (1062/1062), and brown_e 
(2511/2511). 
 
5.3 Experiments 
A comparison set of experiments with GCS was performed 
on the above NL corpora. Ten independent experiments were 
performed, evolution on each training corpus ran for 1,000 
generations, with the following genetic parameters: number 
of nonterminal symbols 19, number of terminal symbols 7, 
crossover probability 0.2, mutation probability 0.8, 
population consisted of maximal 40 classifiers where 30 of 
them were created randomly in the first generation, crowding 
factor 18, crowding size 3. In [7] grammars were evolved up 
to 200,000 generations. 

The main results of the NL grammar induction with GCS 
are summarized in Table 5. For each learning corpus, the 
table shows the target language, and four sets of results. The 
first is the best fitness gained by GCS within 10 experiments 
and compared approach presented in [6] (denoted by AKM). 
The fitness describes the percentage of sentences (correct and 

incorrect) recognized correctly. The next results of the GCS 
model refer to the experiment in which best fitness was 
obtained. The second result, positive, shows the percentage of 
correct examples from the train set classified correctly. The 
third sort of results, negative, is the percentage of negative 
examples classified incorrectly, and the last one indicates the 
number of generations needed to reach the best fitness 
(evals). 

Table 5. Comparison of NL grammar inductions using genetic 
approach (AKM) with GCS 

 
Corpus 

Fitness Positive Negative Evals 
GCS AKM GCS AKM GCS AKM GCS AKM

children 93.2 93.1 98.8 91.8 12.5 5.7 9 200,000 
wizard 94.6 90.2 99.3 89.5 10.2 9.2 32 200,000 
alice 89.5 92.1 96.8 92.5 17.9 8.4 81 200,000 
tom 86.3 92.1 98.4 92.7 25.9 8.6 3 200,000 

brown_a 93.8 94.0 98.3 94.1 11.6 6.1 45 48,500 
brown_b 94.6 94.0 99.3 94.7 10.2 6.7 506 200,000 
brown_c 92.5 87.9 96.7 80.5 11.7 4.7 592 15,500 
brown_d 91.6 91.3 97.1 88.2 13.8 5.6 18 45,000 
brown_e 89.5 94 93.4 93.9 14.5 5.9 38 122,000 

 
In case of 5 corpuses the GCS model induced a grammar 

of higher quality fitness, for the brown this value is only 
slightly lower (93.8% for GCS, and 94.0% for AKM), and in 
the remaining 3 cases the estimator’s value is lower, but not 
exceeding 5%. The values of the positive estimator are in 8 
cases significantly higher for the GCS model (the differences 
oscillate in the range of 4.2% and 16.2%), and for the brown 
corpus the AKM approach got a result which is better by 
0.5%. Undoubtedly, the worst for the GCS model comes up 
the comparison of the negative values – for each corpus the 
model got decidedly higher values of this estimator, and the 
differences oscillate in the range 1% for wizard to 17.3% for 
tom corpus. It indicates that during the grammar induction the 
GCS model created in a few cases (for 5 bodies the 
differences do not exceed 7%) productions which are too 
universal in comparison to the AKM approach, which also 
parse a part of negative sentences. The last parameter which 
can be compared is the number of evolutionary steps (evals), 
in which both approaches found their best solutions. In as 
many as 6 cases the GCS model did not exceed 50 steps, in 
the next case did not exceed 100 steps, and two longest 
inductions took only slightly above 500 steps (somewhat over 
an hour). The AKM approach took, in the best case, 15,500 
steps, and for as many as 5 corpora – 200,000 steps, and, 
according to the authors, 60 hours of calculation (!) The GCS 
model proved to be incomparably more effective, being able 
to find, in the majority of cases, the grammars with higher 
values of fitness and positive estimators.  

The results of the performed generalization tests do not 
diverge considerably from values of fitness, positive, and 
negative gained by the best grammars. It proves not about 
properties of grammars as rather a homogeneous origin of 
learning and testing corpuses. 

An example of grammar learned for the corpus children is 
shown in Fig. 3. Symbol S stands for the starting symbol of 
CFG. The rule 3 forms quite obvious group adjective noun, 
as well as rule 13 - noun verb. The model found in the corpus 
also often appearing in English bigrams, such as noun adverb 
(rule 14), noun conjunction (rule 15), verb adverb (rule 17), 
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or verb conjunction (rule 18). The sentence can start from the 
article (rule 10), why adding the article for the beginning of 
sentence is also keeping its correctness. The vast majority of 
context-free production rules (rules 1-11) is beginning from 
the starting symbol S what suggests the big generality of 
these rules. On one hand it will knock for economical writing 
of the entire grammar, on the other hand, however, such a 
versatility is also enabling the parsing of sentences not 
belonging to the language.  

        
1. S → SE 8. S → SB 15. G → AF 22. F → f 
2. S → SS 9. S → ES 16. E → MM 23. E → e 
3. S → CA 10. S → FS 17 C → BD 24. D → d 
4. S → DS 11. S → GR 18. C → BF 25 C → c 
5. S → BS 12. R → SM 19. S → a 26. B → b 
6. S → SK 13. M → AB 20. S → c 27. A → a 
7. S → MF 14. K → AD 21. G → g   

Fig. 3. Induced grammar for corpus children 

 
6 Promoter Regions Recognition 
 
6.1 Preliminaries 
Since a biological sequence is usually represented as a text 
that consists of a finite set of characters that represent 
nucleotides or amino acids, designing models based on 
formal languages have been constantly proposed since the 
early era of bioinformatics. Formal biosequence linguistic 
research has used finite-state automata, stochastic grammars 
based on hidden Markov models [15], and grammars based 
on computational logic [48]. The logic grammar approach to 
DNA language analysis involved mainly representing 
structures of a biological sequence in Definite Clause 
Grammar (DCG) and Prolog [41], [11], [46] or in systems of 
equivalent representational power to DCGs [31]. A 
formulation of DNA patterns in any formal grammar requires 
support of human (time consuming, as well as error prone 
method) and/or machine learning methods, such as a 
knowledge-based neural network [49], [54], [31] or 
grammatical inference methods [47]. It is worth mentioning 
that the last approach concentrated mainly on the estimation 
of probability parameters of stochastic grammars while the 
problem of learning the structure of grammars remains a 
difficult task with a few positive results on biological 
sequences. 

The use of GCS in learning formal grammar for DNA 
sequence will be demonstrated in recognition of Escherichia 
coli promoter sequences, which are probably the most studied 
and cited sequences in molecular biology.  
 
6.2 Experimental testbed 
During the last years many prokaryotic genomes have been 
sequenced, including that of Escherichia coli [8]. The gene 
content of these genomes was mostly computationally 
recognized. However, the promoter regions are still 
undetermined in most cases and the software able to 
accurately predict promoters in sequenced genomes is not yet 
available in public domain. Promoter recognition, the 
computational task of finding the promoter regions on a DNA 
sequence, is very important for defining the transcription 
units responsible for specific pathways (because gene 

prediction alone cannot provide the solution) and for analysis 
of gene regulation. A promoter enables the initiation of a 
gene expression after binding with an enzyme called RNA 
polymerase, which moves bidirectionally in searching for a 
promoter and starts making RNA according to the DNA 
sequence at the transcription initiation site following the 
promoter [35], [32]. The most significant patterns in E.coli 
promoter sequences are the −10 and −35 regions, which are 
approximately at the region of 10 bases and 35 bases before 
the transcription initiation site. The spacing (gap) between the 
−10 and −35 regions is not fixed, ranging from 15 to 19 
bases. The −35 and −10 sequences together are the contact 
region for RNA polymerase.  
The genome is treated by GCS as a string composed of letters 
{A, C, T, G}. The goal is, given an arbitrary potential 
promoter region to be able to find out whether it is a true or 
false promoter region. As the learning set the database 
contributed by M. Noordewier and J. Shavlik to UCI 
repository [36] was used. The database consists of 53 positive 
instances and 53 negative instances, 57 letters each. Negative 
learning sentences were derived from E. coli bacteriophage 
T7 believed to not contain any promoter sites. In order to get 
an estimate of how well the algorithm learned the concept of 
promoter, the test set consisting of unseen 36 instances 
including 18 positive and 18 negative examples was 
prepared. Positive test instances were prepared by mutating 
the bases of the randomly chosen positive learning sentences 
in non-critical positions, negative test instances by mutating 
in any positions of randomly chosen negative learning 
sentences. This method increases the amount of available 
examples and was first proposed in [38]. 
 
6.3 Experiments 
Evolution on learning promoter database ran for 5,000 
generations, with the following genetic parameters: number 
of nonterminal symbols 19, number of terminal symbols 4, 
crossover probability 0.2, mutation probability 0.8, 
population consisted of maximal 150 classifiers where 130 of 
them were created randomly in the first generation, crowding 
factor 18, crowding size 3. The experiment was repeated 10 
times because GCS uses random classifiers during 
initialization and learning.  

After each execution four numbers were calculated: True 
Positives (correctly recognized positive examples), True 
Negatives (correctly recognized negatives), False Negatives 
(positives recognized as negatives), and False Positives 
(negatives recognized as positives). Then the average of these 
numbers were found and the following measures were 
calculated: Specificity, Sensitivity, and Accuracy. Specificity 
is a measure of the incidence of negative results in testing all 
the non-promoter sequences, i.e. (True Negatives/(False 
Positives + True Negatives)) x 100. Sensitivity is a measure 
of the incidence of positive results in testing all the promoter 
sequences, i.e. (True Positives/(True Positives + False 
Negatives)) x 100. Accuracy is measured by the number of 
correct results, the sum of true positives and true negatives, in 
relation to the number of tests carried out, i.e. ((True 
Positives + True Negatives/Total) x 100. GCS achieved 
74.5% accuracy, 87.5% specificity, and 62.5% sensitivity in 
the learning set. Much more interesting are the results gained 
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during generalization tests on the previously unseen examples 
from test set. Table 6 compares the results of GCS and two 
formal system based methods presented in [31]. 

Table 6. Comparison of different promoter recognition methods 

Method Specificity Sensitivity Accuracy 
KBANN 97 16 56 
WANN 82 69 75 

GCS 94 61 78 
 

It would be useful if the ROC (Receiver Operating 
Characteristic) curve [51] could be plotted, and the area 
under the ROC curve could be used for comparison of above 
methods.  Note though, that in the GCS approach it is 
impossible to obtain decision threshold, i.e. the sample 
sentence can be true or false entirely, and is accepted or 
rejected by CYK entirely. 

Leung at all [31] introduced Basic Gene Grammars 
(BGG) to represent many formulations of the knowledge of 
E.coli promoters. BGG is able to represent knowledge 
acquired from knowledge-based artificial neural network 
learning (KBANN approach [54]), and combination of 
grammar of weight matrices [45] and KBANN (denoted as 
WANN). Development of BGG is supported by DNA-
ChartParser. The method was tested on 300 E.coli promoters 
and 300 non-promoter random sequences. Authors have not 
announced what length of sequences was examined. GCS 
achieved better accuracy then individual KBANN grammar 
and combined grammars, and better specificity then WANN 
approach. 

 
7 Summary 
Grammar-based Classifier System was found to be a 
promising tool for grammatical inference. GCS has been 
proposed to address both the RL and NL grammar induction 
as well as learning formal grammar for DNA sequence. In all 
cases near-optimal and/or better than reported in the literature 
solutions were obtained. More detailed conclusions are given 
below. 

Our experiments attempted to apply GCS to evolutionary 
computation in evolving an inductive mechanism for the 
Tomita language set. Performance of GCS was compared to 
the Evidence Driven State Merging algorithm, one of the 
most powerful known DFA learning algorithms. GCS with its 
ability of generalizations outperforms EDSM, as well as other 
significant evolutionary method. 

GCS provided comparable or better results to the pure 
genetic NL induction approach, but in a significantly shorter 
time. The efficient implementation for grammar induction is 
very important during analysis of large text corpora. The 
evolved grammars accept quite a lot of sentences that are not 
valid English, but reject most non-English sentences. At the 
same time automatically induced grammars, although they 
are dissimilar to hand-written grammars, recognize very 
good, near 100% correct English sentences.  

GCS proved to be useful in finding and representing 
E.coli promoter region. The proposed method provided 
comparable or better results to the specialized formal system 
based on human-devised domain theory and knowledge 
discovered by neural network learning. It is worth 

mentioning, that proposed approach does not break up 
promoter regions into important or unimportant parts (such as 
contact, conformation, minus_35, minus_10), but treats them 
as whole entities. Therefore, this method could be preferable 
in cases when we have sufficient number of known promoter 
regions, but might not know anything about their 
composition. The results suggest that the information in 
“unimportant” parts (gaps) might also be important for right 
recognition. 

 
References: 

[1] Angeline P.: Evolutionary Algorithms and Emergent 
Intelligence. PhD Thesis. Computer Science Department, Ohio 
State University (1994) 

[2] Angeline P.: An alternative to indexed memory for evolving 
programs with explicit state representations. In: Koza J.R. et al 
(eds.) Proc. 2nd Conf. Genetic Programming (GP97). Morgan 
Kaufmann, San Francisco, CA, 423–430 (1997) 

[3] Angeline P., Saunders G.M., Pollack J.P.: An Evolutionary 
Algorithm that Constructs Recurrent Neural Networks. IEEE 
Trans. Neural Networks, vol. 5, no. 1, 54–65 (1994) 

[4] Angluin D.: A note on the number of queries needed to 
identify regular languages. Information and Control, 51, 76–
87 (1981) 

[5] Angluin D.: Queries and concept learning. Machine Learning 
2(4), 319–342 (1988) 

[6] Aycinena M., Kochenderfer M.J., Mulford D.C.: An 
evolutionary approach to natural language grammar induction. 
Final project for CS224N: Natural Language Processing. 
Stanford University (2003) 
http://homepages.inf.ed.ac.uk/s0341074/docs/aycinena-
kochenderfer-mulford-2003-cs224n.pdf 

[7] Bianchi D.: Learning Grammatical Rules from Examples 
Using a Credit Assignement Algorithm. In: Proc. of The First 
Online Workshop on Soft Computing (WSC1), 113–118. 
Nagoya (1996) 

[8] Blattner F., Plunkett G., Bloch C., Perna N., Burland V., Riley 
M., Collado-Vides J., Glasner J., Rode C., Mayhew G. et al. 
(eds.) The complete genome sequence of Escherichia coli k-
12. Science 277, 1453–1462 (1997) 

[9] Bongard J., Lipson H.: Active Coevolutionary Learning of 
Deterministic Finite Automata, J. of Machine Learning 
Research, 6, 1651–1678 (2005) 

[10] Cicchello O., Kremer S.C.: Beyond EDSM. In:  Proc. Int’l 
Colloquium Grammatical Inference, vol. 2484, 37–48 (2002) 

[11] Collado-Vides J.: Grammatical model of the regulation of 
gene expression. In: Proc. Natl Acad. Sci. USA, 89, 9405–
9409 (1992) 

[12] Cyre W.R.: Learning Grammars with a Modified Classifier 
System. In: Proc. 2002 World Congress on Computational 
Intelligence, 1366–1371. Honolulu, Hawaii (2002) 

[13] Dupont P.: Incremental regular inference. In: Miclet L., de la 
Higuera C. (eds.) Proc. 3rd ICGI-96, LNAI, vol.  1147, 222–
237. Springer (1996) 

[14] Dupont P., Miclet L., Vidal E.: What Is the Search Space of 
the Regular Inference? In: Carrasco R.C., Oncina J. (eds.) 
Proc. Grammatical Inference and Applications: Second Int’l 
Colloquium (ICGI-94), 25–37 (1994) 

[15] Durbin R., Eddy S., Krogh A., Mitchison G.: Biological 
Sequence Analysis. Cambridge University Press, Cambridge 
(1998) 

[16] Giles C., Sun G., Chen H., Lee Y., Chen D.: Higher order 
Recurrent Neural Networks and Grammatical Inference. In: 
Touretzky D. (ed.) Advances in Neural Information 
Processing Systems 2, 380–387. San Mateo, Calif.: Morgan 
Kaufman (1990) 

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1591 Issue 10, Volume 7, October 2008



[17] Gold E.: Language identification in the limit. Information 
Control 10, 447–474 (1967) 

[18] Hamdi-Cherif C., Hamdi-Cherif A.: ILSGInf – An Inductive 
Learning System for Grammatical Inference, WSEAS Trans. 
on  Computers, 7(6), 991–996 (2007)  

[19] de la Higuera C.: Current trends in grammatical inference. In: 
Ferri F.J. et al (eds.) Advances in Pattern Recognition. Joint 
IAPR International Workshops SSPR+SPR'2000, LNCS, vol. 
1876, 28–31. Springer (2000) 

[20] Holland J.: Adaptation. In: Rosen R., Snell F.M. (eds.) 
Progress in theoretical biology. Plenum, New York (1976) 

[21] Holland J.: Escaping Brittleness: The possibilities of General-
Purpose Learning Algorithms Applied to Parallel Rule-Based 
Systems. In: Michalski R.S. et al. (eds.) Machine Learning, an 
Artificial Intelligence Approach, vol. II, 593–623. Morgan 
Kaufmann (1986)  

[22] Holmes J.H., Lanzi P.L., Stolzmann W., Wilson S.W.: 
Learning classifier systems: new models, successful 
applications. Information Processing Letters 82(1), 23–30 
(2002)  

[23] Hopcroft J.E. Ullman J.D.: Formal Languages And Their 
Relation to Automata. Reading, Mass.: Addison-Wesley 
(1969) 

[24] Hopcroft J.E. Ullman J.D.: Introduction to Automata Theory, 
Languages and Computation. Addison-Wesley (1979) 

[25] Judd K.L., Tesfatsion L.: Agent-Based Computational 
Economics. Handbook of Computational Economics, vol. 2, 
Elsevier, North-Holland  (2005) 

[26] Katagami D., Yamada S.: Real robot learning with human 
teaching. In The Fourth Japan-Australia Joint Workshop on 
Intelligent and Evolutionary Systems, 263–270 (2000) 

[27] Katagami D., Yamada S.: Interactive Classifier System for 
Real Robot Learning. In: IEEE International Workshop on 
Robot-Human Interaction ROMAN-2000, Osaka, Japan, 258–
263 (2000) 

[28] Lang K., Pearlmutter B., Price R.: Results of the Abbadingo 
One DFA Learning Competition and a New Evidence Driven 
State Merging Algorithm. In: Proc. Int. Colloquium on 
Grammatical Inference ICGA-98, LNAI, vol. 1433, Springer, 
Berlin, Heidelberg, 1–12 (1998) 

[29] Lanzi P.L., Riolo R.L.: A Roadmap to the Last Decade of 
Learning Classifier System Research. In: LNAI, vol. 1813, 33-
-62. Springer Verlag (2000) 

[30] Lee L., Learning of Context-Free Languages: A Survey of the 
Literature. Report TR-12-96, Harvard University, Cambridge, 
Massachusetts (1996) 

[31] Leung S.W., Mellish C., Robertson D.: Basic gene grammars 
and DNA-chart parser for language processing of Escherichia 
coli promoter DNA sequences. Bioinformatics 17, 226--236 
(2001) 

[32] Lewin B.: Genes VII. Oxford University Press, Oxford  (2000) 
[33] Lucas S., Reynolds T.J.: Learning Deterministic Finite 

Automata with a Smart State labeling Evolutionary Algorithm. 
IEEE Trans. on Pattern Analysis and Machine Intelligence, 27 
(7), 1–12 (2005) 

[34] Luke S., Hamahashi S., Kitano H.: ‘Genetic’ Programming”. 
In: Banzhaf W. et al. (eds.) Proc. Genetic and Evolutionary 
Computation Conf., 1098–1105 (1999) 

[35] Mishra R., Chatterji D.: Promoter search and strength of a 
promoter: two important means for regulation of gene 
expression in Escherichia coli. J. Biosci. 18 1–11 (1993) 

[36] Murphy P.M., Aha D.W.: UCI Repository of Machine 
Learning Databases. Department of Information and Computer 
Science, University of California at Irvine, Irvine, CA (1992) 

[37] Oncina J., Garcià P.: Inferring regular languages in 
polynomial update time. In: Perez N. et al.  (eds.) Pattern 

recognition and image analysis. Singapore, World Scientific, 
49–61 (1992) 

[38] O’Neill M.: Escherichia coli promoters: neural networks 
develop distinct descriptions in learning to search for 
promoters of different spacing classes. Nucleic Acids Res. 20, 
3471–3477 (1992) 

[39] Pao T., Carr J.: A solution of the syntactic induction-inference 
problem for regular languages. Computer Languages, 3, 53–64 
(1978) 

[40] Parekh R.G., Honavar V.G.: An incremental interactive 
approach for regular grammar inference. In: Proc. 3rd ICGI-
96, LNAI, vol. 1147, Springer, Berlin, Heidelberg, 238–250 
(1996) 

[41] Pereira F., Warren D.: Definite clause grammars for language 
analysis. Artif. Intell. 13, 231–278 (1980) 

[42] Pitt L.: Inductive inference, DFAs and computational 
complexity. In: Proc. Int. Workshop on Analogical and 
Inductive Inference, LNAI, vol. 397, Springer, London, UK, 
18–44 (1989) 

[43] Pitt L., Warmuth M.: The Minimum Consistent DFA Problem 
Cannot Be Approximated within Any Polynomial. J. ACM, 
vol. 40, no. 1, 95–142 (1993) 

[44] Porat F., Feldman J.: Learning automata from ordered 
examples. Machine Learning, 7, 109–138 (1991) 

[45] Rice P., Elliston K., Gribskov M.: DNA. In: Girbskov M., 
Devereux J. (eds.) Sequence Analysis Primer. Chapter 1, 
Stockton Press, 1–59 (1991) 

[46] Rosenblueth D., Thieffry D., Huerta A., Salgado H., Collado-
Vides J.: Syntactic recognition of regulatory regions in 
Escherichia coli. Comput. Appl. Biosci. 12, 415–422 (1996) 

[47] Sakakibara Y.: Grammatical Inference in Bioinformatics. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 27 (7), 1051–1062 (2005) 

[48] Searls D.: Linguistic approaches to biological sequences. 
Bioinformatics 13, 333–344 (1997) 

[49] Shavlik J., Towell G., Noordewier M.: Using neural networks 
to refine existing biological knowledge. Int. J. Genome Res. 1, 
81–107 (1992) 

[50] Solan Z., Horn D., Ruppin E., Edelman S.: Unsupervised 
learning of natural languages. In: Proc. Nat. Acad. Science. 
US, 102, 11629–11634, (2005) 

[51] Sonego P., Kocsor A., Pongor S.: ROC analysis: applications 
to the classification of biological sequences and 3D structures. 
Briefings in Bioinformatics, doi:10.1093/bib/bbm064 (2008) 

[52] Stolzmann W.: An Introduction to Anticipatory Classifier 
Systems. In: LNAI, vol. 1813, 175–194. Springer-Verlag 
(2000) 

[53] Tomita M.: Dynamic construction of finite automata from 
examples using hill climbing. In: Proc. 4th Annual Cognitive 
Science Conf., USA, 105–108 (1982) 

[54] Towell G., Shavlik J.: Extracting refined rules from 
knowledge-based neural networks. Machine Learning 13, 71–
101 (1993) 

[55] Unold O.: Context–free grammar induction using evolutionary 
methods, WSEAS Trans. on Circuits and Systems, 3(2), 632–
637 (2003)  

[56] Unold O.:  Context-free grammar induction with grammar-
based classifier system. Archives of Control Science, vol. 15 
(LI) 4, 681–690 (2005) 

[57] Unold O.: Playing a toy-grammar with GCS. In: Mira J, 
Álvarez J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, 300–
309. Springer Verlag (2005) 

[58] Unold O.:  Learning classifier system approach to natural 
language grammar induction. In: Shi Y. et al. (eds.) ICCS 
2007, Part II, LNCS, vol. 4488, 1210–1213 (2007) 

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1592 Issue 10, Volume 7, October 2008



[59] Unold O.: Grammar-based classifier system for recognition of 
promoter regions. In: Beliczynski B. et al. (eds.) 
ICANNGA07, Part I, LNCS, vol.  4431, 798–805 (2007) 

[60] Unold O., Cielecki L.: Grammar-based Classifier System. In: 
Hryniewicz O. et al. (eds.) Issues in Intelligent Systems: 
Paradigms. EXIT Publishing House, Warsaw, 273–286 (2005) 

[61] Unold O., Dabrowski G.: Use of learning classifier system for 
inferring natural language grammar. In: Abraham A et al. 
(eds.) Design and application of hybrid intelligent. 
Amsterdam, IOS Press, 272–278 (2003) 

[62] Waltrous R., Kuhn G.: Induction of finite state automata using 
second-order recurrent networks. In: Moody J. et al. (eds.) 
Advances in Neural Information Processing 4. Morgan 
Kaufmann, San Francisco, CA, 309–316 (1992) 

[63] Wilson S.W.: Classifier Fitness Based on Accuracy. 
Evolutionary Computation 3 (2), 147–175 (1995) 

[64] Yoshikawa M., Kihira T., Terai H.: Q-learning based on 
hierarchical evolutionary mechanism, WSEAS Trans. on 
Systems and Control , 3(3), 219–228 (2008) 

[65] Younger D.: Recognition and parsing of context-free 
languages in time n3. University of Hawaii Technical Report, 
Department of Computer Science (1967) 

 
 
 
 

 

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1593 Issue 10, Volume 7, October 2008




