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Abstract: - This paper describes an interval type-2 fuzzy modeling framework, reduced-set vector-based interval 
type-2 fuzzy neural network (RV-based IT2FNN), to characterize the representation in fuzzy logic inference 
procedure. The model proposed introduces the concept of interval kernel to interval type-2 fuzzy membership, 
and provides an architecure to extract reduced-set vectors for generating interval type-2 fuzzy rules. Thus, the 
overall RV-based IT2FNN can be represented as series expansion of interval kernel, and it does not have to 
determine the number of rules in advance. By using a hybrid learning mechanism, the proposed RV-based 
IT2FNN can construct an input-ouput mapping from the training data in the form of fuzzy rules. At last, 
simulation results show that the RV-based IT2FNN obtained possesses nice generalization and transparency. 
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1   Introduction 
Both fuzzy logic and neural networks are aimed at 
exploiting human knowledge processing capability. 
The fuzzy logic system using linguistic information 
can model the qualitiative aspects of human 
knowledge and reasoning processes without 
employing precise quantitative analyzes. The neural 
network is a popular generation of information 
processing systems that equip the intelligent 
methodologies with better learning capabilities. 
Much research has been done on fuzzy neural 
networks, which combine the capability of fuzzy 
reasoning in handling uncertain information and the 
capability of neural networks in learning from 
processes [1]. 

By far, there are many neural learning 
mechanisms that has been designed to construct 
fuzzy model, especially several authors had 
attempted to incorporate support vector machine 
(SVM) which is known as a new neural network in 
statistical learning theory into fuzzy modeling [2]-[7]. 
To combine them, thus taking the advantages of both 
approaches, appears to be desirable. For example, 
SVM were successfully used to construct the fuzzy 
classifiers [2], [3]. By utilizing this methodology, 
support vector learning mechanisem had also been 
applied to identify the structure of fuzzy logic 
systems [4], [5]. Furthermore, considering too many 
support vectors for generating fuzzy rules, some 
other advanced methods aimed at extracting 
reduced-set vectors for generating rules [6], [7].  

However, one point must be noticed that nearly 
all the approaches above about the combination of 

SVM and fuzzy logic systems are related to type-1 
fuzzy logic. Mendel had claimed that type-1 fuzzy 
logic is unable to handle uncertainties which actually 
lie in real world, whereas the type-2 fuzzy logic can 
model them and minimize their effects [8]. Hence, 
although the advanced learning mechanisms are 
proved to be adequate, the nature of type-1 fuzzy 
logic hampers itself to deal with those complicated 
systems which involves more uncertain information. 
Therefore, this led to several type-2 fuzzy logic fuzzy 
modeling algorithms, especially the interval form 
owing to its decreasing computational intensity 
[9]-[15].  

Liang et al. [9] firstly employed steepest-descent 
method to tune the parameters of interval type-2 
fuzzy logic system (IT2FLS). After that, some 
researchers attempted to integrate neural network 
into IT2FLS in order to take advantages of both of 
aspects [10]-[12]. In [10] and [11], type-2 fuzzy sets 
were used in combination with self-learning 
dynamics of membership functions. In [12], a model 
named type-2 fuzzy neural network (T2FNN) was 
presented with dynamical optimal training, and the 
stable and optimal learning rate was derived for each 
iteration in the training process. Furthermore, 
according to the learing mechanism of the 
well-known model, adaptive neuro-fuzzy inference 
system (ANFIS),  a hybrid learning algorithm for 
IT2FLS was proposed. In the forward pass, the 
consequent parameters were estimated by recursive 
least-squares (RLS) method. In the backward pass, 
the error propagates backward, and the antecedent 
parameters were estimated by back-propagation (BP) 
method [13].  
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Although these interval type-2 fuzzy modeling 
approaches are very effective in solving actural 
problems described by numerical examples, their use 
may be hampered by the selection of the initial 
structure of IT2FLS available to the designer, which 
require the choice of the option more suited to the 
application of interest. Actually, the usual way about 
the selection is a tedious and time consuming process 
of successive trials. Taking the number of fuzzy rules 
as the example, too many of them can lead to a 
complicated IT2FLS which will lose its 
generalization ability, whereas few of them can not 
make it possess a good approximation ability. 
Consequently, the IT2FLS, built on finite amount of 
given training data, can not generalize best if the right 
trade-off isn’t found between accuracy and the 
capability of fuzzy model set. The capability, here, 
could be understood as the number of fuzzy rules in 
rule base. Hence, a good type-2 fuzzy rule base 
should have a small number of rules so as to make it 
more transparency and interpretability. To solve this 
problem, the work presented in this paper will 
attempt to introduce reduced-set vector machine 
(RVM) which is regarded as a simlified version of 
SVM into the field of interval type-2 fuzzy logic, and 
present a new kernel function, interval kernel 
function, to the interval type-2 fuzzy membership. In 
result, a new structure of IT2FLS with hybrid 
learning mechanism is formulated in an automatic 
procedure.  
     In details, the model proposed is named as 
RV-based IT2FNN. It combines IT2FLS with RVM 
by means of interval kernel, and fuses two 
mechanism into a new interval type-2 fuzzy inference 
structure. The learning of  RV-based IT2FNN is 
realized via a hybrid learning mechanism involving 
two sub-algorithms: bottom-up simplification 
algorithm, which is exploited to extract reduced-set 
vectors for rapidly generating interval type-2 fuzzy 
IF-THEN rules and ε insensitive learning algorithm, 
which is employed to tune the weighted parameters 
of RV-based IT2FNN.  

The rest of this paper is organized as follows: 
traditional IT2FLS and RVM are briefly summarized 
and discussed in Section 2. A new concept of interval 
kernel is proposed, and the relation between interval 
kernel and interval type-2 fuzzy membership is 
studied in Section 3. Section 4 describes the new 
interval type-2 fuzzy model proposed, and presents 
the associated learning mechanism. Some numerical 
results about the proposed interval type-2 fuzzy 
model are shown in Section 5. Finally, Section 6 
concludes this paper. 
 
 

2 Review of earlier works and analysis 
Given crisp input and output observation data from 
an unknown system, data-driven methods aim to 
construct a decision function  that can serve as 
an approximation of the system. Indeed, both of 
IT2FLS and RVM are employed to describe the 
decision function. This section reviews the 
methodologies of IT2FLS and RVM.  

( )F x

 
 
2.1 IT2FLS 
IT2FLS characterizes the system by a collection of 
interpretable interval type-2 if-then fuzzy rules, and 
the traditional IT2FLS consists of a set of rules with 
the following structure [8]: 

1 1 2 2: ,i i i d idR If x is A and x is A and x is A  
[ , ] 1,2 , .i il irthen y y y for i c= =                  (1) 

In (1), iR is the ith rule in the interval type-2 rule 
base, parameter d  is the dimension of antecedent 
variables 1 2( , , )T

dx x x=x , and denotes 
fuzzy sets defined for the respective antecedent 
variable. The rule consequent is represented by 

which corresponds to the centroid of the 
type-2 interval consequent set. Parameter c is the 
number of fuzzy rules. Assuming that  and  
have been rule-reordered [16], then the decision 
function in terms of interval type-2 fuzzy model by 
fuzzy-mean defuzzification is 
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iAμ x denotes the membership grade of x  in 
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1( ) ( ) ( )i ii df u x u x= • •x .                             (6) 
where •  denotes t-norm, ( )i ju x and ( )i ju x are upper 
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Here, R and are switch points which can be 
obtained by KM algorithm [8]. The identification of 
parameters is to minimize the error measure 

L

[ 21 ( )
2

e F y= −x ]                                                    (9)  

where ( )( ) 2l rF y y= +x . 
As Mendel claimed in [8], the model (2) and (3) 

can effectively describes the relationship between 
input and output under the uncertainty.  
 
 
2.2 RVM 
SVM which possesses high generalization ability has 
been found to be robust in many applications [17]. 
However, one can easily show examples or 
experiments where optimal generalization 
performances of SVM are achieved with the number 
of support vectors more or less than 50% training 
samples. If we tune hyperparameters to reduce the 
number of support vectors, then the desirable 
generalization performances will loss [18]. In other 
words, when we extract support vectors of the 
ordinary solution of SVM for generating fuzzy rules, 
the optimal model selection procedures will produce 
too many fuzzy rules, which will result some 
redundancy rules in rule base, and will confuse our 
understandings. This phenomenon indicates that 
fuzzy modeling based on support vector learning will 
lead to a tradeoff problem between transparency in 
rule-base fuzzy system and performances [6].  

RVM could be seen as a simlified version of 
SVM, since it tries to approximate SVM solutions by 
another comprised by a much smaller number of 
reduced-set vectors. At the same time, it keeps the 
acceptable performances of the original SVM 
solutions. For the problem of decision function 
approximation, RVM is formulated as [18] 

( )1
( ) , .c

i ii
F kθ

′

=
′=∑x x z b+                                         (10) 

where c denotes the number of reduced-set vectors; 
the reduced set consists of 

′
( ){ } ciii ′=′ ,1,zθ , and 

denotes reduced-set vector. The usual way to 
construct reduce set is to minimize 

iz

 ( ) ( )
, 1 1

min ,
i i

c c

i i i i
i iθ
θ θ

′

′
= =

′Φ − Φ∑ ∑z
x z                            (11) 

where iθ and are the original solutions of SVM; 
denotes the number of support vectors;  

ix
c ( , )ik x z

( )( ) ( )i= Φ ⋅Φx z . Several optimal methods had been 
proposed to minimize (10) [18], [19].  
 
 
2.3 Combination 
The aim of this paper is to integrate RVM to IT2FLS, 
and lead to a network which can use the advantages 
of each technique offers. In order to achieve the 
combination, it is useful to examine the similarities 
and differences between them.  

Development of IT2FLS combined with RVM is 
to extract reduced-set vectors for generating interval 
type-2 fuzzy rules, so c and c in (2) and (10) are 
equal. Therefore, one reduced-set vector corresponds 
to one rule. In this way, the model structure is 
automatically determined by reduced-set vectors. To 
accomplish it as the type-1 Takagi-Sugeno fuzzy 
model with RVM [6], the implementation of kernels 
also needs to be available for the interval type-2 
fuzzy memberships. In next section, we will discuss 
a new concept, interval kernel. 

′

 
 
3 Interval kernel 
Chen et al. [2] firstly introduced the reference 
function ( )xμ to construct the kernels. 

( ) ( )1
, ,d

i j ijj
k xμ

=
, .jz= Θ∏x z                                  (12) 

Clearly, the reference function can be regarded as 
exact symmetrical type-1 fuzzy membership. It 
corresponds to the ordinary fuzzy set , and ijA

jΘ denotes the size of support of , denotes the 
center of it. Thus, (12) can be regarded as product 
type multidimensional membership function, and the 
denotation ∏ is also considered as a fuzzy logical 
operator which is t-norm-based algebra product. 
Hence, it is believed that the resulting product-type 
kernels are the form of type-1, and they are “exact”.  

ijA ijz

However, due to the known disadvantages of 
type-1 logic, it seems doubtful whether these “exact” 
kernels are adequate to cope with uncertain or 
complicated real data. Hence, we generalize ordinary 
Mercer kernel onto interval. This leads to the concept 
of interval kernel, 
Definition (interval kernel): If Θ∈  are kernel 
parameters of ordinary Mercer kernel, an interval 
kernel is a function for all 

Ω

:Ik X X IR× →
, dX R∈ ⊆x z , i.e., 

( , ) [ ( , ), ( , ) ],Ik k k=x z x z x z                                     (13) 
where  

( , ) inf ( , ),k k
Θ∈Ω

=x z x z                                           (14) 
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Fig. 1. Symmetric FOU – Gaussian UMF and 

scaled Gaussian LMF 
( , ) sup ( , ).k k

Θ∈Ω
=x z x z                                              (15) 

The expression (14) and (15) respectively represent 
the upper and lower kernel function of interval kernel. 
Obviously, both of them are still ordinary Mercer 
kernel. The following proposition can be viewed as 
showing that interval kernels satisfy a number of 
closure properties, allowing us to create more 
complicated interval kernels from simple building 
blocks. 
Proposition 1 (Closure properties): Let 1

Ik and 2
Ik be 

interval kernels over X X× , . Then the 
following functions are interval kernels: 

a R+∈

(i)  1 2( , ) ( , ) ( , ),I I Ik k k= +x z x z x z
(ii)  1( , ) ( , ),I Ik ak=x z x z

 (iii)  1 2( , ) ( , ) ( , ).I I Ik k k=x z x z x z
The proofs are easy, and leave them to readers. 

Now, assuming (14) and (15) are constructed by 
(12),  then (13) could be particularly formularized as 

( ) ( ) ( )1
, [ , , , , ,dI

ji j ij j ij
k x z xμ μ

=
= Θ∏x z ]j jz Θ     

( )1
[ , ,d ,jj ijj

x zμ
=

= Θ∏  

( )1
, , ]d

j ij jj
x zμ

=
Θ∏ .                           (16) 

According to the theorem 3 in [9], (16) could 
reappear as (17) where denotes product t-norm; •

( ), , jj ijx zμ Θ  and ( ), ,j ij jx zμ Θ  are upper member- 

ship function (UMF) and lower membership function 
(LMF) which bound the footprint of uncertainty 
(FOU) of an interval type-2 membership 
function

ijAμ . In this way, it is clear that the interval 

kernel is equal to primary membership grades of an 
interval type-2 membership function. Here, we 

provide a special FOU for constructing interval 
kernel, i.e., symmetric FOU – Gaussian UMF and 
scaled Gaussian LMF [19]. 

21( ) exp ,
2

xxμ
σ

⎧ ⎫⎪ ⎪⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

                                             (18) 

21( ) exp .
2

xx sμ
λσ

⎧ ⎫⎪ ⎪⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

                                       (19) 

Its a realization is shown in Fig.1.  
Thus, by using the interval kernel (16) instead of 

ordinary Mercer kernel, the decision function in 
terms of an interval RVM model for crisp input and 
output is formulated as 

( )1
[ ( ), ( )] , [ , ].c I

i ii
F F kθ

′

=
′=∑x x x z b b+              (20) 

{ }( ) ( ) ( ) 2.F F F= +x x x                                            (21) 

Note that (21) employs mean computation which 
looks like the form of defuzzified output of an 
interval type-2 fuzzy model. Moreover, this model 
differs from traditional interval regression model [21], 
since it directly exploits interval kernel other than 
interval coefficients to construct regression model. It 
is apparent that the model presented is more simple 
and interpretable. Indeed, if the mean computation 
was abandoned, (20) will directly describe a 
relationship between crisp input and interval output.  
 
 
4 RV-based IT2FNN  
Based on above disscussions, a new model named 
reduced-set vector-based interval type-2 fuzzy neural 
network, i.e., RV-based IT2FNN is formulated in this 
section. The goal of the RV-based IT2FNN is to 
construct a good neuro-fuzzy model that has a good 
structure, good knowledge interpretability, high 
prediction accuracy, and has good generalization 
capability with a small number of rules. Thus, a 
hybrid learning mechanism is presented to achieve it. 
It involves two sub-algorithms: bottom-up 
simplification algorithm and ε insensitive learning 
algorithm. 
 
 
4.1 Model formulation 
By interval arithmetic, we unify (20) and (21) as 
more visible expression 

( )1
( ) , .c h

i ii
F kθ

′

=
′ b= +∑x x z                                   (22) 

where the hybrid kernel is defined as 
( ) ( ) ( ), = , 2 , 2h

i i ik k k+x z x z x z .                     (23) 

( ) ( ) ( ) ( ) ( )
1 1

11 1 1 1 1, [sup , , , , , sup , , , , ].
d d

I
di i d id i d id dX X X Xx X x X

k x z x z x x z xμ μ μ μ
∈ ∈

= Θ Θ Θ∫ ∫ ∫ ∫x z i i i i z xΘ      (17) 
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Fig. 2. The architecture of RV-based IT2FNN 
 
Thus, the interval RVM model (20) and (21) are 
integrated into a standard RVM model 

Actually, hybrid kernel which is encoded as non-
negative combination coefficients and admissible 
Mercer kernels had ever been proposed to make the 
resulting kernels more flexible so as to accommodate 
various requirements [22], [23]. This seems very 
similar to the reason that interval type-2 fuzzy 
memberships are presented. In this paper, we employ 
RVM model (22) to produce reduced-set vectors, and 
then extract them to generate interval type-2 fuzzy 
rules for constructing RV-based IT2FNN.  

We utilize the definition of interval kernel (16), 
(18) and (19) to construct hybrid kernel employed in 
RVM model. As a result, the learning of RVM model 
leads to a reduced set { }

We utilize the definition of interval kernel (16), 
(18) and (19) to construct hybrid kernel employed in 
RVM model. As a result, the learning of RVM model 
leads to a reduced set { }( ) ciii ′=( ) ciii ′=′ ,1,zθ and the basic 
structure of hybrid kernel, i.e., 

( )
2

1

1, exp
2

d j ijd
i j

ij

x z
k s

λσ=

⎧ ⎫⎛ ⎞⎛ ⎞−⎪ ⎪⎜ ⎟= − ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑x z        (24) 

( )
2

1
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2

d j ij
i j
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x z
k

σ=

⎧ ⎫⎛ ⎞⎛ ⎞−⎪ ⎪⎜ ⎟= − ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑x z             (25) 

Based on these information, reduced-set vectors are 
choosen as the centers of interval type-2 fuzzy 
memberships, and then interval type-2 if-then fuzzy 
rules are directly generated. The membership grade 
of x  in the interval type-2 fuzzy set is  iA

2

1

1( ) [ exp ,
2i

d j ijd
A j

ij

x z
sμ

λσ=
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Thus, the primary membership grades of antecedent 
interval type-2 fuzzy set  is ijA

( )Φ x

1( , )Ik x z
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x  

2
1( ) exp .
2ij

j ij
A
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x z
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⎧ ⎫⎛ ⎞−⎪ ⎪= − ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
x                         (27) 

Hence, a new model named RV-based IT2FNN is 
created, and its network is shown in Fig.2.  

1
[ ( ), ( )] ( ) [ , ].

i

c
i Ai

F F bθ μ
′

=
′= + b∑x x x                  (28) 

{ }( ) ( ) ( ) 2.F F F= +x x x                                            (29) 

The resulting model consists of a reduced set of 
linguistic rules in the following form: 

1 1 2 2: ,i i i d idR If x is A and x is A and x is A  
( ) 1,2 ,i ithen y F for i c= =z                      (30) 

where denotes the reduced-set vector obtained. iz
Noticeably, the rules are different from the 

traditional interval type-2 fuzzy rules, here the 
consequent is represented as a singlton not the 
centroid of the type-2 interval consequent set 
However, it does not violate the nature of interval 
type-2 fuzzy logic system, since a fuzzy logic system 
is type-2 as long as any one of its antecedent or 
consequent sets is type-2 [8].  

For the model proposed, we directly choose 
interval kernel as interval type-2 fuzzy memberhip 
function, and the model can be represented as series 
expansion of interval kernel. It means that traditional 
type-reduction procedure in interval type-2 fuzzy 
inference system is given up, and defuzzification 
procedure is successively implemented after 
inference. As Chiang [4] claimed that the remove of 
denominator of the fuzzy basis function does not also 
violate the spirit of fuzzy inference system. 

Moreover, the proposed model could also be 
regarded as a four-layer network. For layer1, it maps 
the input from input space to a higher dimensional 
feature space. This layer is only for clarity and is not 
needed in actual computation. Each node in layer 2 
represents an interval kernel which is seen as interval 
type-2 fuzzy membership, and each reduced-set 
vector corresponds one interval type-2 fuzzy rule. 
The single node in layer3 is a fixed node, which 
performs the function of overall aggregation of all the 
interval type-2 fuzzy rules with weighted paramter 

iθ ′ . Layer4 is a defuzzification unite. It is easy to find 
out that the proposed RV-based IT2FNN has 
adaptive structure according to reduced-set vectors, 
while the structure of traditional interval T2FNN 
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needs to be specified in advanced. In next subsection, 
hybrid learning mechanism is proposed to training 
the RV-based IT2FNN. 
 
 
4.2 Hybrid learning mechanism 

Given  training data pairs n ( ){ } 1, ,
,k k k n
y

=
x  

dR R⊂ × with unknown joint distribution ( ),P yx , a 
hybrid learning mechanism which involves two 
sub-algorithms is presented for identifying the 
structure and parameters of RV-based IT2FNN.  

Firstly, the bottom-up simplification algorithm is 
utilized to learn (22) with hybrid kernel, and then 
rapidly produce reduced-set vectors for construct the 
structure of RV-based IT2FNN. Thus, the rule 
number of RV-based IT2FNN is entirely determined 
by the number of reduced-set vectors, and it need not 
to fix on the rule number in advance. 

Here, the bottom-up simplification algorithm can 
be viewed as a bottom-up hierarchical clustering 
procedure, in which two nearest support vectors are 
iteratively selected belonging to the same class and 
replaced by a newly constructed one. Moreover, the 
construction of the new vectors requires to find the 
unique maximum point of a one-variable function on 
(0,1), not to minimize a function of many variables 
with local minima [19]. In our paper, an additional 
proposition is given in the followings for the hybrid 
kernel created by (24) and (25), 
Proposition 2: For the hybrid kernel  

( ),hk =x z  

2

1

1 1exp
2 2

d j j
j

j

x z
σ=

⎧ ⎫⎛ ⎞⎛ ⎞−⎪ ⎪⎜ ⎟− +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑  

2

1

1 1exp
2 2

d j jd
j

j

x z
s

λσ=

⎧ ⎫⎛ ⎞⎛ ⎞−⎪ ⎪⎜ ⎟− ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑ , 

the 2-norm optimal approximation of  ( )iM m= Φ x
(1 ) ( )jm+ − Φ x , ( )i i jm α α α= + , 0i jα α > , is the 

image of input vector y determined by 
(1 )ik k= + −z x x j

2k

                                               (31) 
where k is the maximum point of  

2(1 )( ) (1 )k
ij ijg k mC m C−= + −                             (32) 

with . ( , )h
ij i jC k= x x

According to the addtional proposition for hybrid 

kernel, the overall simplification bottom-up 
algorithm used here is as the same as the one in [19]. 
So, after the learning of the first sub-algorithm, the 
structure of RV-based IT2FNN is directly created by 
following the procedures in section 3.1.  

Subsequently, the second sub-algorithm is used to 
refine RV-based IT2FNN, i.e.,  ε insensitive 
learning algorithm. This algorithm has been 
developed for type-1 fuzzy modeling [6], [24]. Here, 
it is employed to tune the weighted parameters of our 
RV-based IT2FNN.  

More specially, combine (28) and (29) that lead to 

1
( ) [ ( )] .

i

c
i Ai

F Med bθ μ
′

=
′= +∑x x

k

                           (33) 

Let
1

( ) [ ( )], , [ ( )]
c

T

k kA AMed Medψ μ μ
′

⎡ ⎤= ⎣ ⎦x x x and 

[ ]1, , T
cθ θ θ ′′ ′ ′= , then rewrite (33) for k training 

data 
th

( ) ( )T
k k .F bψ θ ′= +x x                                                  (34) 

Using ε insensitive learning loss function, the 
learning algorithm has the following form [24] 

, 1
min ( , ) ( )

c

n
T

k k
R b R k

E b C y b
εθ

θ ψ
′′∈ ∈ =

′ ′= − −∑ x θ  

1
2

Tθ θ′ ′+    (35) 

The above minimization can be found by means 
of methodogy introduced by Vapnik [25]. Generally, 
the key idea is to construct a Lagrange function from 
the objective function by introducing a dual set of 
variables.  

By introducing slack variables  for all 
data pairs we can write 

, 0k kξ ξ+ − ≥

( ) ,T
k ky b kψ θ ε ξ +′− − ≤ +x  

( )T
k ky b .kψ θ ε −′− + + ≤ +x ξ                                     (36) 

Using (36), criterion (35) takes the form 

( )
1

1( , ) .
2

n
T

k k
k

E b Cθ ξ ξ θ θ+ −

=

′ ′ ′= + +∑                      (37) 

The minimization of (37) subject to constraints (36) 
and leads to the following Lagrangian 
function (38) where are Lagrange 
multipliers. The objective is to minimize the above 
Lagrangian with respect to 

,k kξ ξ+ − ≥ 0
, , , 0k k k kλ λ μ μ+ − + − ≥

θ ′ , b, ,k kξ ξ+ − and 
maximize with respect to the Lagrange multipliers. 
The following conditions for optimality are obtained 
by differentiating (20) with respect to  θ ′ , b, kξ

+ , 

( ) (
1 1

1 ( )
2

n n
T T

k k k k k k
k k

G C yθ θ ξ ξ λ ε ξ ψ θ+ − + +

= =

′ ′ ′= + + − + − + +∑ ∑ x )b

)k

    

( ) (
1 1

( )
n n

T
k k k k k k k

k k
y bλ ε ξ ψ θ μ ξ μ ξ− − +

= =

′− + + − − − +∑ ∑x + − −   (38)
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kξ
− and setting the results equal to zero 

( )
1

( ) 0,
n

k k k
k

G θ λ λ ψ
θ

+ −

=

∂ ′= − − =
′∂ ∑ x                       

( )
1

0,
n

k k
k

G
b

λ λ+ −

=

∂
= − =

∂ ∑  

0,k k
k

G C λ μ
ξ

+ +
+

∂
= − − =

∂
 

0.k k
k

G C λ μ
ξ

− −
−

∂
= − − =

∂
                                       (39) 

The last two conditions (21) and the requirements kμ
+ , 

imply that . Thus, the weighted 
paramters of RV-based IT2FNN are estimated by 

0kμ
− ≥ [, 0,k k Cλ λ+ − ∈ ]

( )
1

( )
n

k k k
k

θ λ λ ψ+ +

=

′ = −∑ x                                       (40) 

By inserting conditions (39) into Lagrangian (38) we 
obtain 

( )( )
1 1

1 ( ) ( )
2

n n
T

k k j j k k
k j

G λ λ λ λ ψ ψ+ − + −

= =

= − − −∑∑ x x  

( ) (
1 1

n n

k k k k k
k k

y )ε λ λ λ λ+ − + −

= =

− + + −∑ ∑ .   (41) 

The maximization of (41) with respect to ,k kλ λ+ −  
subjec to constraints: 

( )
1

0
n

k k
k

λ λ+ −

=

− =∑ , 

[, 0,k k Cλ λ+ − ∈ ]                                                           (42) 
is the Wolfe dual formulation of (38). 

Hence, based on the above discussion, the overall 
hybrid learning mechanism for RV-based IT2FNN is 
summerized in the followings. 

 
Hybrid learning mechanism of RV-based 
IT2FNN: 
Initialization: interval kernel parameters; insensitive 
error 1ε and regularization parameter for RVM ; 
insensitive error 

1C

2ε  and regularization para- 
meter for insensitive learning; threshold of 
maximum marginal difference (MMD); training data; 
learning rate

2C

α . 
Step 1) use (22) to produce reduced-set vectors 

according to bottom-up simplification algorithm; 
Step 2) construct RV-based IT2FNN on the basis 

of (24)- (29); 
Step 3) adjust the weighted parameter θ ′ by 

ε insensitive learning algorithm; 
 
 
5   Simulations 

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

training points
regression curve
support vectors

 
(a) 9 support vectors with ε =0.005 
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(b) 7 support vectors with ε =0.08 

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

training points
regression curve
support vector

 
(c) 14 support vectors with ε =0.001 

Fig.3 Fuzzy modeling results using support vector  
 
To illustrate the approach, we will design two 

simulations in the followings. 
5.1 Sinc function 

Let us consider the 1-D sinc function, 
sin( ) , 0

sinc( ) .
1 ,

x x if x
x

if x
≠⎧

= ⎨ =⎩ 0
                             (50) 
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Fig.4 RV-based IT2FNN modeling results with 7 
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Fig. 5 Mackey-Glass chaotic time series 

 
The training set consists of 61 training points which 
are generated range from 3π− to 3π . Type-1 fuzzy 
model based on support vector learning mechanism 
learning mechanism with different ε for has been 
developed to fit this target [4]. In result, 9 support 
vectors are obtained with , 1 10C = 1 0.005ε = , 

2.22σ = . Furthermore, we will discuss the role of 
parameter 1ε  which usually decides the number of 
support vectors used to construct the number of 
fuzzy rule. Here, parameter 1ε  is respectively reset 
to 0.08 and 0.001 with 7 support vectors obtained 
and 14 ones. All the results are shown in Fig.3. 
Obviously, high accuracy needs more number of 
rules, whereas fewer number of rules make the 
resulting model loss the nice performance.  

Our goal is to train the RV-based IT2FNN for 
fitting the desired target (50). For initial parameters, 
we set ,1 10C = 1 0.08ε = , 2.22

(a) type-1 fuzzy model based on SV learning 
mechanism with 21 rules 
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(b) IT2FLS combined back propagation with 10 
rules
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(c) RV-based IT2FNN with 10 rules 
Fig. 6 Prediction of Mackey-Glass chaotic time 

series with different fuzzy modeling  
 σ = MMD, = 0.05, 

0.2α = , ,0.6
from type-1 fuzzy model with 9 support vectors. 
Consequently, the RV-based IT2FNN proposed 
could effectively decrease the number of fuzzy rules, 
at the same time possess acceptable performance.  

s = 1.5λ = 2 10C =, , 2 0.01ε = . After 
hybrid learning, the regression curve of RV-based 
IT2FNN is shown in Fig.4. The training rms error is 
0.0031 which is even smaller than 0.0036 obtained   
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5.2 Prediction of Mackey-Glass time series 
The Mackey-Glass chaotic time series can be 
represented as [4],[8] 

10

( ) 0.2 ( ) 0.1 ( ).
1 ( )

ds t s t s t
dt s t

τ
τ

−
= −

+ −
                             (51) 

When 17τ > , (51) exhibits chaotic behavior. In 
simulating (51), we converted it to a discrete-time 
equation by using Euler’s method. Denoting 

10

0.2 ( )( , ) 0.1 ( )
1 ( )

s nf s n s n
s n

τ
τ

−
= −

+ −
,                           (52) 

then  
( 1) ( ) ( , )s n s n f s+ = + n ,                                         (53) 

where the initial value of ( )s n is set randomly. In our 
simulation, τ is chosen as 30. 

The goal of this task is to use known values of the 
time series up to the point ( )s n  to predict the value at 
some point in the future ( )s n P+ .The standard 
method for this type of prediction is to create a 
mapping from D points of the time series spaced 

apart, that is, Δ ( ) ( ) ( )( )( 1) , , ,s n D s n s n− − Δ − Δ , 
to a predicted future value ( )s n P+ . Here, the values 

and are used, i.e., nine points values 
in the series are used to predict the value of the next 
time point. Fig. 5 shows 500 points, – , 
of this chaotic series used to train and test our model.  

9D = 1PΔ = =

(501)s (1000)s

Particularly, the 200 points of the series from 
are used as training data, i.e., 191 

training patterns. Similarly, the final 300 points of the 
series from are used as test data, i.e., 
291 testing patterns.  

(501) (700)s s−

(701) (1000)s s−

In this simulation, we employ type-1 fuzzy model 
based on support vector learning mechanism [4] and 
IT2FLS combined back propagation method [9] to 
predict Mackey-Glass time series, and compare them 
with proposed RV-based IT2FNN.  

Here, we use the standard deviation of time series 
to estimate the width parameterσ of all fuzzy models. 
The other parameters of type-1 fuzzy model based on 
support vector learning mechanism are set to 1 10C = , 

1 0.07ε = . For IT2FLS combined back propagation, 
we initialize the other parameters randomly with 10 
fuzzy rules. In our model, the initialization is set 

to 1 10C = , 1 0.07ε = , 0.2α = , ,MMD 0.01= 90.s = ,

2 0.5C = , 2 0.02ε = , 1.35λ = . After respective 
learning, the results of prediction with different fuzzy 
modeling are shown in Fig. 6. Moreover, the 
measure, root average squared error (RASE), in the 
followings is used to evaluate the predictive accuracy 

Table.1 RASE for training and testing with different fuzzy modeling 

 type-1 fuzzy model based 
on SV learning mechanism

IT2FLS combined back 
propagation method 

RV-based IT2FNN with 
hybrid learning 

mechanism 
RASE for training 0.0469 0.0294 0.0334 
RASE for testing 0.0557 0.0610 0.0556 
Number of rules 21 10 10 

( )2

1
( )

RASE .

n

k k
i

y F

n
=

−
=
∑ x

                                (54) 

The results of RASE for training and testing are 
shown in Table.1.  

Clearly, similar with the results of section 5.1, the 
approach of type-1 fuzzy model based on SV 
learning mechanism leads to more fuzzy rules. 
Besides, the back propagation method makes the 
IT2FLS overfit the training patterns, and the reason 
might be the bad guess about the initial parameter 
locations or initial structure of IT2FLS. The 
predictive accuracy of RV-based IT2FNN is 
acceptable. It is of great important that the number of 
fuzzy rules in proposed model is small. This makes 
the rule base more transparent and interpretable. 

 
 

6   Conclusion 
This paper has tried to build a structural framework 
for interval type-2 fuzzy modeling, i.e., RV-based 
IT2FIS with hybrid learning machanism. In the first 
instance, the functional equivalence between interval 
kernel and interval type-2 membership function is 
established. In this way, the interval type-2 
membership function can be ceated by means of 
kernel transformation in statistical learning theory. 
Subsequently, interval type-2 fuzzy rules could be 
rapidly generated according to the reduced-set 
vectors which are obtained from RVM  with interval 
kernel by using the bottom-up simplification 
algorithm. The resulting model in forms of these 
interval type-2 fuzzy rules gives up traditional type 
reduction procedure, and it is regarded as a four 
layers neural network. It is of great importance that 
RV-based IT2FIS possess adaptive structure which 
is directly determined by reduced-set vectors, and it 
need not to initialize the structure of IT2FLS in 
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advance. Thus, RV-based IT2FNN with hybrid 
learning mechanism effectively complishes the 
structure identification of interval type-2 fuzzy 
sysstem and makes it more accurate. In result, the 
fuzzy model proposed preserves advantages of both 
RVM and IT2FLS. 
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