
Sequential and parallel deficit scaling algorithms for minimum
flow in bipartite networks

LAURA CIUPALĂ ELEONOR CIUREA

Department of Computer Science Department of Computer Science
University Transilvania of Braşov University Transilvania of Braşov

Iuliu Maniu Street 50, Braşov Iuliu Maniu Street 50, Braşov
ROMANIA ROMANIA

laura_ciupala@yahoo.com e.ciurea@unitbv.ro

Abstract: - In this paper, first we describe the deficit scaling algorithm for minimum flow in bipartite networks.
This algorithm is obtained from the deficit scaling algorithm for minimum flow in regular networks developed by
Ciupală in [5] by replacing a pull from a node with sufficiently large deficit with two consecutive pulls. This
replacement ensures that only nodes in N1 can have deficits. Consequently, the running time of the deficit scaling
algorithm for minimum flow is reduced from O(nm+n2 logC) to O(n1m+n1

2 logC) when it is applied on bipartite
networks.

In the last part of this paper, we develop a parallel implementation of the deficit scaling algorithm for minimum
flow in bipartite networks on an EREW PRAM. The parallel bipartite deficit scaling algorithm performs a pull from an
active node with a sufficiently large deficit and with the smallest distance label from N1 at a time followed by a set of
pulls from several nodes in N2 in parallel. It runs in O(n1

2 log C log p) time on an EREW PRAM with p = ⎡m/n1⎤
processors, which is within a logarithmic factor of the running time of the sequential bipartite deficit scaling algorithm
for minimum flow.

Key-Words: - Network flow; Network algorithms; Bipartite network; Parallel algorithms; Minimum flow problem;
Scaling technique

1 Introduction
The literature on network flow problem is extensive.
Over the past 50 years researchers have made continuous
improvements to algorithms for solving several classes of
problems. From the late 1940s through the 1950s,
researchers designed many of the fundamental algorithms
for network flow, including methods for maximum flow
and minimum cost flow problems. In the next decades,
there are many research contributions concerning
improving the computational complexity of network flow
algorithms by using enhanced data structures, techniques
of scaling the problem data etc.

Although it has its own applications, the minimum
flow problem was not dealt so often as the maximum
flow ([1], [2], [3], [14], [15], [16], [17], [18]) and the
minimum cost flow problem ([1], [6], [20]).

There are many problems that occur in economy that
can be reduced to minimum flow problems.

For instance, we present the machine setup problem.
A job shop needs to perform p tasks on a particular day.
It is known the start time π(i) and the end time π’(i) for
each task i, i=1,...,p. The workers must perform these
tasks according to this schedule so that exactly one
worker performs each task. A worker cannot work on two
jobs at the same time. It is known the setup time π2(i, j)
required for a worker to go from task i to task j. We wish

to find the minimum number of workers to perform the
tasks.

We can formulate this problem as a minimum flow
problem in the network G = (N, A, l, c, s, t), determined
in the following way:

 N = N1 ∪ N2 ∪ N3 ∪ N4,
N1 = {s},
N2 = {i | i=1,...,p},
N3 = {i’ | i’=1,...,p},
N4 = {t},
A = A1 ∪ A2 ∪ A3 ∪ A4,
A1 = {(s, i) | i∈N2},
A2 = {(i, i’) | i, i’=1,...,p},
A3 = {(i’, j) | π’(i’)+π2(i’, j)≤π(j)},
A4={(i’, t) | i’∈N3},
l(s, i)=0, c(s, i)=1, for any (s, i)∈A1,
l(i, i’)=1, c(i, i‘)=1, for any (i, i’)∈A2,
l(i’, j)=0, c(i’, j)=1, for any (i’, j)∈A3,
l(i’, t)=0, c(i’, t)=1, for any (i’, t)∈A4.

We solve the minimum flow problem in the network
G=(N, A, l, c, s, t) and the value of the minimum flow is
the minimum number of workers that can perform the
tasks.

The minimum flow problem in a network can be
solved in two phases:

(1) establishing a feasible flow, if there is one

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1545 Issue 10, Volume 7, October 2008

mailto:laura_ciupala@yahoo.com

(2) from a given feasible flow, establish the
minimum flow.

The first phase, i.e. the problem of determining a
feasible flow, can be reduced to a maximum flow
problem (for details see [1]).

For the second phase of the minimum flow problem
there are three approaches:

1. using decreasing path algorithms (see [11],
[12])

2. using preflow algorithms (see [5], [8], [9],
[12])

3. using minimax algorithm which consists of
finding a maximum flow from the sink node
to the source node in the residual network
(see [3], [10]).

The decreasing path algorithms work in the following
way: they start with a feasible flow and they proceed by
determining decreasing paths and by decreasing the flow
along these paths. Any decreasing path algorithm
terminates when the network contains no decreasing path,
which means that the flow obtained is a minimum flow.
The generic decreasing path algorithm for minimum flow
does not specify any rule for determining the decreasing
paths. By specifying different rules, many different
algorithms were developed, which have better running
times then the running time of the generic decreasing
path algorithm.

The preflow algorithms for minimum flow begin with
a feasible flow and send back as much flow, as it is
possible, from the sink node to the nodes that are its
neighbors, creating deficits in these nodes. The basic
operation of any preflow algorithm for minimum flow is
to select an active node (which is an intermediate node
with a strictly negative deficit) and to send the flow
entering in it back, closer to the source. For measuring
closeness, distance labels are used. Any preflow
algorithm for minimum flow terminates when the
network contains no more active nodes, which means that
the preflow is a flow. Moreover, it is a minimum flow.
The generic preflow algorithm for minimum flow does
not specify any rule for selecting active nodes. By
specifying different rules we can develop many different
algorithms, which can have better running times then the
generic preflow algorithm. The deficit scaling algorithm,
developed by Ciupală in [5], always selects an active
node with a sufficiently large deficit.

A third approach of the minimum flow problem
consists of determining a maximum flow from the sink
node to the source node in the residual network. For this,
any maximum flow algorithm can be used.

The algorithms in each of these three classes
(decreasing path algorithms, preflow algorithms,
minimax algorithm) can be modified in order to become
more efficient when they are applied on bipartite
networks.

In this paper, first we describe the deficit scaling
algorithm for minimum flow in bipartite networks. This
algorithm is obtain from the deficit scaling algorithm for
minimum flow in regular networks developed by
Ciupală in [5] by replacing a pull from a node with
deficit with two consecutive pulls. This replacement
ensures that only nodes in N1 can have deficits.
Consequently, the running time of the deficit scaling
algorithm is reduced from O(nm + n2 logC), which is the
running time of the deficit scaling algorithm applied on
regular networks, to O(n1m+n1

2 logC).
In section 5, we develop a parallel implementation of

the deficit scaling algorithm for minimum flow in
bipartite networks. This algorithm performs a pull from
an active node with a large deficit and with the smallest
distance label from N1 at a time followed by a set of
pulls from several nodes in N2 in parallel. On a PRAM
with p = ⎡m/n1⎤ processors, it runs in O(n1

2 log C log p)
time.

2 Notation and definition
We consider a capacitated network G = (N, A, l, c, s, t)
with a nonnegative capacity c(i, j) and with a
nonnegative lower bound l(i, j) associated with each arc
(i, j)∈A. We distinguish two special nodes in the
network G: a source node s and a sink node t.

Let n=|N|, m = |A| and C = max { c(i, j) | (i, j) ∈ A}.
A flow is a function f : A →R+ satisfying the next

conditions:
f(s, N) - f(N, s) = v (1)
f(i, N) - f(N, i) = 0, i ≠ s,t (2)
f(t, N) - f(N, t) = -v (3)
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A (4)

for some v ≥ 0, where
f(i, N) = Σj f(i, j), i∈N

and
f(N, i) = Σj f(j, i), i∈N.
We refer to v as the value of the flow f.
The minimum flow problem is to determine a flow f

for which v is minimized.
For the minimum flow problem, a preflow is a

function f : A →R+ satisfying the next conditions:
f(i, N) - f(N, i) ≤ 0, i ≠ s,t (5)
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A (6)
Let f be a preflow. We define the deficit of a node i∈N

in the following manner:
e(i) = f(i, N) - f(N, i) (7)
Thus, for the minimum flow problem, for any preflow

f, we have e(i) ≤ 0, i∈N \{s, t}.
We say that a node i∈N \{s, t} is active if e(i) < 0 and

balanced if e(i) = 0.
A preflow f for which
e(i) = 0, i∈N \{s, t}

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1546 Issue 10, Volume 7, October 2008

is a flow. Consequently, a flow is a particular case of
preflow.

For the minimum flow problem, the residual capacity
r(i, j) of any arc (i, j)∈A, with respect to a given preflow
f, is given by

r(i, j) = c(j, i) - f(j, i) + f(i, j) - l(i, j).
By convention, if (i, j)∈A and (j, i)∉A, then we add

the arc (j, i) to the set of arcs A and we set l(j, i) = 0 and
c(j, i) = 0. The residual capacity r(i, j) of the arc (i, j)
represents the maximum amount of flow from the node i
to node j that can be canceled by modifying the flow on
both of the arcs (i, j) and (j, i).

The network Gf = (N, Af) consisting only of those arcs
with strictly positive residual capacity is referred to as the
residual network (with respect to the given preflow f).

In the residual network Gf = (N, Af) the distance
function d : N →N with respect to a given preflow f is a
function from the set of nodes to the nonnegative
integers.

We say that a distance function is valid if it satisfies
the following validity conditions:

d(s) = 0
d(j) ≤ d(i) + 1, for every arc (i, j) ∈Af.

We refer to d(i) as the distance label of node i.

Theorem 1.(a) If the distance labels are valid, the
distance label d(i) is a lower bound on the length of the
shortest directed path from node s to node i in the
residual network.

 (b) If d(t) ≥ n, the residual network contains
no directed path from the source node s to the sink node
t.

Proof. (a) Let P = (s=i1, i2 ,…, ik , ik+1=i) be any path of
length k from node s to node i in the residual network.
The validity conditions imply that:
 d(i2) ≤ d(i1)+1=d(s)+1=1
 d(i3) ≤ d(i2)+1≤2
 d(i4) ≤ d(i3)+1≤3

….
 d(ik+1) ≤ d(ik)+1≤ k.
(b) We proved that d(t) is a lower bound on the length of
the shortest path from the source node s to the sink node t
in the residual network and we know that no directed
path can contain more than (n-1) arcs. Consequently, if
d(t) ≥ n, then the residual network contains no directed
path from s to t.

We say that the distance labels are exact if for each
node i, d(i) equals the length of the shortest path from
node s to node i in the residual network.

We refer to an arc (i, j) from the residual network as
an admissible arc if d(j) = d(i) + 1; otherwise it is
inadmissible.

We refer to a node i with e(i) < 0 as an active node.
We adopt the convention that the source node and the
sink node are never active.

3 Deficit scaling algorithm
This algorithm is a special implementation of the generic
preflow algorithm for minimum flow. This algorithm was
developed by Ciurea and Ciupală in [12] and it begins
with a feasible flow and sends back as much flow, as it is
possible, from the sink node to the source node. Because
the algorithm decreases the flow on individual arcs, it
does not satisfy the mass balance constraint (1), (2), (3) at
intermediate stages. In fact, it is possible that the flow
entering in a node exceeds the flow leaving from it. Such
a node is an active node because is has a strictly negative
deficit. The basic operation of this algorithm is to select
an active node and to send the flow entering in it back,
closer to the source. For measuring closeness, the generic
preflow algorithm for minimum flow uses the distance
labels d(⋅). Suppose that j is a node with strictly negative
deficit selected by the algorithm. If it exists an admissible
arc (i, j), it pulls flow on this arc; otherwise it relabels the
node j in order to create at least one admissible arc
entering in the node j. The generic preflow algorithm for
minimum flow repeats this process until the network
contains no more active nodes, which means that the
preflow is actually a flow. Moreover, it is a minimum
flow.

The generic preflow algorithm for minimum flow does
not specify any rule for selecting active nodes. By
specifying different rules we can develop many different
algorithms, which can have better running times then the
generic preflow algorithm. For example, we could select
active nodes in FIFO order, or we could always select the
active node with the greatest distance label, or the active
node with the minimum distance label, or the active node
selected most recently or least recently, or the active node
with the largest deficit or we could select any of active
nodes with a sufficiently large deficit.

The deficit scaling algorithm, developed by Ciupală in
[5], always selects an active node with a sufficiently large
deficit. Like all preflow algorithms for minimum flow,
the deficit scaling algorithm maintains a preflow at every
step and proceeds by pulling the deficits of the active
nodes closer to the source node. For measuring closeness
it uses the exact distance labels. Consequently, pulling
the deficits from the active nodes closer to the source
node means decreasing flow on admissible arcs.
 Let emax = max {-e(i) | i is an active node}.
 The deficit dominator is the smaller integer r that is
a power of 2 and satisfies emax ≤ r . We refer to a node i
with e(i) ≤ - r /2 as a node with large deficit and as a
node with small deficit otherwise.

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1547 Issue 10, Volume 7, October 2008

 The scaling deficit algorithm for the minimum flow
always pulls flow from active nodes with sufficiently
large deficits to nodes with sufficiently small deficits in
order to not allow that a deficit becomes too large. We try
to avoid that a deficit of a node becomes too large
because it is unlikely to succeed to send such a large
amount of flow in totality back to the source node s. And
the deficit that cannot be moved closer to the source node
will be returned to the sink node, operations which imply
some additional computations.
 The deficit scaling algorithm for the minimum flow is
the following:

Deficit scaling algorithm;
begin
 let f be a feasible flow in network G;
 compute the exact distance labels d(⋅) in the residual
network Gf;
if t is not labeled then
 f is a minimum flow
else
 begin
 for each arc (i, t)∈ A do
 f(i, t) := l(i, t);
 d(t) := n;
 r :=2⎡logC⎤;
 while r ≥ 1 do
 begin

 while the network contains an active
node with a large deficit do

 begin
 among active nodes with large deficits,

select a node j with the smallest distance
label;

 pull_relabel(j);
 end
 r := r /2;
 end
 end
end.

Procedure pull_relabel(j)
begin
 if the network contains an admissible arc (i, j) then
 if i ≠ t then

 pull g = min {-e(j), r(i, j), r +e(i)} units
of flow from node j to node i;

 else
 pull g = min {-e(j), r(i, j)} units of flow
from node j to node i;

 else
 d(j) := min{ d(i) | (i, j) ∈Af }+1;
end;

 Let us refer to a phase of the algorithm during
which r remains constant as a scaling phase and a
scaling phase with a specific value of r as a r -scaling
phase.

Theorem 2. If there exists a feasible flow in the network
G = (N, A, l, c, s, t), then the deficit scaling algorithm
determines a minimum flow.

Proof. The algorithm starts with r :=2⎡logC⎤, C ≤ r ≤ 2C.
During the r -scaling phase, emax might increase or
decrease but it must meet the condition:

r /2 < emax ≤ r .
When emax ≤ r /2 the algorithm halves the value of r

and begins a new scaling phase. After 1+⌊logC⌋ scaling
phases, emax becomes 0 and we obtain a minimum flow.

 Actually, the algorithm terminates with optimal
residual capacities. From these residual capacities we can
determine a minimum flow in several ways. For example,
we can make a variable change: for all arcs (i, j), let
 c’(i, j) = c(i, j) - l(i, j),
 r’(i, j) = r(i, j),
 f’(i, j) = f(i, j) - l(i, j).
The residual capacity of arc (i, j) is
 r(i, j) = c(j, i) - f(j, i) + f(i, j) - l(i, j)
Equivalently,
 r’(i, j) = c’(j, i) – f’(j, i) + f’(i, j).
We can compute the value of f’ in the following way:
 f’(i, j) = max(r’(i, j) - c’(j, i), 0).
Converting back into the original variables, we obtain the
following expression:
 f(i, j) = l(i, j) + max(r(i, j) - c(j, i) + l(j, i), 0).

Theorem 3. During each r -scaling phase, the algorithm
satisfies the following two conditions:
 (a) each noncanceling pull decreases the flow by at
least r /2 units
 (b) emax ≤ r .

Proof. (a) We consider a noncanceling pull on arc (i, j).
Since (i, j) is an admissible arc, d(j) = d(i) + 1 > d(i). But,
j is a node with a smallest distance label among all nodes
with a large deficit. Thus, e(j) ≤ - r /2 and e(i) >- r /2.
Since this pull is a noncanceling pull, it decreases the
flow by min{-e(j), r + e(i)} ≥ r /2.
 (b) A pull on arc (i, j) increases only the absolute value
of the deficit of node i. The new deficit of node i is e′(i) =
e(i) - min{-e(j), r(i, j), r + e(i)} ≥ e(i) - (r + e(i)) = - r .
Thus, e′(i) ≥- r and emax ≤ r .

Theorem 4. For each node i∈N, d(i) < 2n.

 This theorem can be proved in a manner similar to the

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1548 Issue 10, Volume 7, October 2008

proof of the corresponding theorem from the complexity
analysis of the generic preflow algorithm (for details see
[12]).

Theorem 5. During each scaling phase, the algorithm
performs O(n2) noncanceling pulls.

Proof. We consider the potential function F =
-∑e(i)d(i)/

r . The initial value of F at the beginning of

the r -scaling phase is bounded by 2n2 because e(i) ≥- r
and d(i) ≤ 2n for all i∈N (from Theorem 3 and Theorem
4).

After the algorithm has selected node j, one of the
following two cases must apply:
 Case 1. The algorithm is unable to find an admissible
arc along which it can pull flow. In this case, the distance
label of node j increases by q ≥ 1 units. This increases F
by at most q units because e(i) ≥ - r . Since for each node
i the total increase in d(i) throughout the running of the
algorithm is bounded by 2n (from Theorem 4), the total
increase in F due to the relabelings of nodes is bounded
by 2n2.
 Case 2. The algorithm is able to find an admissible arc
along which it can pull flow, so it performs either a
cancelling or a noncancelling pull. In either case, F
decreases. After a noncancelling pull on arc (i, j), the
flow from node i to node j decreases by at least r /2 units
and F decreases by at least 1/2 units because d(j) =
d(i) + 1. As the initial value of F at the beginning of the
scaling phase plus the increase in F sum to at most 4n2,
this case cannot occur more than 8n2 times. Thus, the
algorithm performs O(n2) noncanceling pulls per scaling
phase.

Theorem 6. The deficit scaling algorithm runs in O(nm +
n2 logC) time.

Proof. Since the algorithm performs O(logC) scaling
phase, from Theorem 5 it follows that the algorithm
performs O(n2 logC) noncanceling pulls in total. The
other operations (cancelling pulls, relabel operations and
finding admissible arcs) require O(nm) time (this can be
proved in a similar way as Ciurea and Ciupală proved the
complexity of the generic preflow algorithm in [11]).
Consequently, the deficit scaling algorithm runs in
O(nm + n2 logC) time.

4 Deficit scaling algorithm for minimum
flow in bipartite networks
A network G = (N, A) is called bipartite if its node set N
can be partitioned into two subsets N1 and N2, such that
all arcs have one endpoint in N1 and the other in N2.

Let n1=|N1|, n2=|N2|. We assume, without loss of

generality, n1 ≤ n2.
We consider a bipartite capacitated network G =

(N1, N2, A, l, c, s, t) with a nonnegative capacity c(i, j) and
with a nonnegative lower bound l(i, j) associated with
each arc (i, j)∈A. We distinguish two special nodes in the
network G: a source node s and a sink node t. We
assume, without loss of generality, that s∈N1 and t∈N2.

The basic idea behind the deficit scaling algorithm for
minimum flow in a bipartite network is to perform bipulls
from nodes in N1. A bipull is a pull over two consecutive
admissible arcs. Consequently, a bipull moves the deficit
from a node in N1 to another node in N1. This approach
has all the advantages of the scaling deficit algorithm for
minimum flow in regular networks. Moreover, it has an
additional advantage that leads to an improved running
time. This additional advantage consists of the fact that,
using bipulls instead of pulls, all the nodes in N2 are
maintained balanced.

We refer to a bipull along the path h – i - j as
cancelling if after it at least one of the arcs (h, i) and (i, j)
is dropped from the residual network; otherwise the
bipull is noncancelling.

Obviously, after a noncancelling bipull along the path
h – i – j, the deficit of the node j becomes 0.

Since all the deficits are at the nodes in N1, it is
sufficient to account for the noncancelling bipulls from
the nodes in N1. Since | N1| < |N|, the number of
noncancelling bipulls is reduced.
 For determining a minimum flow in a bipartite
network, we can use the deficit scaling algorithm
modified by replacing the procedure pull_relabel with the
procedure bipull_relabel, which is described below.

Procedure bipull_relabel(j)
begin
if the network contains an admissible arc (i, j) then
 if the network contains an admissible arc (h, i) then
 if h ≠ t then

 pull g = min {-e(j), r(i, j), r(h, i),
r +e(h)} units of flow along the path h–i–j ;

 else
 pull g = min {-e(j), r(i, j) r(h, i)} units of
flow along the path h –i - j ;

 else d(i) := min{ d(h) | (h, i) ∈Af }+1;
else d(j) := min{ d(i) | (i, j) ∈Af }+1;
end;

Theorem 7. If there exists a feasible flow in the bipartite
network G = (N, A, l, c, s, t), then the deficit scaling
algorithm for minimum flow in a bipartite network
determines a minimum flow.

Proof. The proof of this theorem follows directly from
the Theorem 2.

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1549 Issue 10, Volume 7, October 2008

Theorem 8. During the execution of the deficit scaling
algorithm for minimum flow in a bipartite network, all
the deficits remain on the nodes in N1.

Proof. At the beginning of the algorithm, one pulls as
much flow as it is possible on the arcs entering in the sink
node t∈N2. This operation creates deficits in the nodes
that are in the neighborhood of the sink node t. Thus, all
the nodes with deficit after initializations are in N1. All
the other pulls of flow in the algorithm are done using the
procedure bipull_relabel, which pulls flow from a node
in N1 through a node in N2 to another node in N1, never
leaving any deficit on a node in N2. No other operations
create deficit at any node.

 Using the result from Theorem 8, we can prove in the
same manner as we proved Theorem 5 that during each
scaling phase, the deficit scaling algorithm for minimum
flow in a bipartite network performs O(n1

2) noncancelling
pulls.
 From Theorem 8 it follows that the other operations
performed by the deficit scaling algorithm for minimum
flow in a bipartite network (cancelling pulls, relabel
operations and finding admissible arcs) can be done in
O(n1m) time. Consequently, we obtained the following
result:

Theorem 9. The deficit scaling algorithm for minimum
flow in a bipartite network, runs in O(n1m+n1

2 logC)
time.

5 Parallel deficit scaling algorithm for
minimum flow in bipartite networks
In this section, we develop a parallel implementation of
the deficit scaling algorithm for minimum flow in
bipartite networks, developed in section 4, on an EREW
PRAM using p = ⎡m/n1⎤ processors. This algorithm can
be applied on networks in which any node has both in-
degree and out-degree no greater than p. This restriction
implies no loss of generality because any bipartite
network with m arcs, n1 nodes in N1 and n2 nodes in N2
can be transformed in an equivalent bipartite network
with O(m) arcs, O(n1) nodes in N1 and O(n2) nodes in N2
in which any node has both in-degree and out-degree no
greater than p.

First we determine a transformed network in which
all the nodes have out-degree no greater then p and that
is equivalent to the original network. This network is
determined from the original network in the following
manner:

select a node j with out-degree k > p; we denote
the arcs outgoing from the node j by (j, j1), (j, j2),..., (j,
jk.).

create two new nodes j' and j'',
replace the arcs the arcs (j, jk - p+1), ..., (j, jk) with

the arcs (j, j'), (j', j'') and (j'', jk - p+1), ..., (j'', jk),
set l(j, j') = 0, c(j, j') = ∝, l(j', j'') = 0, c(j', j'') = ∝
set l(j'', jh) = l(j, jh) and c(j'', jh) = c(j, jh) for each

h from k – p +1 to k
repeat this process until the network contains no

node with out-degree greater than p.
After this transformation, we obtained an equivalent

network in which any node has out-degree no greater
than p.

Each time a a node j with out-degree greater than p
is selected, a new node is added to N1, a new node is
added to N2 and two more arcs are added to A.

In the same manner, we can determine a transformed
network in which all the nodes have out-degree no
greater then p and that is equivalent to the original
network.

We can transform any bipartite network with m arcs,
n1 nodes in N1 and n2 nodes in N2 can be transformed in
an equivalent bipartite network with O(m) arcs, O(n1)
nodes in N1 and O(n2) nodes in N2 in which any node has
both the out-degree no greater than p in O(n1log m) time
using p processors (for details see [2]).

Consequently, for the rest of this section, we will
assume, without loss of generality, that each node in the
network has both in-degree and out-degree less than or
equal to p.

For any node j∈N, let N(j) = { i∈N | (i, j)∈ Af }. We
assume that nodes in N(j) are denoted by j1, j2,..., jk,
where k = | N(j)|. Let N’(j) = { i∈N | (i, j)∈ Af and (i, j)
is an admissible arc}.

For each node j∈N2, we refer to
 r’(j)=Σi∈N’(j) r(i,j)

as the effective residual capacity of node j.
Note that we can always pull the entire deficit of a

node j before relabeling it as long as the deficit does not
exceed the effective residual capacity of the node j.

We define the effective residual capacity r’(i, j) of
arc (i, j) in the following manner:
 r’(i, j) = 0 if (i, j) is not an admissible arc
 r’(i, j) = r(i, j) if (i, j) is an admissible arc and
i∈N2 and j∈N1
 r’(i, j) = min{r(i, j), r’(i)} if (i, j) is an
admissible arc and i∈N2 and j∈N1

The parallel deficit scaling algorithm for minimum
flow in bipartite networks pulls flow from a node j∈N1
with sufficiently large deficit at a time and then it pulls
flow from several nodes from N2 in parallel. Pulling
r’(i, j) units of flow on any arc (i, j) with i∈N2 and j∈N1,
we can be sure that we never pull more flow into a node

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1550 Issue 10, Volume 7, October 2008

i∈N2 than its effective residual capacity. Consequently,
all the deficit of node i can be pulled out prior to a
relabeling of node i.

For an efficient allocation of the processors to the
arcs (because we cannot assign one processor to each
arc), we will use the following four functions:
 Current(j) will return the current arc entering
into j
 NextCurrent(j, g) will return |N(j)|+1 if after
pulling g units of flow from node j all admissible arc
entering in j will be dropped from the residual network.
Otherwise, it will return the index of the arc that will
become current arc after pulling g units of flow from
node j.
 NextDecrement(j, g) will return the amount of
flow that will be pull on arc NextCurrent(j, g) when
pulling flow from node j.
 Allocate(j, D) takes as an input a node j and a
p-dimensional array of demands of processors from
the nodes in N(j) and returns a vector proc, where
proc(k) is the set of processors allocated to the node jk
from N(j).

Using these four functions described above, we can
describe the parallel bipull_relabel procedure within the
parallel bipartite deficit scaling algorithm for minimum
flow in a bipartite network. This procedure performs at a
time a pull from an active node with a large deficit and
with the smallest distance label from N1 followed by a
set of parallel pulls from several active nodes in N2, each
of which is preceded by processor allocation. The
parallel bipull_relabel procedure concludes by relabeling
the necessary nodes.

The parallel deficit scaling algorithm for minimum
flow in a bipartite network is the following:

Parallel bipartite deficit scaling algorithm;
begin
 let f be a feasible flow in network G;
 compute the exact distance labels d(⋅) in the residual
network Gf by applying the BFS parallel algorithm from
the source node s;

if t is not labeled then
 f is a minimum flow
else begin

 for each arc (i, t)∈ A do in parallel
 f(i, t) := l(i, t);
 d(t) := n;
 r :=2⎡logC⎤;
 while r ≥ 1 do
 begin

while the network contains an active
node with a large deficit do

 begin
determine in parallel d(j) = min{d(i) | i

is an active node with large deficit};

parallel bipull_relabel(j, r /2, proc(j));
end
r := r /2;

end
end

end.

Procedure parallel bipull_relabel(j, g, P)
begin

parallel pull(j, g, P);
 while e(jk) <0 for some jk∈ N(j) do
 begin
 for k = 1 to p do in parallel
 D(jk) = NextCurrent(jk, -e(jk)) -

Current(jk)+1;
 proc = Allocate(j, D);
 for k = 1 to p do in parallel
 begin
 parallel pull(jk, -e(jk), proc(k));
 update data structures;
 end;
 for each jk∈ N(j) do
 if Current(jk) = |N(jk)| +1 then
 relabel the node jk;

if Current(j) = |N(j)| +1 then
 relabel the node j;

end;
end;

Procedure parallel pull(j, g, P)
begin
 c = Current(j);
 k = NextCurrent(j, g);
 s = |P|;
 for i = c to min(k-1, c+s-1) do in parallel

pull r’(ji , j) units of flow on arc (ji , j)
and update r’;
if s ≥ k-c+1 and k ≤ |N(j)| then

pull NextDecrement(j, g) units of flow
on arc (jk , j) and update r’;

 Current(j) = NextCurrent(j, g);
end;

Theorem 9. If there exists a feasible flow in the network
G = (N, A, l, c, s, t), then the parallel deficit scaling
algorithm for minimum flow in a bipartite network
determines a minimum flow.

Proof. The proof of this theorem follows directly from
the Theorem 7.

In order to determine the running time of the parallel
bipartite deficit scaling algorithm for minimum flow in a
bipartite network, first we must determine the running

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1551 Issue 10, Volume 7, October 2008

time of each of the four functions: Current(j),
NextCurrent(j, g), NextDecrement(j, g) and Allocate(j,
D).

Assuming that |N(j)| is a power of 2, we can associate
to any node j a complete binary tree T(j) whose leaves
are the indexes of the nodes in N(j). The key of the leaf k
is r’(jk , j) and the key of each internal node of the binary
tree is the sum of the keys of its descendent leaves.

When a node j is relabeled, to each node jk of N(j) is
assigned a processor and its binary tree is updated. This
assignment of processors takes O(log p) steps per
relabel. Moreover, each processor updates its binary tree
in O(log p) steps.

When a pull of flow from a node j is performed, the
binary tree for the node j must be updated. If k
processors are assigned, the Current(j) is increased by at
most k and the updating can be accomplished with k
processors in O(log p) time.

In order to compute NextCurrent(j, g), we start at the
root of the binary tree corresponding to the node j and
we select the right child or the left child depending on
whether g is less than or greater than the key of the right
child. We then recur on the selected child. We also can
compute NextDecrement(j, g) in this manner. Obviously,
both functions NextCurrent(j, g) and NextDecrement(j,
g) can be computed using one processor in O(log p)
time.

The function Allocate(j, D) can be straightforward
implemented using with prefix operations using p
processors in O(log p) time.

Theorem 10. The parallel pull procedure runs in
O(log p) time on p = ⎡m/n1⎤ processors.

Proof. The for loop can be implemented by a parallel
prefix operation on p processors. All the other steps can
be implemented in O(log p) time using a single
processor.

Theorem 11. There are O(n1

2 log C) calls to parallel
bipull_relabel procedure over the course of the parallel
bipartite deficit scaling algorithm.

Proof. Each parallel bipull_relabel procedure in the first
line either moves r /2 units of flow or results in a
relabeling. By a proof similar to that of the Theorem 5,
there are at most O(n1

2 log C) such pulls over the whole
algorithm.

Theorem 12. The parallel bipull_relabel procedure runs
in O(the number of iterations of the while loop × log p)
time using p = ⎡m/n1⎤ processors.

Proof. Each step except the parallel push procedure takes
O(log p) time. From Theorem 10, we know that a

parallel pull procedure takes O(log p) time. Obviously, a
set of pulls which use a total of p arcs can also be
implemented in O(log p) time. Consequently, each
iteration of the while loop can be implemented in
O(log p) time.

Theorem 13. The while loop in the parallel
bipull_relabel procedure is executed O(n1m/p+n1

2 log C)
time over the course of the parallel bipartite deficit
scaling algorithm.

Proof. First, we note that each node in N(j) may have at
most one noncancelling pull over the whole execution of
the while loop. From the Theorem 11, it follows that the
number of noncancelling pulls is at most O(n1

2 p log C)
overall. Let x be the number of the noncancelling pulls
that were executed since the beginning of the algorithm.
We consider the potential function F =ΣjCurrent(j) + x.
Initially, F = 0 and at termination F = the number of
nocancelling pulls = O(n1

2 p log C). The only way for F
to decrease is by relabeling. Each relabeling of a node j
decreases F by |N(j)|. Consequently, the total decrease of
F, due to relabelings, is O(n1m). Thus, the total increase
in F over the whole algorithm is O(n1

2 p log C + n1m). A
parallel pull using k processors increases F by k or
results in a relabeling. Ignoring the last iteration of the
while loop in each parallel bipull_relabel, we find that
there are at most O((n1

2 p log C + n1m)/p) iterations of
the while loop. Because there are at most O(n1

2 log C)
last iterations, overall there are O(n1

2 log C + n1m/p)
iterations.

Combining all the above results, we obtain the

following theorem:

Theorem 14 The parallel bipartite deficit scaling
algorithm determines a minimum flow in a bipartite
network in O(n1

2 log C log p) time using p = ⎡m/n1⎤
processors .

Consequently, the parallel bipartite deficit scaling
algorithm runs within a logarithmic factor of the running
time of the sequential bipartite deficit scaling algorithm
for minimum flow.

5 Conclusion
In this paper, we discussed the minimum flow problem,
which is a network problem that is not often treated,
although it has its own applications.

First, we described the deficit scaling algorithm for
minimum flow in a bipartite network G =
(N1, N2, A, l, c, s, t). This algorithm was obtained from
the deficit scaling algorithm for minimum flow in

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1552 Issue 10, Volume 7, October 2008

regular networks developed by Ciupală in [5] by
replacing a pull from a node with sufficiently large
deficit with two consecutive pulls. This replacement
ensured that only nodes in N1 can have deficits and it
implied a reduction of the running time of the deficit
scaling algorithm for minimum flow from
O(nm + n2 logC) to O(n1m + n1

2 logC) when it is applied
on bipartite networks.

[3] J. Bang-Jensen and G. Gutin, Digraphs: Theory,
Algorithms and Applications, Springer-Verlag,
London, 2001.

Then, we developed a parallel implementation of the
deficit scaling algorithm for minimum flow in bipartite
networks. This algorithm performs a pull from an active
node with a large deficit and with the smallest distance
label from N1 at a time, followed by pulls from several
nodes in N2 in parallel. Consequently, it runs in
O(n1

2 log C log p) time on a EREW PRAM with p =
⎡m/n1⎤ processors, which is within a logarithmic factor
of the running time of the sequential bipartite deficit
scaling algorithm for minimum flow.

6 Further improvements
One needs to solve the problems from the real life more
and more quickly. Solving some of these problems
means solving network flow problems. This is one of the
reasons for which the speeding-up of the network flow
algorithms is researched. For obtaining more quickly a
solution of a network flow problem, there are several
approaches: designing more efficient algorithms,
improving the running time of some of the existing
algorithms (by using enhanced data structures or by
using certain techniques, for instance technique of
scaling the problem data etc.), developing parallel
implementations of some of the existing algorithms etc.
In this paper, we used two approaches: we improved a
running time of the deficit scaling algorithm for
minimum flow by using the particularities of the
network on which it is applied (i.e., the particularities of
a bipartite network) and we implemented it in parallel on
an EREW PRAM.

The deficit scaling algorithm for minimum flow in
bipartite networks, developed in this paper, was obtain
from deficit scaling algorithm for minimum flow in
regular networks by replacing a pull from a node with
sufficiently large deficit with two consecutive pulls. The
same transformation can be applied to any of the variants
of the deficit scaling algorithm for minimum flow,
thereby improving their running time when they are
applied on bipartite networks.

References:
[1] R. Ahuja, T. Magnanti and J. Orlin, Network flows.

Theory, algorithms and applications, Prentice Hall,
Inc., Englewood Cliffs, NJ, 1993.

[2] R. Ahuja, J. Orlin, C. Stein and R. Tarjan, Improved
algorithms for bipartite network flow, SIAM Journal
of Computing Vol. 23, 1994, pp. 906-933.

[4] J. Barros, S.D. Servetto, Network Information Flow
with Correlated Sources, IEEE Transactions on
Information Theory, 52(1), 155-170, 2006.

[5] L. Ciupală, A deficit scaling algorithm for the
minimum flow problem, Sadhana Vol.31, No. 3,
2006, pp.1169-1174.

[6] L. Ciupală, A scaling out-of-kilter algorithm for
minimum cost flow, Control and Cybernetics Vol.34,
No.4, 2005, pp. 1169-1174.

[7] L. Ciupală and E. Ciurea, A highest-label preflow
algorithm for the minimum flow problem,
Proceedings of the 11th WSEAS International
Conference on Computers, 2007, pp. 565-569.

[8] L. Ciupală and E. Ciurea, About preflow algorithms
for the minimum flow problem, WSEAS Transactions
on Computer Research vol. 3 nr.1, January 2008, pp.
35-41.

[9] L. Ciupală and E. Ciurea, An algorithm for the
minimum flow problem, The Sixth International
Conference of Economic Informatics, 2003, pp. 167-
170.

[10] L. Ciupală and E. Ciurea, An approach of the
minimum flow problem, The Fifth International
Symposium of Economic Informatics, 2001, pp. 786-
790.

[11] E. Ciurea and L. Ciupală, Sequential and parallel
algorithms for minimum flows, Journal of Applied
Mathematics and Computing Vol.15, No.1-2, 2004,
pp. 53-78.

[12] E. Ciurea and L. Ciupală, Algorithms for minimum
flows, Computer Science Journal of Moldova Vol.9,
No.3(27), 2001, pp. 275-290.

[13] A. Deshpande, S. Patkar and H. Narayanan:
Submodular Theory Based Approaches For
Hypergraph Partitioning WSEAS Transactions
on Circuit and Systems, Issue 6, Volume 4,
2005, pp. 647-655.

[14]V. Goldberg and R. E. Tarjan, A New Approach to
the Maximum Flow Problem, Journal of ACM
Vol.35, 1988, pp. 921-940.

[15] S. Fujishige, A maximum flow algorithm using MA
ordering, Operation Research Letters 31, No. 3, 176-
178, 2003.

[16] S. Fujishige, S. Isotani, New maximum flow
algorithms by MA orderings and scaling, Journal of
the Operational Research Society of Japan 46, No. 3,
243-250, 2003.

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1553 Issue 10, Volume 7, October 2008

[17] S. Kumar, P. Gupta, An incremental algorithm for
the maximum flow problem, Journal of
Mathematical Modelling and Algorithms 2, No.1, 1-
16, 2003.

[18] S. Patkar, H. Sharma and H. Narayanan: Efficient
Network Flow based Ratio-cut Netlist Hypergraph
Partitioning, WSEAS Transactions on Circuits and
Systems vol. 3, no. 1, January 2004, pp. 47-53

[19] A. Schrijver, On the history of the transportation
and maximum flow problems, Mathematical
Programming 91, No.3, 437-445, 2002.

[20] K.D. Wayne, A polynomial Combinatorial
Algorithm for Generalized Minimum Cost Flow,
Mathematics of Operations Research., 445-459,
2002.

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupală and Eleonor Ciurea

ISSN: 1109-2750 1554 Issue 10, Volume 7, October 2008

