
Grammar-based Classifier System: A Universal Tool for Grammatical
Inference

OLGIERD UNOLD

Institute of Computer Engineering, Control and Robotics
Wroclaw University of Technology

Wyb. Wyspianskiego 27, 50-370 Wroclaw
POLAND

olgierd.unold@pwr.wroc.pl

Abstract: - Grammatical Inference deals with the problem of learning structural models, such as grammars, from
different sort of data patterns, such as artificial languages, natural languages, biosequences, speech and so on. This
article describes a new grammatical inference tool, Grammar-based Classifier System (GCS) dedicated to learn
grammar from data. GCS is a new model of Learning Classifier Systems in which the population of classifiers has a
form of a context-free grammar rule set in a Chomsky Normal Form. GCS has been proposed to address both regular
language induction and the natural language grammar induction as well as learning formal grammar for DNA
sequence. In all cases near-optimal solutions or better than reported in the literature were obtained.

Key-Words: - Machine Learning, Grammatical Inference, Learning Classifier Systems, Regular Language Induction,
DFA Induction, Natural Language Processing, Promoter Recognition

1 Introduction
Grammatical Inference, also known as Grammar Induction
(GI) [17], is about the problem of learning structural models
from data. The data typically consist of sequences of discrete
events from various domains such as natural language (NL)
corpora, biosequences (DNA fragments, primary structure of
proteins), speech, musical scores etc., but can also include
trees, arbitrary graphs (such as metabolic networks and social
networks) or automata. Typical models include formal
grammars, and statistical models in related formalisms such
as probabilistic automata, hidden Markov models,
probabilistic transducers or conditional random fields.

The main theorems of GI are that it is impossible to
evolve suitable grammar (each of the four classes of
languages in the Chomsky hierarchy) only from positive
examples [17], and that even the ability to ask equivalence
queries does not guarantee exact identification of context-free
language (CFG) in polynomial time [1]. Effective algorithms
exist only for regular languages (RL), thus construction of
algorithms that learn CFG is critical and a still open problem
of grammar induction [19].

The approaches taken are to provide learning algorithms
with more helpful information, such as negative examples or
structural information; to formulate alternative representation
of CFGs; to restrict attention to subclasses of context-free
languages that do not contain all finite languages; and to use
Bayesian methods (for references see [30]); in [18] first-order
logic environment is mixed with a knowledge base to acquire
CFG. Many researchers have attacked the problem of
grammar induction by using evolutionary methods to evolve
(stochastic) CFG or equivalent pushdown automata ([55], for
references see [56]), but mostly for artificial languages like
brackets, and palindromes. For surveys of the non-
evolutionary approaches for CFG induction see [30].

In this article we examine RL and CFG induction using
Grammar-based Classifier System (GCS) – a new model of
Learning Classifier System (LCS). GCS [56], [57], [60]
represents the knowledge about solved problem in Chomsky
Normal Form (CNF) productions. GCS was applied with
success to natural language processing [58], biosequences
[59], and toy grammar [57]. In spite of intensive research into
classifier systems in recent years [29] there is still a slight
number of attempts at inferring grammars using LCS.
Bianchi [7] revealed higher efficiency of LCS in comparison
with evolutionary approach on the basis of experiments with
bracket grammars, palindromes and toy-grammar. Cyre [12]
inducted a grammar for subset of natural languages using
LCS, but comparison to his results is hard since the usage of
corpora is protected by trademarks. GCS tries to fill the gap
by bringing up the grammar induction issues, as well. As was
shown in [57], GCS achieves better results than Bianchi’s
system with reference to artificial grammars. Although there
are some approaches to handle with context-free grammar,
there is no one work on inducing regular languages with
LCS. This article describes GCS approach to the problem of
inferring RL and non-stochastic CFG from natural language
corpora and some kind of DNA sequences - biological
promoter regions.

The generic architecture of learning classifier system is
presented in the second section. The third section contains
description of GCS preceded by short introduction to context-
free grammars. The fourth and fifth sections show some
selected experimental results in RL and NL grammar
induction respectively, whereas the sixth section - in
promoter region recognition. The article is concluded with a
summary.

WSEAS TRANSACTIONS on COMPUTERS

Olgierd Unold

ISSN: 1109-2750 1584 Issue 10, Volume 7, October 2008

2 Learning Classifier Systems
A Learning Classifier System, introduced by Holland [20],
learns by interacting with an environment from which it
receives feedback in the form of numerical reward. Learning
is achieved by trying to maximize the amount of the reward
received. There are many models of LCS and many ways of
defining what a Learning Classifier System is. All LCS
models, more or less, comprise four main components (see
Fig. 1):
1. A finite population of condition-action rules (classifiers),
that represent the current knowledge of a system;
2. The performance component, which governs the
interaction with the environment;
3. The reinforcement component, called credit assignment
component), which distributes the reward received from the
environment to the classifiers accountable for the rewards
obtained;
4. The discovery component responsible for discovering
better rules and improving existing ones through a genetic
algorithm.

Classifiers have two associated measures: the prediction
and the fitness. Prediction estimates the classifier utility in
terms of the amount of reward that the system will receive if
the classifier is used. Fitness estimates the quality of the
information about the problem that the classifier conveys, and
it is exploited by the discovery component to guided
evolution. A high fitness means that the classifier conveys
good information about the problem and therefore it should
be reproduced more trough the genetic algorithm. A low
fitness means that the classifier conveys little or no good
information about the problem and therefore should
reproduce less.

Fig. 1. The architecture of Learning Classifier System ([22])

On each discrete time step t, the LCS receives as input the
current state of the environment st and builds a match set
containing the classifiers in the population, whose condition
matches the current state. Then, the system evaluates the
utility of the actions appearing in the match set; an action at is
selected from those in the match set according to a certain
criterion, and sent to the environment to be performed.
Depending on the current state st and on the consequences of
action at, the system eventually receives a reward rt. The
reinforcement component distributes a reward rt among the

classifiers accountable of the incoming rewards. This can be
either implemented with an algorithm specifically designed
for the Learning Classifier Systems (e.g. bucket brigade
algorithm [21]) or with an algorithm inspired by traditional
reinforcement learning methods (e.g., the modification of Q-
learning [63], see new version in [65]). On a regular basis,
the discovery component (genetic algorithm) randomly
selects, with the probability proportional to their fitness, two
classifiers from the population. It applies crossover and
mutation generating two new classifiers.

The environment defines the target task. For instance, in
autonomous robotics the environment corresponds roughly to
the robot’s physical surroundings and the goal of learning is
to learn a certain behavior [26][27]. In classification
problems, the environment trains a set of pre-classified
examples; each example is described by a vector of attributes
and a class label; the goal of learning is to evolve rules that
can be used to classify previously unseen examples with high
accuracy [22], [61]. In computational economics, the
environment represents a market and the goal of learning is to
make profits [25].

For many years, the research on LCS was done on
Holland’s classifier system. All implementations shared more
or less the same features which can be summarized as
follows: (i) some form of a bucket brigade algorithm was
used to distribute the rewards, (ii) evolution was triggered by
the strength parameters of classifiers, (iii) the internal
message list was used to keep track of past input [29].

During the last years new models of Holland’s system
have been developed. Among others, two models seem
particularly worth mentioning. The XCS classifier system
[63] uses Q-learning to distribute the reward to classifiers,
instead of bucket brigade algorithm; the genetic algorithm
acts in environmental niches instead of on the whole
population; and most importantly, the fitness of classifiers is
based in the accuracy of classifier predictions, instead of the
prediction itself. Stolzmann’s ACS [52] differs greatly from
other LCS models in that ACS learns not only how to
perform a certain task, but also an internal model of the
dynamics of the task. In ACS classifiers are not simple
condition-action rules but they are extended by an effect part,
which is used to anticipate the environmental state.

3 Grammar-based Classifier Systems
GCS operates similarly to the classic LCS but differs from
them in (i) representation of classifiers population, (ii)
scheme of classifiers’ matching to the environmental state,
(iii) methods of exploring new classifiers.

The population of classifiers has a form of a context-free
grammar rule set in a Chomsky Normal Form. Actually, this
is not a limitation, because every CFG can be transformed
into equivalent CNF. Chomsky Normal Form allows only for
production rules, in the form of A → α or A → BC, where A,
B, C are the non-terminal symbols and a is a terminal symbol.
The first rule is an instance of terminal rewriting rule.
Terminal rules are not affected by the GA, and are generated
automatically as the system meets an unknown (new)
terminal symbol. The left hand side of the rule plays a role of
the classifier’s action while the right hand side - a classifier’s
condition. The system evolves only one grammar according

reward rtaction at state st

Environment

Match set

Population

Evaluation
of action utility

Action
selection

Performance Component R
ei

nf
or

ce
m

en
t C

om
po

nn
et

D
is

co
ve

ry
 C

om
po

ne
nt

Learning Classifier System

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1585 Issue 10, Volume 7, October 2008

to the so-called Michigan approach. In this approach, each
individual classifier – or grammar rule in GCS – is subject of
the genetic algorithm’s operations. All classifiers (rules) form
a population of evolving individuals. In each cycle a fitness
calculating algorithm evaluates a value (an adaptation) of
each classifier and a discovery component operates only on a
single classifier.

The automatic learning CFG is realized with GI from the
set of sentences. According to this technique, the system
learns using a training set that in this case consists of
sentences both syntactically correct and incorrect (see Fig. 2).
Grammar which accepts correct sentences and rejects
incorrect ones is able to classify sentences unseen so far from
a test set. Cocke-Younger-Kasami (CYK) parser, which
operates in Θ(n3) time [65], is used to parse sentences from
the corpus.

The environment of a classifier system is substituted by
an array of CYK parser. The classifier system matches the
rules according to the current environmental state (state of
parsing) and generates an action (or set of actions in GCS),
pushing the parsing process toward the complete derivation
of the analyzed sentence.

Fig. 2. The environment of GCS

A value of adaptation (fitness) is assigned for each rule as
soon as parsing of every sentence from a set is finished. The
fitness value is expressed as:

݂ ൌ ቐ
ܷݓ

ܷݓ ܷݓ
ݎ݂ ܷ ܷ ് 0

݂ ݂ݎ ܷ ܷ ൌ 0

(1)

where:
ܷ – number of uses of rule while parsing correct
sentence,
ܷ – number of uses of rule while parsing incorrect
sentence,

݂ – fitness of classifier that wasn’t used in parsing,
 – coefficients (commonly used settings are 1 andݓ,ݓ
2).
Fitness value is used by genetic algorithm while searching

for new classifiers.
The following function ݂ீ – is applied to evaluate fitness

of each grammar. In the equation, PS is the positive set of
sentences, NS is the negative set of sentences, P is the

number of positive sentences parsed by grammar and N is the
number of negative strings not parsed

݂ீ ൌ
ሺܲ ܰሻ 100%

|ܲܵ ܰܵ|

(2)

GCS uses two techniques that explore space of all

possible classifiers – just like many other classifiers systems.
First of them is genetic algorithm and the second is covering.

Genetic algorithm in GCS works on a population of
classifiers like in other LCS but because of the different
representation it operates only on production rules in form of
A → BC. System uses roulette-wheel or random selection
(chosen in the options), classic crossover and mutation, and
crowding technique in order to keep diversity in population.
Genetic operators are launched with given probability once
analyzing of the train set ends.

Covering works regardless of genetic algorithm and
during trains set analysis. It adds productions that allow
continuing of parsing in the current state of the system. In
GCS there are following sorts of covering:
terminal covering: a production rule in the form of A → a is
created when system finds unknown (new) terminal symbol
while parsing,
one-length covering: a production rule in the form of S → a
is created for one-length, correct sentences,
two-length covering: a production rule in the form of S → B
is created if productions A → a and B → b exist in the
population and there is two-length correct sentence,
full-covering: a production rule in the form of S → AB is
created if symbols A and B can be derived and the last cell in
the CYK array is considered and there is a correct sentence
currently parsed,
aggressive-covering: a production rule in the form of
C → AB is created if symbols A and B can be derived and
there is a correct sentence currently parsed.

In [60] the set of experiments on bracket grammars,
palindromes, toy-NL grammar, and tiny natural language
corpora was presented. It was observed that while learning
natural language corpora fitness graph shows sudden changes
of the fitness value. The most probable reason of this is
strong cooperative nature of grammar production rules.
Deletion or modification of a rule can deactivate a huge set of
connected productions. This can decrease overall grammar’s
fitness. On the other hand creation or proper modification of
existing rule can activate new set of rules, and dramatically
increase overall fitness. Modifying discovery component
could be one of the solutions to this problem. Discovery
component could look at the rule’s position at the derivation
tree (rule’s fertility) and more carefully remove rules that
may be important to the parsing process.

According to the concept of the rule’s fertility we
introduced in [57] new formula for fitness value of rule:

݂ ൌ
ݓ ݂ ݓ ݂

ݓ ݓ

(3)

where:

݂ – “classic” fitness of classifier expressed by (1),
 , – - coefficientsݓ, ݓ

 ab
 dcab
 cbab
 ccca

GCS classifiers
AB : C A : a
BB : D B : b
... ...

 Negative sentences

Positive sentences

Tr
ai

ni
ng

 se
t

A →
B → b
C → AB
D → BB

C
FG

 in norm
al form

Covering

New
rules

GA

New
rules

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1586 Issue 10, Volume 7, October 2008

 ݂ – normalized fitness of classifier’s fertility expressed
as:

݂ ൌ
 െ ݀ െ ݂

݂௫ െ ݂|
(4)

where:
p – (profit) sum of credits of the classifier scored while
parsing correct sentence,
d – (debt) sum of credits of the classifier scored while
parsing incorrect sentence,

݂, ݂௫ – minimal / maximal credits in the set of
classifiers.
The classifier receives the specific credit (equal

renounced amount factor * base amount) from each rule in
the derivation tree placed below. The terminal rule is
rewarded by constant value (so-called base amount).

4 Regular Language Induction

4.1 Preliminaries
We are interested in inducing a grammar that accepts a
regular language (type 3) [23], [24] given a finite number of
positive and negative examples drawn from that language.
Learning regular languages is equivalent to the problem of
learning Deterministic Finite Automata (DFA). Both
problems have been extensively studied in the literature and it
has been proved that learning DFA or regular languages is a
hard task by a number of criteria [43]. Note, that induced
DFA should not only be consistent with the training set, but
also DFA should proper estimate membership function for
unseen examples.

The approaches to learning DFA or equivalent regular
languages base mainly on evolutionary algorithms [13], [34],
[33], recurrent neural network [16], [62] or combination of
these two methods [3]. While speaking about DFA/RL
induction, one cannot help mentioning one of the best known
algorithm for learning DFA – Blue-Fringe EDSM [10], which
relies on heuristic compressing an initially large DFA down
to a smaller one, while preserving perfect classification
before and after each compression.

4.2 Experimental testbed
The datasets most commonly used in DFA learning is Tomita
sets [53]. The definition of Tomita languages is as follows:

L1: a*,
L2: (ab)*,
L3: (b|aa)*(a*|(abb(bb|a)*))

any sentence without an odd number of consecutive
b’s after an odd number of consecutive a’s,

L4: a*((b|bb)aa*)*(b|bb|a*)
any sentence over the alphabet a,b without more
than 3 consecutive a’s,

L5: ((aa|bb)*((ba|ab)(bb|aa)*(ba|ab)(bb|aa)*)*(aa|bb)*
any sentence with an even number of a’s and an
even number of b’s,

L6: ((b(ba)*(a|bb))|(a(ab)*(b|aa)))*
any sentence such that the number of a’s differs
from the number of b’s by 0 modulo 3,

L7: b*a *b*a*.

By the way, it is worth mentioning that the L3 language

given in [34] comprises improper, i.e. not according to the
definition, two sentences baaabbaaba and aabaaabbaab. The
same work gives incorrect definition of L5 language,
permitting sentences which contain odd number of symbols a
and b.

Grammatical inference methods that employ DFAs as
models can be divided into two broad classes: passive and
active learning methods [9]. In passive methods, a set of
training data is known before learning. In active learning
approaches, the algorithm has some influence over which
training data is labeled by the target DFA for model
construction.

Passive methods, and to this class belongs GCS, usually
make some assumption about the training data. In [42], [44],
[13], [28] a learning data was selected at random from sample
data, in [39], [40] a learning data consisted of a structurally
complete set, [37] assume a characteristic sample; and [4]
assumes a live complete set. Luke et al. [34] and Lucas and
Reynolds [33] used equal amounts of positive and negative
training examples when inferring the Tomita languages, so a
learning set was balanced as in [53], [2], [62]. In passive
methods once the sample data has been generated and
labeled, learning is then conducted.

In this article Grammar-based Classifier System, a
method which employs evolutionary computation for search,
will be compared against the evolutionary method proposed
by Lucas and Reynolds [33], and Luke et al. [34]. [33] as
well as [34] present one of the best-known results in the area
of DFA/regular language induction. All of compared
evolutionary methods will assume the same training and test
sets. Some comparisions will be made also to EDSM method
[10], the current most powerful passive approach to DFAs
inference.

Table 1. RL learning and test data sets.

Lang. |U| |U+| |U–| |T| |T+| |T–|
L1 16 8 8 65 534 15 65 519
L2 15 5 10 65 534 7 65 527
L3 24 12 12 65 534 9447 56 087
L4 19 10 9 65 534 23 247 42 287
L5 21 9 12 65 534 10 922 54 612
L6 21 9 12 65 534 21 844 43 690
L7 20 12 8 65 534 2515 63 019

Table 1 shows the details of applied data sets: number of

all learning examples |U|, number of positive learning
examples |U+|, number of negative learning examples |U–|,
number of all test examples |T|, number of positive test
examples |T+|, and number of negative test examples |T–|.
Note, that test sets are not balanced, and contain much more
negative sentences than positive once.

4.3 Experiments
A comparison set of experiments with GCS was performed
on the above Tomita corpora. Fifty independent experiments
were performed, evolution on each training corpus ran for
5,000 generations, with the following genetic parameters:
number of nonterminal symbols 19, number of terminal

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1587 Issue 10, Volume 7, October 2008

symbols 7, crossover probability 0.2, mutation probability
0.8, population consisted of maximal 40 classifiers where 30
of them were created randomly in the first generation,
crowding factor 18, crowding size 3.

In the first attempt GCS was compared to the approach
presented in [34] (denoted by GP). GP applies gene
regulation to evolve deterministic finite-state automata. In
this approach genes are states in the automaton, and a gene-
regulation-like mechanism determines state transitions. Each
gene has Boolean value indicating whether or not it was an
accepting state. The main results are summarized in Table 1.
For each learning corpus, the table shows the target language,
and three sets of results. The first indicator nSuccess is the
number of runs with success gained by GCS within 50
experiments and compared approach presented in [34]. The
second one nEvals indicates the average number of
generations needed to reach the 100% fitness, and the last one
nGen is the percentage of all unseen strings correctly
classified.

Lucas i Reynolds [33] used different method to evolving
DFA. In contrary to [34], only transition matrix was evolved,
supported by a simple deterministic procedure to optimally
assign state labels. This approach is based on evolutionary
strategy (1+1). Three versions of induction algorithm were
prepared: an approach in which both the transition matrix and
the state label vector evolve (Plain), so-called Smart method
evolving only the transition matrix and the number of the
states was fixed and equal to 10, and finally nSmart method
in which the number of the DFA states is equal to the size of
minimal automata. Recall that both GP and GCS belong to
the so-called variable size methods, whereas Plain, Smart,
and nSmart approaches represent the fixed-size structure
methods. In general, the second group of methods gains
better results.

Table 2. Comparison of GCS with GP approach [34].

Lang. nSuccess nEvals nGen
GP GCS GP GCS GP GCS

L1 31/50 50/50 30 2 88.4 100
L2 7/50 50/50 1010 2 84.0 100
L3 1/50 1/50 12 450 666 66.3 100
L4 3/50 24/50 7870 2455 65.3 100
L5 0/50 50/50 13 670 201 68.7 92.4
L6 47/50 49/50 2580 1471 95.9 96.9
L7 1/50 11/50 11 320 2902 67.7 92.0

For compared methods induction of L3 language

appeared to be hard task. Both in GP and in GCS only the
one run over 50 successfully finished. But GP found the
solution in 12450 iterations, whereas GCS in only 666 steps.
For the same language GCS correctly classified all of the
unseen examples, while GP achieved 66%. As to an indicator
nGen, GP was not able correctly classified unseen strings for
any language from the tested corpora, while GCS induced a
grammar fully general to the language in 4 cases. It is
interesting to compare the results of induction for L5
language. GP approach could not find the proper grammar
(DFA) for any run, while GCS found the solution in all runs,
on average in 201 steps. While learning L1 and L2 languages,
GP found the proper grammars not in all runs, whereas for
GCS this task appeared to be trivial (100% nGen, 50/50
nSuccess, and nEvals 2 steps).

Table 3 shows the cost of induction (an indicator nEvlas)
for the methods Plain, Smart, and nSmart taken from [33],
GP approach, and GCS.

Table 3. Cost of induction (nEvals) for different evolutionary
methods.

Lang. Plain Smart nSmart GP GCS
L1 107 25 15 30 2
L2 186 37 40 1010 2
L3 1809 237 833 12 450 666
L4 1453 177 654 7870 2455
L5 1059 195 734 13 670 201
L6 734 93 82 2580 1471
L7 1243 188 1377 11 320 2902

GCS obtained the best results for the L1 and L2 languages

among comparable methods. The result 201 steps for L5 is
comparable with the best result of 195 reached by nSmart.
Although GCS reached similar result for language L3 as the
best method (666 for GCS, and 237 for Smart), it is hard to
compare for this language these methods, because of low
value of nSuccess for GCS – only one run over 50 finished
with success (see table 2). For the languages L4, L6, and L7
fixed-size structured methods achieved better results than
variable-size methods.

Table 4. Percentage of all unseen strings correctly classified (nGen)
for different methods.

Lang. Smart nSmart EDSM GP GCS
L1 81.8 100 52.4 88.4 100
L2 88.8 95.5 91.8 84 100
L3 71.8 90.8 86.1 66.3 100
L4 61.1 100 100 65.3 100
L5 65.9 100 100 68.7 92.4
L6 61.9 100 100 95.9 96.9
L7 62.6 82.9 71.9 67.7 92

Table 4 shows the percentage of all unseen strings

correctly classified (an indicator nGen) for the methods
Smart, nSmart, EDSM, GP, and GCS. Recall that the EDSM,
as a heuristic and non-evolutionary method, was single-time
executed during learning phase. Model GCS achieved the
best results from all tested approaches for L1, L2, L3, and L7
languages. For the language L4 the same 100% accuracy was
obtained by proposed method, nSmart, and EDSM. For the
L5 and L6 languages GCS obtained the second result, higher
than 90%.

5 Natural Language Grammar Induction

5.1 Preliminaries
Syntactic processing, one of the complex tasks on natural
language processing (NLP), has always been considered to be
paramount to a wide range of applications, such as machine
translation, information retrieval, speech recognition and the
like. It is therefore not surprising that natural language syntax
has always been one of the most active research areas in the
field of NLP. All of the typical pitfalls in language like
ambiguity, recursion and long-distance dependencies, are
prominent problems in describing syntax in a computational
context. Historically, most computational systems for

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1588 Issue 10, Volume 7, October 2008

syntactic parsing, employ hand-written grammars, consisting
of a laboriously crafted set of grammar rules to apply
syntactic structure to a sentence. But in recent years, a lot of
research efforts are trying to automatically induce workable
grammars from annotated corpora (for example [50]),
although the use of LCS in GI is still insignificant.

5.2 Experimental testbed
Bianchi [7] was not trying to use his system to induct a
grammar for huge NL corpora. However such an experiment
was performed using pure genetic algorithm and CFG by
Aycinena et al. [6]. Although [6] is unpublished project
report, to the author's knowledge is the first approach to build
non-probabilistic CFG for huge NL using grammar induction.
Their system used grammar in CNF and a CYK parser, and
as a corpora extensive part of various children books and the
Brown linguistic data. The corpora were part-of-speech
tagged using a Brill tagger. All English words were then
removed – leaving only the tags themselves, and number of
tags was reduced to 7 categories:
a – nouns, pronouns (NN, NNP, NNPS, NNS, PRP, WP),
b – verbs, helping verbs (MD, VB, VBD, VBG, VBN, VBP,
VBZ),
c – adjectives, numeral, possessives (CD, JJ, JJR, JJS, PRP$,
WP$),
d – adverbs (RB, RBR, RBS, WRB),
e – prepositions, particles (IN, RP, TO),
f – conjunctions, determiners (CC, DT, EX, PDT, WDT),
g – other (foreign words, symbols, and interjections) (FW,
SYM, UH).

The corpuses were divided into two parts, every third
sentence was used for testing evolved grammar, and the
remaining part of the corpora for inducing the grammars. The
incorrect sentences were generated randomly from uniform
distribution of length from 2 to 15 tags. The corpora include a
selection of children’s books (denoted children, 986 learning
correct sentences, and 986 learning incorrect sentences), The
Wizard of Oz (wizard, 1540/1540), Alice in Wonderland
(alice, 1012/1012), Tom Sawyer (tom, 3601/3601), and five
Brown corpora: brown_a (2789/2789), brown_b (1780/1780),
brown_c (1099/1099), brown_d (1062/1062), and brown_e
(2511/2511).

5.3 Experiments
A comparison set of experiments with GCS was performed
on the above NL corpora. Ten independent experiments were
performed, evolution on each training corpus ran for 1,000
generations, with the following genetic parameters: number
of nonterminal symbols 19, number of terminal symbols 7,
crossover probability 0.2, mutation probability 0.8,
population consisted of maximal 40 classifiers where 30 of
them were created randomly in the first generation, crowding
factor 18, crowding size 3. In [7] grammars were evolved up
to 200,000 generations.

The main results of the NL grammar induction with GCS
are summarized in Table 5. For each learning corpus, the
table shows the target language, and four sets of results. The
first is the best fitness gained by GCS within 10 experiments
and compared approach presented in [6] (denoted by AKM).
The fitness describes the percentage of sentences (correct and

incorrect) recognized correctly. The next results of the GCS
model refer to the experiment in which best fitness was
obtained. The second result, positive, shows the percentage of
correct examples from the train set classified correctly. The
third sort of results, negative, is the percentage of negative
examples classified incorrectly, and the last one indicates the
number of generations needed to reach the best fitness
(evals).

Table 5. Comparison of NL grammar inductions using genetic
approach (AKM) with GCS

Corpus

Fitness Positive Negative Evals
GCS AKM GCS AKM GCS AKM GCS AKM

children 93.2 93.1 98.8 91.8 12.5 5.7 9 200,000
wizard 94.6 90.2 99.3 89.5 10.2 9.2 32 200,000
alice 89.5 92.1 96.8 92.5 17.9 8.4 81 200,000
tom 86.3 92.1 98.4 92.7 25.9 8.6 3 200,000

brown_a 93.8 94.0 98.3 94.1 11.6 6.1 45 48,500
brown_b 94.6 94.0 99.3 94.7 10.2 6.7 506 200,000
brown_c 92.5 87.9 96.7 80.5 11.7 4.7 592 15,500
brown_d 91.6 91.3 97.1 88.2 13.8 5.6 18 45,000
brown_e 89.5 94 93.4 93.9 14.5 5.9 38 122,000

In case of 5 corpuses the GCS model induced a grammar

of higher quality fitness, for the brown this value is only
slightly lower (93.8% for GCS, and 94.0% for AKM), and in
the remaining 3 cases the estimator’s value is lower, but not
exceeding 5%. The values of the positive estimator are in 8
cases significantly higher for the GCS model (the differences
oscillate in the range of 4.2% and 16.2%), and for the brown
corpus the AKM approach got a result which is better by
0.5%. Undoubtedly, the worst for the GCS model comes up
the comparison of the negative values – for each corpus the
model got decidedly higher values of this estimator, and the
differences oscillate in the range 1% for wizard to 17.3% for
tom corpus. It indicates that during the grammar induction the
GCS model created in a few cases (for 5 bodies the
differences do not exceed 7%) productions which are too
universal in comparison to the AKM approach, which also
parse a part of negative sentences. The last parameter which
can be compared is the number of evolutionary steps (evals),
in which both approaches found their best solutions. In as
many as 6 cases the GCS model did not exceed 50 steps, in
the next case did not exceed 100 steps, and two longest
inductions took only slightly above 500 steps (somewhat over
an hour). The AKM approach took, in the best case, 15,500
steps, and for as many as 5 corpora – 200,000 steps, and,
according to the authors, 60 hours of calculation (!) The GCS
model proved to be incomparably more effective, being able
to find, in the majority of cases, the grammars with higher
values of fitness and positive estimators.

The results of the performed generalization tests do not
diverge considerably from values of fitness, positive, and
negative gained by the best grammars. It proves not about
properties of grammars as rather a homogeneous origin of
learning and testing corpuses.

An example of grammar learned for the corpus children is
shown in Fig. 3. Symbol S stands for the starting symbol of
CFG. The rule 3 forms quite obvious group adjective noun,
as well as rule 13 - noun verb. The model found in the corpus
also often appearing in English bigrams, such as noun adverb
(rule 14), noun conjunction (rule 15), verb adverb (rule 17),

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1589 Issue 10, Volume 7, October 2008

or verb conjunction (rule 18). The sentence can start from the
article (rule 10), why adding the article for the beginning of
sentence is also keeping its correctness. The vast majority of
context-free production rules (rules 1-11) is beginning from
the starting symbol S what suggests the big generality of
these rules. On one hand it will knock for economical writing
of the entire grammar, on the other hand, however, such a
versatility is also enabling the parsing of sentences not
belonging to the language.

1. S → SE 8. S → SB 15. G → AF 22. F → f
2. S → SS 9. S → ES 16. E → MM 23. E → e
3. S → CA 10. S → FS 17 C → BD 24. D → d
4. S → DS 11. S → GR 18. C → BF 25 C → c
5. S → BS 12. R → SM 19. S → a 26. B → b
6. S → SK 13. M → AB 20. S → c 27. A → a
7. S → MF 14. K → AD 21. G → g

Fig. 3. Induced grammar for corpus children

6 Promoter Regions Recognition

6.1 Preliminaries
Since a biological sequence is usually represented as a text
that consists of a finite set of characters that represent
nucleotides or amino acids, designing models based on
formal languages have been constantly proposed since the
early era of bioinformatics. Formal biosequence linguistic
research has used finite-state automata, stochastic grammars
based on hidden Markov models [15], and grammars based
on computational logic [48]. The logic grammar approach to
DNA language analysis involved mainly representing
structures of a biological sequence in Definite Clause
Grammar (DCG) and Prolog [41], [11], [46] or in systems of
equivalent representational power to DCGs [31]. A
formulation of DNA patterns in any formal grammar requires
support of human (time consuming, as well as error prone
method) and/or machine learning methods, such as a
knowledge-based neural network [49], [54], [31] or
grammatical inference methods [47]. It is worth mentioning
that the last approach concentrated mainly on the estimation
of probability parameters of stochastic grammars while the
problem of learning the structure of grammars remains a
difficult task with a few positive results on biological
sequences.

The use of GCS in learning formal grammar for DNA
sequence will be demonstrated in recognition of Escherichia
coli promoter sequences, which are probably the most studied
and cited sequences in molecular biology.

6.2 Experimental testbed
During the last years many prokaryotic genomes have been
sequenced, including that of Escherichia coli [8]. The gene
content of these genomes was mostly computationally
recognized. However, the promoter regions are still
undetermined in most cases and the software able to
accurately predict promoters in sequenced genomes is not yet
available in public domain. Promoter recognition, the
computational task of finding the promoter regions on a DNA
sequence, is very important for defining the transcription
units responsible for specific pathways (because gene

prediction alone cannot provide the solution) and for analysis
of gene regulation. A promoter enables the initiation of a
gene expression after binding with an enzyme called RNA
polymerase, which moves bidirectionally in searching for a
promoter and starts making RNA according to the DNA
sequence at the transcription initiation site following the
promoter [35], [32]. The most significant patterns in E.coli
promoter sequences are the −10 and −35 regions, which are
approximately at the region of 10 bases and 35 bases before
the transcription initiation site. The spacing (gap) between the
−10 and −35 regions is not fixed, ranging from 15 to 19
bases. The −35 and −10 sequences together are the contact
region for RNA polymerase.
The genome is treated by GCS as a string composed of letters
{A, C, T, G}. The goal is, given an arbitrary potential
promoter region to be able to find out whether it is a true or
false promoter region. As the learning set the database
contributed by M. Noordewier and J. Shavlik to UCI
repository [36] was used. The database consists of 53 positive
instances and 53 negative instances, 57 letters each. Negative
learning sentences were derived from E. coli bacteriophage
T7 believed to not contain any promoter sites. In order to get
an estimate of how well the algorithm learned the concept of
promoter, the test set consisting of unseen 36 instances
including 18 positive and 18 negative examples was
prepared. Positive test instances were prepared by mutating
the bases of the randomly chosen positive learning sentences
in non-critical positions, negative test instances by mutating
in any positions of randomly chosen negative learning
sentences. This method increases the amount of available
examples and was first proposed in [38].

6.3 Experiments
Evolution on learning promoter database ran for 5,000
generations, with the following genetic parameters: number
of nonterminal symbols 19, number of terminal symbols 4,
crossover probability 0.2, mutation probability 0.8,
population consisted of maximal 150 classifiers where 130 of
them were created randomly in the first generation, crowding
factor 18, crowding size 3. The experiment was repeated 10
times because GCS uses random classifiers during
initialization and learning.

After each execution four numbers were calculated: True
Positives (correctly recognized positive examples), True
Negatives (correctly recognized negatives), False Negatives
(positives recognized as negatives), and False Positives
(negatives recognized as positives). Then the average of these
numbers were found and the following measures were
calculated: Specificity, Sensitivity, and Accuracy. Specificity
is a measure of the incidence of negative results in testing all
the non-promoter sequences, i.e. (True Negatives/(False
Positives + True Negatives)) x 100. Sensitivity is a measure
of the incidence of positive results in testing all the promoter
sequences, i.e. (True Positives/(True Positives + False
Negatives)) x 100. Accuracy is measured by the number of
correct results, the sum of true positives and true negatives, in
relation to the number of tests carried out, i.e. ((True
Positives + True Negatives/Total) x 100. GCS achieved
74.5% accuracy, 87.5% specificity, and 62.5% sensitivity in
the learning set. Much more interesting are the results gained

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1590 Issue 10, Volume 7, October 2008

during generalization tests on the previously unseen examples
from test set. Table 6 compares the results of GCS and two
formal system based methods presented in [31].

Table 6. Comparison of different promoter recognition methods

Method Specificity Sensitivity Accuracy
KBANN 97 16 56
WANN 82 69 75

GCS 94 61 78

It would be useful if the ROC (Receiver Operating
Characteristic) curve [51] could be plotted, and the area
under the ROC curve could be used for comparison of above
methods. Note though, that in the GCS approach it is
impossible to obtain decision threshold, i.e. the sample
sentence can be true or false entirely, and is accepted or
rejected by CYK entirely.

Leung at all [31] introduced Basic Gene Grammars
(BGG) to represent many formulations of the knowledge of
E.coli promoters. BGG is able to represent knowledge
acquired from knowledge-based artificial neural network
learning (KBANN approach [54]), and combination of
grammar of weight matrices [45] and KBANN (denoted as
WANN). Development of BGG is supported by DNA-
ChartParser. The method was tested on 300 E.coli promoters
and 300 non-promoter random sequences. Authors have not
announced what length of sequences was examined. GCS
achieved better accuracy then individual KBANN grammar
and combined grammars, and better specificity then WANN
approach.

7 Summary
Grammar-based Classifier System was found to be a
promising tool for grammatical inference. GCS has been
proposed to address both the RL and NL grammar induction
as well as learning formal grammar for DNA sequence. In all
cases near-optimal and/or better than reported in the literature
solutions were obtained. More detailed conclusions are given
below.

Our experiments attempted to apply GCS to evolutionary
computation in evolving an inductive mechanism for the
Tomita language set. Performance of GCS was compared to
the Evidence Driven State Merging algorithm, one of the
most powerful known DFA learning algorithms. GCS with its
ability of generalizations outperforms EDSM, as well as other
significant evolutionary method.

GCS provided comparable or better results to the pure
genetic NL induction approach, but in a significantly shorter
time. The efficient implementation for grammar induction is
very important during analysis of large text corpora. The
evolved grammars accept quite a lot of sentences that are not
valid English, but reject most non-English sentences. At the
same time automatically induced grammars, although they
are dissimilar to hand-written grammars, recognize very
good, near 100% correct English sentences.

GCS proved to be useful in finding and representing
E.coli promoter region. The proposed method provided
comparable or better results to the specialized formal system
based on human-devised domain theory and knowledge
discovered by neural network learning. It is worth

mentioning, that proposed approach does not break up
promoter regions into important or unimportant parts (such as
contact, conformation, minus_35, minus_10), but treats them
as whole entities. Therefore, this method could be preferable
in cases when we have sufficient number of known promoter
regions, but might not know anything about their
composition. The results suggest that the information in
“unimportant” parts (gaps) might also be important for right
recognition.

References:

[1] Angeline P.: Evolutionary Algorithms and Emergent
Intelligence. PhD Thesis. Computer Science Department, Ohio
State University (1994)

[2] Angeline P.: An alternative to indexed memory for evolving
programs with explicit state representations. In: Koza J.R. et al
(eds.) Proc. 2nd Conf. Genetic Programming (GP97). Morgan
Kaufmann, San Francisco, CA, 423–430 (1997)

[3] Angeline P., Saunders G.M., Pollack J.P.: An Evolutionary
Algorithm that Constructs Recurrent Neural Networks. IEEE
Trans. Neural Networks, vol. 5, no. 1, 54–65 (1994)

[4] Angluin D.: A note on the number of queries needed to
identify regular languages. Information and Control, 51, 76–
87 (1981)

[5] Angluin D.: Queries and concept learning. Machine Learning
2(4), 319–342 (1988)

[6] Aycinena M., Kochenderfer M.J., Mulford D.C.: An
evolutionary approach to natural language grammar induction.
Final project for CS224N: Natural Language Processing.
Stanford University (2003)
http://homepages.inf.ed.ac.uk/s0341074/docs/aycinena-
kochenderfer-mulford-2003-cs224n.pdf

[7] Bianchi D.: Learning Grammatical Rules from Examples
Using a Credit Assignement Algorithm. In: Proc. of The First
Online Workshop on Soft Computing (WSC1), 113–118.
Nagoya (1996)

[8] Blattner F., Plunkett G., Bloch C., Perna N., Burland V., Riley
M., Collado-Vides J., Glasner J., Rode C., Mayhew G. et al.
(eds.) The complete genome sequence of Escherichia coli k-
12. Science 277, 1453–1462 (1997)

[9] Bongard J., Lipson H.: Active Coevolutionary Learning of
Deterministic Finite Automata, J. of Machine Learning
Research, 6, 1651–1678 (2005)

[10] Cicchello O., Kremer S.C.: Beyond EDSM. In: Proc. Int’l
Colloquium Grammatical Inference, vol. 2484, 37–48 (2002)

[11] Collado-Vides J.: Grammatical model of the regulation of
gene expression. In: Proc. Natl Acad. Sci. USA, 89, 9405–
9409 (1992)

[12] Cyre W.R.: Learning Grammars with a Modified Classifier
System. In: Proc. 2002 World Congress on Computational
Intelligence, 1366–1371. Honolulu, Hawaii (2002)

[13] Dupont P.: Incremental regular inference. In: Miclet L., de la
Higuera C. (eds.) Proc. 3rd ICGI-96, LNAI, vol. 1147, 222–
237. Springer (1996)

[14] Dupont P., Miclet L., Vidal E.: What Is the Search Space of
the Regular Inference? In: Carrasco R.C., Oncina J. (eds.)
Proc. Grammatical Inference and Applications: Second Int’l
Colloquium (ICGI-94), 25–37 (1994)

[15] Durbin R., Eddy S., Krogh A., Mitchison G.: Biological
Sequence Analysis. Cambridge University Press, Cambridge
(1998)

[16] Giles C., Sun G., Chen H., Lee Y., Chen D.: Higher order
Recurrent Neural Networks and Grammatical Inference. In:
Touretzky D. (ed.) Advances in Neural Information
Processing Systems 2, 380–387. San Mateo, Calif.: Morgan
Kaufman (1990)

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1591 Issue 10, Volume 7, October 2008

[17] Gold E.: Language identification in the limit. Information
Control 10, 447–474 (1967)

[18] Hamdi-Cherif C., Hamdi-Cherif A.: ILSGInf – An Inductive
Learning System for Grammatical Inference, WSEAS Trans.
on Computers, 7(6), 991–996 (2007)

[19] de la Higuera C.: Current trends in grammatical inference. In:
Ferri F.J. et al (eds.) Advances in Pattern Recognition. Joint
IAPR International Workshops SSPR+SPR'2000, LNCS, vol.
1876, 28–31. Springer (2000)

[20] Holland J.: Adaptation. In: Rosen R., Snell F.M. (eds.)
Progress in theoretical biology. Plenum, New York (1976)

[21] Holland J.: Escaping Brittleness: The possibilities of General-
Purpose Learning Algorithms Applied to Parallel Rule-Based
Systems. In: Michalski R.S. et al. (eds.) Machine Learning, an
Artificial Intelligence Approach, vol. II, 593–623. Morgan
Kaufmann (1986)

[22] Holmes J.H., Lanzi P.L., Stolzmann W., Wilson S.W.:
Learning classifier systems: new models, successful
applications. Information Processing Letters 82(1), 23–30
(2002)

[23] Hopcroft J.E. Ullman J.D.: Formal Languages And Their
Relation to Automata. Reading, Mass.: Addison-Wesley
(1969)

[24] Hopcroft J.E. Ullman J.D.: Introduction to Automata Theory,
Languages and Computation. Addison-Wesley (1979)

[25] Judd K.L., Tesfatsion L.: Agent-Based Computational
Economics. Handbook of Computational Economics, vol. 2,
Elsevier, North-Holland (2005)

[26] Katagami D., Yamada S.: Real robot learning with human
teaching. In The Fourth Japan-Australia Joint Workshop on
Intelligent and Evolutionary Systems, 263–270 (2000)

[27] Katagami D., Yamada S.: Interactive Classifier System for
Real Robot Learning. In: IEEE International Workshop on
Robot-Human Interaction ROMAN-2000, Osaka, Japan, 258–
263 (2000)

[28] Lang K., Pearlmutter B., Price R.: Results of the Abbadingo
One DFA Learning Competition and a New Evidence Driven
State Merging Algorithm. In: Proc. Int. Colloquium on
Grammatical Inference ICGA-98, LNAI, vol. 1433, Springer,
Berlin, Heidelberg, 1–12 (1998)

[29] Lanzi P.L., Riolo R.L.: A Roadmap to the Last Decade of
Learning Classifier System Research. In: LNAI, vol. 1813, 33-
-62. Springer Verlag (2000)

[30] Lee L., Learning of Context-Free Languages: A Survey of the
Literature. Report TR-12-96, Harvard University, Cambridge,
Massachusetts (1996)

[31] Leung S.W., Mellish C., Robertson D.: Basic gene grammars
and DNA-chart parser for language processing of Escherichia
coli promoter DNA sequences. Bioinformatics 17, 226--236
(2001)

[32] Lewin B.: Genes VII. Oxford University Press, Oxford (2000)
[33] Lucas S., Reynolds T.J.: Learning Deterministic Finite

Automata with a Smart State labeling Evolutionary Algorithm.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 27
(7), 1–12 (2005)

[34] Luke S., Hamahashi S., Kitano H.: ‘Genetic’ Programming”.
In: Banzhaf W. et al. (eds.) Proc. Genetic and Evolutionary
Computation Conf., 1098–1105 (1999)

[35] Mishra R., Chatterji D.: Promoter search and strength of a
promoter: two important means for regulation of gene
expression in Escherichia coli. J. Biosci. 18 1–11 (1993)

[36] Murphy P.M., Aha D.W.: UCI Repository of Machine
Learning Databases. Department of Information and Computer
Science, University of California at Irvine, Irvine, CA (1992)

[37] Oncina J., Garcià P.: Inferring regular languages in
polynomial update time. In: Perez N. et al. (eds.) Pattern

recognition and image analysis. Singapore, World Scientific,
49–61 (1992)

[38] O’Neill M.: Escherichia coli promoters: neural networks
develop distinct descriptions in learning to search for
promoters of different spacing classes. Nucleic Acids Res. 20,
3471–3477 (1992)

[39] Pao T., Carr J.: A solution of the syntactic induction-inference
problem for regular languages. Computer Languages, 3, 53–64
(1978)

[40] Parekh R.G., Honavar V.G.: An incremental interactive
approach for regular grammar inference. In: Proc. 3rd ICGI-
96, LNAI, vol. 1147, Springer, Berlin, Heidelberg, 238–250
(1996)

[41] Pereira F., Warren D.: Definite clause grammars for language
analysis. Artif. Intell. 13, 231–278 (1980)

[42] Pitt L.: Inductive inference, DFAs and computational
complexity. In: Proc. Int. Workshop on Analogical and
Inductive Inference, LNAI, vol. 397, Springer, London, UK,
18–44 (1989)

[43] Pitt L., Warmuth M.: The Minimum Consistent DFA Problem
Cannot Be Approximated within Any Polynomial. J. ACM,
vol. 40, no. 1, 95–142 (1993)

[44] Porat F., Feldman J.: Learning automata from ordered
examples. Machine Learning, 7, 109–138 (1991)

[45] Rice P., Elliston K., Gribskov M.: DNA. In: Girbskov M.,
Devereux J. (eds.) Sequence Analysis Primer. Chapter 1,
Stockton Press, 1–59 (1991)

[46] Rosenblueth D., Thieffry D., Huerta A., Salgado H., Collado-
Vides J.: Syntactic recognition of regulatory regions in
Escherichia coli. Comput. Appl. Biosci. 12, 415–422 (1996)

[47] Sakakibara Y.: Grammatical Inference in Bioinformatics.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27 (7), 1051–1062 (2005)

[48] Searls D.: Linguistic approaches to biological sequences.
Bioinformatics 13, 333–344 (1997)

[49] Shavlik J., Towell G., Noordewier M.: Using neural networks
to refine existing biological knowledge. Int. J. Genome Res. 1,
81–107 (1992)

[50] Solan Z., Horn D., Ruppin E., Edelman S.: Unsupervised
learning of natural languages. In: Proc. Nat. Acad. Science.
US, 102, 11629–11634, (2005)

[51] Sonego P., Kocsor A., Pongor S.: ROC analysis: applications
to the classification of biological sequences and 3D structures.
Briefings in Bioinformatics, doi:10.1093/bib/bbm064 (2008)

[52] Stolzmann W.: An Introduction to Anticipatory Classifier
Systems. In: LNAI, vol. 1813, 175–194. Springer-Verlag
(2000)

[53] Tomita M.: Dynamic construction of finite automata from
examples using hill climbing. In: Proc. 4th Annual Cognitive
Science Conf., USA, 105–108 (1982)

[54] Towell G., Shavlik J.: Extracting refined rules from
knowledge-based neural networks. Machine Learning 13, 71–
101 (1993)

[55] Unold O.: Context–free grammar induction using evolutionary
methods, WSEAS Trans. on Circuits and Systems, 3(2), 632–
637 (2003)

[56] Unold O.: Context-free grammar induction with grammar-
based classifier system. Archives of Control Science, vol. 15
(LI) 4, 681–690 (2005)

[57] Unold O.: Playing a toy-grammar with GCS. In: Mira J,
Álvarez J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, 300–
309. Springer Verlag (2005)

[58] Unold O.: Learning classifier system approach to natural
language grammar induction. In: Shi Y. et al. (eds.) ICCS
2007, Part II, LNCS, vol. 4488, 1210–1213 (2007)

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1592 Issue 10, Volume 7, October 2008

[59] Unold O.: Grammar-based classifier system for recognition of
promoter regions. In: Beliczynski B. et al. (eds.)
ICANNGA07, Part I, LNCS, vol. 4431, 798–805 (2007)

[60] Unold O., Cielecki L.: Grammar-based Classifier System. In:
Hryniewicz O. et al. (eds.) Issues in Intelligent Systems:
Paradigms. EXIT Publishing House, Warsaw, 273–286 (2005)

[61] Unold O., Dabrowski G.: Use of learning classifier system for
inferring natural language grammar. In: Abraham A et al.
(eds.) Design and application of hybrid intelligent.
Amsterdam, IOS Press, 272–278 (2003)

[62] Waltrous R., Kuhn G.: Induction of finite state automata using
second-order recurrent networks. In: Moody J. et al. (eds.)
Advances in Neural Information Processing 4. Morgan
Kaufmann, San Francisco, CA, 309–316 (1992)

[63] Wilson S.W.: Classifier Fitness Based on Accuracy.
Evolutionary Computation 3 (2), 147–175 (1995)

[64] Yoshikawa M., Kihira T., Terai H.: Q-learning based on
hierarchical evolutionary mechanism, WSEAS Trans. on
Systems and Control , 3(3), 219–228 (2008)

[65] Younger D.: Recognition and parsing of context-free
languages in time n3. University of Hawaii Technical Report,
Department of Computer Science (1967)

WSEAS TRANSACTIONS on COMPUTERS Olgierd Unold

ISSN: 1109-2750 1593 Issue 10, Volume 7, October 2008

