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Abstract: - In this paper, first we describe the deficit scaling algorithm for minimum flow in bipartite networks. 
This algorithm is obtained from the deficit scaling algorithm for minimum flow in regular networks developed by 
Ciupală in [5] by replacing a pull from a node with sufficiently large deficit with two consecutive pulls. This 
replacement ensures that only nodes in N1 can have deficits. Consequently, the running time of the deficit scaling 
algorithm for minimum flow is reduced from O(nm+n2 logC) to O(n1m+n1

2 logC) when it is applied on bipartite 
networks.  

In the last part of this paper, we develop a parallel implementation of the deficit scaling algorithm for minimum 
flow in bipartite networks on an EREW PRAM. The parallel bipartite deficit scaling algorithm performs a pull from an 
active node with a sufficiently large deficit and with the smallest distance label from N1 at a time followed by a set of 
pulls from several nodes in N2 in parallel. It runs in O(n1

2 log C log p) time on an EREW PRAM with p = ⎡m/n1⎤ 
processors, which is within a logarithmic factor of the running time of the sequential bipartite deficit scaling algorithm 
for minimum flow. 
 
Key-Words: - Network flow; Network algorithms; Bipartite network; Parallel algorithms; Minimum flow problem; 
Scaling technique 
 
1   Introduction 
The literature on network flow problem is extensive. 
Over the past 50 years researchers have made continuous 
improvements to algorithms for solving several classes of 
problems. From the late 1940s through the 1950s, 
researchers designed many of the fundamental algorithms 
for network flow, including methods for maximum flow 
and minimum cost flow problems. In the next decades, 
there are many research contributions concerning 
improving the computational complexity of network flow 
algorithms by using enhanced data structures, techniques 
of scaling the problem data etc. 

Although it has its own applications, the minimum 
flow problem was not dealt so often as the maximum 
flow ([1], [2], [3], [14], [15], [16], [17], [18]) and the 
minimum cost flow problem ([1], [6], [20]).  

There are many problems that occur in economy that 
can be reduced to minimum flow problems. 

For instance, we present the machine setup problem. 
A job shop needs to perform p tasks on a particular day. 
It is known the start time π(i) and the end time π’(i) for 
each task i, i=1,...,p. The workers must perform these 
tasks according to this schedule so that exactly one 
worker performs each task. A worker cannot work on two 
jobs at the same time. It is known the setup time π2(i, j) 
required for a worker to go from task i to task j. We wish 

to find the minimum number of workers to perform the 
tasks. 

We can formulate this problem as a minimum flow 
problem in the network G = (N, A, l, c, s, t), determined 
in the following way: 

 N = N1 ∪ N2 ∪ N3 ∪ N4,  
N1 = {s},  
N2 = {i | i=1,...,p},  
N3 = {i’ | i’=1,...,p},  
N4 = {t},  
A = A1 ∪ A2 ∪ A3 ∪ A4,  
A1 = {(s, i) | i∈N2},  
A2 = {(i, i’) | i, i’=1,...,p},  
A3 = {(i’, j) | π’(i’)+π2(i’, j)≤π(j)},  
A4={(i’, t) | i’∈N3}, 
l(s, i)=0, c(s, i)=1, for any (s, i)∈A1,  
l(i, i’)=1, c(i, i‘)=1, for any (i, i’)∈A2,  
l(i’, j)=0, c(i’, j)=1, for any (i’, j)∈A3,  
l(i’, t)=0, c(i’, t)=1, for any (i’, t)∈A4. 

We solve the minimum flow problem in the network 
G=(N, A, l, c, s, t) and the value of the minimum flow is 
the minimum number of workers that can perform the 
tasks. 

The minimum flow problem in a network can be 
solved in two phases: 

(1) establishing a feasible flow, if there is one 
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(2) from a given feasible flow, establish the 
minimum flow. 

The first phase, i.e. the problem of determining a 
feasible flow, can be reduced to a maximum flow 
problem (for details see [1]). 

For the second phase of the minimum flow problem 
there are three approaches: 

1. using decreasing path algorithms (see [11], 
[12]) 

2. using preflow algorithms (see [5], [8], [9], 
[12]) 

3. using minimax algorithm which consists of 
finding a maximum flow from the sink node 
to the source node in the residual network 
(see [3], [10]). 

The decreasing path algorithms work in the following 
way: they start with a feasible flow and they proceed by 
determining decreasing paths and by decreasing the flow 
along these paths. Any decreasing path algorithm 
terminates when the network contains no decreasing path, 
which means that the flow obtained is a minimum flow. 
The generic decreasing path algorithm for minimum flow 
does not specify any rule for determining the decreasing 
paths. By specifying different rules, many different 
algorithms were developed, which have better running 
times then the running time of the generic decreasing 
path algorithm. 

The preflow algorithms for minimum flow begin with 
a feasible flow and send back as much flow, as it is 
possible, from the sink node to the nodes that are its 
neighbors, creating deficits in these nodes. The basic 
operation of any preflow algorithm for minimum flow  is 
to select an active node (which is an intermediate node 
with a strictly negative deficit) and to send the flow 
entering in it back, closer to the source. For measuring 
closeness, distance labels are used. Any preflow 
algorithm for minimum flow terminates when the 
network contains no more active nodes, which means that 
the preflow is a flow. Moreover, it is a minimum flow. 
The generic preflow algorithm for minimum flow does 
not specify any rule for selecting active nodes. By 
specifying different rules we can develop many different 
algorithms, which can have better running times then the 
generic preflow algorithm. The deficit scaling algorithm, 
developed by Ciupală in [5], always selects an active 
node with a sufficiently large deficit.  

A third approach of the minimum flow problem 
consists of determining a maximum flow from the sink 
node to the source node in the residual network. For this, 
any maximum flow algorithm can be used. 

The algorithms in each of these three classes 
(decreasing path algorithms, preflow algorithms, 
minimax algorithm) can be modified in order to become 
more efficient when they are applied on bipartite 
networks.  

In this paper, first we describe the deficit scaling 
algorithm for minimum flow in bipartite networks. This 
algorithm is obtain from the deficit scaling algorithm for 
minimum flow in regular networks developed by 
Ciupală in [5] by replacing a pull from a node with 
deficit with two consecutive pulls. This replacement 
ensures that only nodes in N1 can have deficits. 
Consequently, the running time of the deficit scaling 
algorithm is reduced from O(nm + n2 logC), which is the 
running time of the deficit scaling algorithm applied on 
regular networks, to O(n1m+n1

2 logC).  
In section 5, we develop a parallel implementation of 

the deficit scaling algorithm for minimum flow in 
bipartite networks. This algorithm performs a pull from 
an active node with a large deficit and with the smallest 
distance label from N1 at a time followed by a set of 
pulls from several nodes in N2 in parallel. On a PRAM 
with p = ⎡m/n1⎤ processors, it runs in O(n1

2 log C log p) 
time. 
 
 
2 Notation and definition 
We consider a capacitated network G = (N, A, l, c, s, t) 
with a nonnegative capacity c(i, j) and with a 
nonnegative lower bound l(i, j) associated with each arc 
(i, j)∈A. We distinguish two special nodes in the 
network G: a source node s and a sink node t. 

Let n=|N|, m = |A| and C = max { c(i, j) | (i, j) ∈ A}. 
A flow is a function f : A →R+ satisfying the next 

conditions: 
f(s, N) - f(N, s) = v    (1) 
f(i, N) - f(N, i) = 0, i ≠ s,t   (2) 
f(t, N) - f(N, t) = -v    (3) 
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A  (4) 

for some v ≥ 0, where 
f(i, N) = Σj f(i, j), i∈N 

and 
f(N, i) = Σj  f(j, i), i∈N. 
We refer to v as the value of the flow f. 
The minimum flow problem is to determine a flow f 

for which v is minimized. 
For the minimum flow problem, a preflow is a 

function f : A →R+  satisfying the next conditions: 
f(i, N) - f(N, i) ≤ 0, i ≠ s,t   (5) 
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A  (6) 
Let f be a preflow. We define the deficit of a node i∈N 

in the following manner: 
e(i) = f(i, N) - f(N, i)    (7) 
Thus, for the minimum flow problem, for any preflow 

f, we have e(i) ≤ 0, i∈N \{s, t}. 
We say that a node i∈N \{s, t} is active if e(i) < 0 and 

balanced if e(i) = 0. 
A preflow f for which  
e(i) = 0, i∈N \{s, t} 
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is a flow. Consequently, a flow is a particular case of 
preflow. 

For the minimum flow problem, the residual capacity  
r(i, j) of any arc (i, j)∈A, with respect to a given preflow 
f,  is given by  

r(i, j)  = c(j, i) - f(j, i) + f(i, j) - l(i, j). 
By convention, if (i, j)∈A and (j, i)∉A, then we add 

the arc (j, i) to the set of arcs A and we set l(j, i) = 0 and 
c(j, i) = 0. The residual capacity r(i, j) of the arc (i, j) 
represents the maximum amount of flow from the node i 
to node j that can be canceled by modifying the flow on 
both of the arcs (i, j) and (j, i). 

The network Gf  = (N, Af) consisting only of those arcs 
with strictly positive residual capacity is referred to as the 
residual network (with respect to the given preflow f). 

In the residual network Gf  = (N, Af) the distance 
function  d : N →N  with respect to a given preflow f  is a 
function from the set of nodes to the nonnegative 
integers.  

We say that a distance function is valid if it satisfies 
the following validity conditions: 

d(s) = 0  
d(j) ≤ d(i) + 1, for every arc (i, j) ∈Af.  

We refer to d(i) as the distance label of node i. 
 
Theorem 1.(a) If the distance labels are valid, the 
distance label d(i) is a lower bound on the length of the 
shortest directed path from node s to node i in the 
residual network. 

       (b) If d(t) ≥ n, the residual network contains 
no directed path from the source node s to the sink node 
t. 
 
Proof. (a) Let P = (s=i1, i2 ,…, ik , ik+1=i) be any path of 
length k from node s to node i in the residual network. 
The validity conditions imply that: 
  d(i2) ≤ d(i1)+1=d(s)+1=1 
  d(i3) ≤ d(i2)+1≤2 
  d(i4) ≤ d(i3)+1≤3 

…. 
  d(ik+1) ≤ d(ik)+1≤ k. 
(b) We proved that d(t) is a lower bound on the length of 
the shortest path from the source node s to the sink node t 
in the residual network and we know that no directed 
path can contain more than (n-1) arcs. Consequently, if 
d(t) ≥ n, then the residual network contains no directed 
path from s to t. 
 

We say that the distance labels are exact if for each 
node i, d(i) equals the length of the shortest path from 
node s to node i  in the residual network. 

We refer to an arc (i, j) from the residual network as 
an admissible arc if d(j) = d(i) + 1; otherwise it is  
inadmissible. 

We refer to a node i with e(i) < 0 as an active node. 
We adopt the convention that the source node and the 
sink node are never active. 

 
 

3   Deficit scaling algorithm 
This algorithm is a special implementation of the generic 
preflow algorithm for minimum flow. This algorithm was 
developed by Ciurea and Ciupală in [12] and it begins 
with a feasible flow and sends back as much flow, as it is 
possible, from the sink node to the source node. Because 
the algorithm decreases the flow on individual arcs, it 
does not satisfy the mass balance constraint (1), (2), (3) at 
intermediate stages. In fact, it is possible that the flow 
entering in a node exceeds the flow leaving from it. Such 
a node is an active node because is has a strictly negative 
deficit. The basic operation of this algorithm is to select 
an active node and to send the flow entering in it back, 
closer to the source. For measuring closeness, the generic 
preflow algorithm for minimum flow uses the distance 
labels d(⋅). Suppose that j is a node with strictly negative 
deficit selected by the algorithm. If it exists an admissible 
arc (i, j), it pulls flow on this arc; otherwise it relabels the 
node j in order to create at least one admissible arc 
entering in the node j. The generic preflow algorithm for 
minimum flow repeats this process until the network 
contains no more active nodes, which means that the 
preflow is actually a flow. Moreover, it is a minimum 
flow. 

The generic preflow algorithm for minimum flow does 
not specify any rule for selecting active nodes. By 
specifying different rules we can develop many different 
algorithms, which can have better running times then the 
generic preflow algorithm. For example, we could select 
active nodes in FIFO order, or we could always select the 
active node with the greatest distance label, or the active 
node with the minimum distance label, or the active node 
selected most recently or least recently, or the active node 
with the largest deficit or we could select any of active 
nodes with a sufficiently large deficit. 

The deficit scaling algorithm, developed by Ciupală in 
[5], always selects an active node with a sufficiently large 
deficit. Like all preflow algorithms for minimum flow, 
the deficit scaling algorithm maintains a preflow at every 
step and proceeds by pulling the deficits of the active 
nodes closer to the source node. For measuring closeness 
it uses the exact distance labels. Consequently, pulling 
the deficits from the active nodes closer to the source 
node means decreasing flow on admissible arcs. 
 Let emax = max {-e(i) | i is an active node}. 
 The deficit dominator is the smaller integer r  that is 
a power of 2 and satisfies emax  ≤ r  . We refer to a node i 
with e(i) ≤ - r /2  as a node with large deficit and as a 
node with small deficit  otherwise. 
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 The scaling deficit algorithm for the minimum flow 
always pulls flow from active nodes with sufficiently 
large deficits to nodes with sufficiently small deficits in 
order to not allow that a deficit becomes too large. We try 
to avoid that a deficit of a node becomes too large 
because it is unlikely to succeed to send such a large 
amount of flow in totality back to the source node s. And 
the deficit that cannot be moved closer to the source node 
will be returned to the sink node, operations which imply 
some additional computations.  
 The deficit scaling algorithm for the minimum flow is 
the following: 
 
Deficit scaling algorithm; 
begin 
   let f  be a feasible flow in network G; 
   compute the exact distance labels d(⋅) in the residual 
network Gf; 
if t is not labeled then  
 f  is a minimum flow 
else  
 begin 
 for each arc (i, t)∈ A do  
   f(i, t) := l(i, t);  
 d(t) := n; 
 r :=2⎡logC⎤; 
 while r ≥ 1 do 
 begin 

 while the network contains an active 
node with a large deficit do 

 begin 
 among active nodes with large deficits, 

select a node j with the smallest distance 
label;  

 pull_relabel(j); 
 end 
 r := r /2; 
 end 
 end 
end. 
 
Procedure pull_relabel(j) 
begin 
 if the network contains an admissible arc (i, j) then  
 if i ≠ t  then 

 pull g = min {-e(j), r(i, j), r +e(i)} units 
of flow from node j to node i; 

 else 
 pull g = min {-e(j), r(i, j)} units of flow 
from node j to node i; 

 else 
 d(j) := min{ d(i) | (i, j) ∈Af }+1; 
end; 
 

 Let us refer to a phase of the algorithm during     
which r  remains constant as a scaling phase and a 
scaling phase with a specific value of r  as a r -scaling 
phase. 
 
Theorem 2. If there exists a feasible flow in the network 
G = (N, A, l, c, s, t), then the deficit scaling algorithm 
determines a minimum flow. 
 
Proof. The algorithm starts with r :=2⎡logC⎤, C ≤ r  ≤ 2C. 
During the r -scaling phase, emax  might increase or 
decrease but it must meet the condition: 

r /2 < emax  ≤ r .  
When emax ≤ r /2 the algorithm halves the value of r  

and begins a new scaling phase. After 1+⌊logC⌋ scaling 
phases, emax  becomes 0 and we obtain a minimum flow. 
 
 Actually, the algorithm terminates with optimal 
residual capacities. From these residual capacities we can 
determine a minimum flow in several ways. For example, 
we can make a variable change: for all arcs (i, j), let  
 c’(i, j) = c(i, j) - l(i, j), 
 r’(i, j) = r(i, j), 
 f’(i, j) = f(i, j) - l(i, j). 
The residual capacity of arc (i, j) is  
 r(i, j) = c(j, i) - f(j, i) + f(i, j) - l(i, j) 
Equivalently,  
 r’(i, j) = c’(j, i) – f’(j, i) + f’(i, j). 
We can compute the value of f’ in the following way: 
 f’(i, j) = max(r’(i, j) - c’(j, i), 0). 
Converting back into the original variables, we obtain the 
following expression:  
 f(i, j) = l(i, j) + max(r(i, j) - c(j, i) + l(j, i), 0). 
 
Theorem 3. During each r -scaling phase, the algorithm 
satisfies the following two conditions: 
    (a) each noncanceling pull decreases the flow by at 
least r /2 units 
    (b) emax ≤ r . 
 
Proof. (a) We consider a noncanceling pull on arc (i, j). 
Since (i, j) is an admissible arc, d(j) = d(i) + 1 > d(i). But, 
j is a node with a smallest distance label among all nodes 
with a large deficit. Thus, e(j) ≤ - r /2 and e(i) >- r /2. 
Since this pull is a noncanceling pull, it decreases the 
flow by min{-e(j), r + e(i)} ≥ r /2. 
    (b) A pull on arc (i, j) increases only the absolute value 
of the deficit of node i. The new deficit of node i is e′(i) = 
e(i) - min{-e(j), r(i, j), r + e(i)} ≥ e(i) - ( r + e(i)) = - r . 
Thus, e′(i) ≥- r  and emax ≤ r . 
 
Theorem 4. For each node i∈N, d(i) < 2n. 
 
 This theorem can be proved in a manner similar to the 
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proof of the corresponding theorem from the complexity 
analysis of the generic preflow algorithm (for details see 
[12]). 
 
Theorem 5. During each scaling phase, the algorithm 
performs O(n2) noncanceling pulls. 
 
Proof. We consider the potential function F =            
-∑e(i)d(i)/

       
r . The initial value of F at the beginning of 

the r -scaling phase is bounded by 2n2 because e(i) ≥- r  
and d(i) ≤ 2n for all i∈N (from Theorem 3 and Theorem 
4).  

After the algorithm has selected node j, one of the 
following two cases must apply: 
    Case 1. The algorithm is unable to find an admissible 
arc along which it can pull flow. In this case, the distance 
label of node j increases by q ≥ 1 units. This increases F 
by at most q units because e(i) ≥ - r . Since for each node 
i the total increase in d(i) throughout the running of the 
algorithm is bounded by 2n (from Theorem 4), the total 
increase in F due to the relabelings of nodes is bounded 
by 2n2. 
    Case 2. The algorithm is able to find an admissible arc 
along which it can pull flow, so it performs either a 
cancelling or a noncancelling pull. In either case, F 
decreases. After a noncancelling pull on arc (i, j), the 
flow from node i to node j decreases by at least r /2 units 
and F decreases by at least 1/2 units because d(j) =      
d(i) + 1. As the initial value of F at the beginning of the 
scaling phase plus the increase in F sum to at most 4n2, 
this case cannot occur more than 8n2 times. Thus, the 
algorithm performs O(n2) noncanceling pulls per scaling 
phase. 
 
Theorem 6. The deficit scaling algorithm runs in O(nm + 
n2 logC) time. 
 
Proof. Since the algorithm performs O(logC) scaling 
phase, from Theorem 5 it follows that the algorithm 
performs O(n2 logC) noncanceling pulls in total. The 
other operations (cancelling pulls, relabel operations and 
finding admissible arcs) require O(nm) time (this can be 
proved in a similar way as Ciurea and Ciupală proved the 
complexity of the generic preflow algorithm in [11]). 
Consequently, the deficit scaling algorithm runs in    
O(nm + n2 logC) time. 
 
 
4   Deficit scaling algorithm for minimum 
flow in bipartite networks 
A network G = (N, A) is called bipartite if its node set N 
can be partitioned into two subsets N1 and N2, such that 
all arcs have one endpoint in N1 and the other in N2.  

Let n1=|N1|, n2=|N2|. We assume, without loss of 

generality, n1 ≤ n2. 
We consider a bipartite capacitated network G =        

(N1, N2, A, l, c, s, t) with a nonnegative capacity c(i, j) and 
with a nonnegative lower bound l(i, j) associated with 
each arc (i, j)∈A. We distinguish two special nodes in the 
network G: a source node s and a sink node t. We 
assume, without loss of generality, that s∈N1 and t∈N2. 

The basic idea behind the deficit scaling algorithm for 
minimum flow in a bipartite network is to perform bipulls 
from nodes in N1. A bipull is a pull over two consecutive 
admissible arcs. Consequently, a bipull moves the deficit 
from a node in N1 to another node in N1. This approach 
has all the advantages of the scaling deficit algorithm for 
minimum flow in regular networks. Moreover, it has an 
additional advantage that leads to an improved running 
time. This additional advantage consists of the fact that, 
using bipulls instead of pulls, all the nodes in N2 are 
maintained balanced.  

We refer to a bipull along the path h – i - j as 
cancelling if after it at least one of the arcs (h, i) and (i, j) 
is dropped from the residual network; otherwise the 
bipull is noncancelling.  

Obviously, after a noncancelling bipull along the path  
h – i – j, the deficit of the node j becomes 0. 

Since all the deficits are at the nodes in N1, it is 
sufficient to account for the noncancelling bipulls from 
the nodes in N1. Since | N1| < |N|, the number of 
noncancelling bipulls is reduced. 
 For determining a minimum flow in a bipartite 
network, we can use the deficit scaling algorithm 
modified by replacing the procedure pull_relabel with the 
procedure bipull_relabel, which is described below. 
 
Procedure bipull_relabel(j) 
begin 
if the network contains an admissible arc (i, j) then  
     if the network contains an admissible arc (h, i) then  
         if h ≠ t  then 

 pull g = min {-e(j), r(i, j), r(h, i), 
r +e(h)} units of flow along the path h–i–j ; 

          else 
 pull g = min {-e(j), r(i, j) r(h, i)} units of 
flow along the path h –i - j ; 

      else d(i) := min{ d(h) | (h, i) ∈Af }+1; 
else d(j) := min{ d(i) | (i, j) ∈Af }+1; 
end; 
 
Theorem 7. If there exists a feasible flow in the bipartite 
network G = (N, A, l, c, s, t), then the deficit scaling 
algorithm for minimum flow in a bipartite network 
determines a minimum flow. 
 
Proof. The proof of this theorem follows directly from 
the Theorem 2. 
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Theorem 8. During the execution of the deficit scaling 
algorithm for minimum flow in a bipartite network, all 
the deficits remain on the nodes in N1.  
 
Proof. At the beginning of the algorithm, one pulls as 
much flow as it is possible on the arcs entering in the sink 
node t∈N2. This operation creates deficits in the nodes 
that are in the neighborhood of the sink node t. Thus, all 
the nodes with deficit after initializations are in N1. All 
the other pulls of flow in the algorithm are done using the  
procedure bipull_relabel, which pulls flow from a node 
in N1 through a node in N2 to another node in N1, never 
leaving any deficit on a node in N2. No other operations 
create deficit at any node. 
 
 Using the result from Theorem 8, we can prove in the 
same manner as we proved Theorem 5 that during each 
scaling phase, the deficit scaling algorithm for minimum 
flow in a bipartite network performs O(n1

2) noncancelling 
pulls. 
 From Theorem 8 it follows that the other operations 
performed by the deficit scaling algorithm for minimum 
flow in a bipartite network (cancelling pulls, relabel 
operations and finding admissible arcs) can be done in 
O(n1m) time. Consequently, we obtained the following 
result: 
 
Theorem 9. The deficit scaling algorithm for minimum 
flow in a bipartite network, runs in O(n1m+n1

2 logC) 
time.  

 
 

5   Parallel deficit scaling algorithm for 
minimum flow in bipartite networks 
In this section, we develop a parallel implementation of 
the deficit scaling algorithm for minimum flow in 
bipartite networks, developed in section 4, on an EREW 
PRAM using p = ⎡m/n1⎤ processors. This algorithm can 
be applied on networks in which any node has both in-
degree and out-degree no greater than p. This restriction 
implies no loss of generality because any bipartite 
network with m arcs, n1 nodes in N1 and n2 nodes in N2 
can be transformed in an equivalent bipartite network 
with O(m) arcs, O(n1) nodes in N1 and O(n2) nodes in N2 
in which any node has both in-degree and out-degree no 
greater than p.  

First we determine a transformed network in which 
all the nodes have out-degree no greater then p and that 
is equivalent to the original network. This network is 
determined from the original network in the following 
manner:  

select a node j with out-degree k > p; we denote 
the arcs outgoing from the node j by (j, j1), (j, j2),...,     (j,  
jk.). 

create two new nodes j' and j'', 
replace the arcs the arcs (j, jk - p+1), ..., (j, jk) with 

the arcs (j, j'), (j', j'') and (j'', jk - p+1), ..., (j'', jk), 
set l(j, j') = 0, c(j, j') = ∝, l(j', j'') = 0, c(j', j'') = ∝ 
set l(j'', jh) = l(j, jh) and c(j'', jh) = c(j, jh) for each 

h from k – p +1 to k 
repeat this process until the network contains no 

node with out-degree greater than p. 
After this transformation, we obtained an equivalent 

network in which any node has out-degree no greater 
than p.  

Each time a a node j with out-degree greater than  p 
is selected, a new node is added to N1, a new node is 
added to N2 and two more arcs are added to A. 

In the same manner, we can determine a transformed 
network in which all the nodes have out-degree no 
greater then p and that is equivalent to the original 
network. 

We can transform any bipartite network with m arcs, 
n1 nodes in N1 and n2 nodes in N2 can be transformed in 
an equivalent bipartite network with O(m) arcs, O(n1) 
nodes in N1 and O(n2) nodes in N2 in which any node has 
both the out-degree no greater than p in O(n1log m) time 
using p processors (for details see [2]). 

Consequently, for the rest of this section, we will 
assume, without loss of generality, that each node in the 
network has both in-degree and out-degree less than or 
equal to p.  

For any node j∈N, let N(j) = { i∈N | (i, j)∈ Af }. We 
assume that nodes in N(j) are denoted by j1, j2,..., jk, 
where k = | N(j)|. Let N’(j) = { i∈N | (i, j)∈ Af  and (i, j) 
is an admissible arc}. 

For each node j∈N2, we refer to 
 r’(j)=Σi∈N’(j) r(i,j) 

as the effective residual capacity of node j. 
Note that we can always pull the entire deficit of a 

node j before relabeling it as long as the deficit does not 
exceed the effective residual capacity of the node j.  

We define the effective residual capacity r’(i, j) of 
arc (i, j) in the following manner: 
 r’(i, j) = 0 if (i, j) is not an admissible arc 
 r’(i, j) = r(i, j)  if (i, j) is an admissible arc and 
i∈N2 and j∈N1 
 r’(i, j) = min{r(i, j), r’(i)}  if (i, j) is an 
admissible arc and i∈N2 and j∈N1 

The parallel deficit scaling algorithm for minimum 
flow in bipartite networks pulls flow from a node j∈N1 
with sufficiently large deficit at a time and then it pulls 
flow from several nodes from N2 in parallel. Pulling  
r’(i, j) units of flow on any arc (i, j) with i∈N2 and j∈N1, 
we can be sure that we never pull more flow into a node 
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i∈N2 than its effective residual capacity. Consequently, 
all the deficit of node i can be pulled out prior to a 
relabeling of node i.  

For an efficient allocation of the processors to the 
arcs (because we cannot assign one processor to each 
arc), we will use the following four functions: 
 Current(j) will return the current arc entering 
into j  
 NextCurrent(j, g) will return |N(j)|+1 if after 
pulling g units of flow from node j all admissible arc 
entering in j will be dropped from the residual network. 
Otherwise, it will return the index of the arc that will 
become current arc after pulling g units of flow from 
node j. 
 NextDecrement(j, g) will return the amount of 
flow that will be pull on arc NextCurrent(j, g) when 
pulling flow from node j. 
 Allocate(j, D) takes as an input a node j and a   
p-dimensional array of demands of processors from    
the nodes in N(j) and returns a vector proc, where 
proc(k) is the set of processors allocated to the node jk 
from N(j). 

Using these four functions described above, we can 
describe the parallel bipull_relabel procedure within the 
parallel bipartite deficit scaling algorithm for minimum 
flow in a bipartite network. This procedure performs at a 
time a pull from an active node with a large deficit and 
with the smallest distance label from N1 followed by a 
set of parallel pulls from several active nodes in N2, each 
of which is preceded by processor allocation. The 
parallel bipull_relabel procedure concludes by relabeling 
the necessary nodes.  

The parallel deficit scaling algorithm for minimum 
flow in a bipartite network is the following: 
 
Parallel bipartite deficit scaling algorithm; 
begin 
 let f  be a feasible flow in network G; 
 compute the exact distance labels d(⋅) in the residual 
network Gf by applying the BFS parallel algorithm from 
the source node s; 

if t is not labeled then  
   f  is a minimum flow 
else begin 

 for each arc (i, t)∈ A do in parallel 
   f(i, t) := l(i, t); 
 d(t) := n; 
 r :=2⎡logC⎤; 
 while r ≥ 1 do 
 begin 

while the network contains an active 
node with a large deficit do 

  begin 
determine in parallel d(j) = min{d(i) | i 

is an active node with large deficit}; 

parallel bipull_relabel(j, r /2, proc(j)); 
end 
r := r /2; 

end 
end 

end. 
 
 
Procedure parallel bipull_relabel(j, g, P) 
begin 

parallel pull(j, g, P); 
 while e(jk) <0 for some jk∈ N(j) do 
 begin 
  for k = 1 to p do in parallel 
   D(jk) = NextCurrent(jk, -e(jk)) - 

Current(jk)+1; 
 proc = Allocate(j, D); 
  for k = 1 to p do in parallel 
  begin 
   parallel pull(jk, -e(jk), proc(k)); 
   update data structures; 
  end; 
 for each jk∈ N(j) do  
  if Current(jk) = |N(jk)| +1  then 
   relabel the node jk; 

if Current(j) = |N(j)| +1  then 
  relabel the node j; 

end; 
end; 
 
Procedure parallel pull(j, g, P) 
begin 
  c = Current(j); 
  k = NextCurrent(j, g); 
  s = |P|; 
  for i = c to min(k-1, c+s-1)  do in parallel 

pull r’(ji , j) units of flow on arc (ji , j) 
and update r’; 
if s ≥ k-c+1 and k ≤ |N(j)| then 

pull NextDecrement(j, g) units of flow 
on arc (jk , j) and update r’; 

  Current(j) =  NextCurrent(j, g); 
end; 
 
Theorem 9. If there exists a feasible flow in the network 
G = (N, A, l, c, s, t), then the parallel deficit scaling 
algorithm for minimum flow in a bipartite network 
determines a minimum flow. 
 
Proof. The proof of this theorem follows directly from 
the Theorem 7. 
 

In order to determine the running time of the parallel 
bipartite deficit scaling algorithm for minimum flow in a 
bipartite network, first we must determine the running 
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time of each of the four functions: Current(j), 
NextCurrent(j, g), NextDecrement(j, g) and Allocate(j, 
D).  

Assuming that |N(j)| is a power of 2, we can associate 
to any node j a complete binary tree T(j) whose leaves 
are the indexes of the nodes in N(j). The key of the leaf k 
is r’(jk , j) and the key of each internal node of the binary 
tree is the sum of the keys of its descendent leaves. 

When a node j is relabeled, to each node jk of N(j) is 
assigned a processor and its binary tree is updated. This 
assignment of processors takes O(log p) steps per 
relabel. Moreover, each processor updates its binary tree 
in O(log p) steps. 

When a pull of flow from a node j is performed, the 
binary tree for the node j must be updated. If k 
processors are assigned, the Current(j) is increased by at 
most k and the updating can be accomplished with k 
processors in O(log p) time. 

In order to compute NextCurrent(j, g), we start at the 
root of the binary tree corresponding to the node j and 
we select the right child or the left child depending on 
whether g is less than or greater than the key of the right 
child. We then recur on the selected child. We also can 
compute NextDecrement(j, g) in this manner. Obviously, 
both functions NextCurrent(j, g) and NextDecrement(j, 
g) can be computed using one processor in O(log p) 
time. 

The function Allocate(j, D) can be straightforward 
implemented using with prefix operations using p 
processors in O(log p) time. 

 
Theorem 10. The parallel pull procedure runs in    
O(log p) time on p = ⎡m/n1⎤ processors. 
 
Proof. The for loop can be implemented by a parallel 
prefix operation on p processors. All the other steps can 
be implemented in O(log p) time using a single 
processor. 
 
Theorem 11. There are O(n1

2 log C) calls to parallel 
bipull_relabel procedure over the course of the parallel 
bipartite deficit scaling algorithm. 
 
Proof. Each parallel bipull_relabel procedure in the first 
line either moves r /2 units of flow or results in a 
relabeling. By a proof similar to that of the Theorem 5, 
there are at most O(n1

2 log C) such pulls over the whole 
algorithm. 
 
Theorem 12. The parallel bipull_relabel procedure runs 
in O(the number of iterations of the while loop × log p) 
time using p = ⎡m/n1⎤ processors. 
 
Proof. Each step except the parallel push procedure takes 
O(log p) time. From Theorem 10, we know that a 

parallel pull procedure takes O(log p) time. Obviously, a 
set of pulls which use a total of p arcs can also be 
implemented in O(log p) time. Consequently, each 
iteration of the while loop can be implemented in    
O(log p) time. 
 
Theorem 13. The while loop in the parallel 
bipull_relabel procedure is executed O(n1m/p+n1

2 log C) 
time over the course of the parallel bipartite deficit 
scaling algorithm. 
 
Proof. First, we note that each node in N(j) may have at 
most one noncancelling pull over the whole execution of 
the while loop. From the Theorem 11, it follows that the 
number of noncancelling pulls is at most O(n1

2 p log C) 
overall. Let x be the number of the noncancelling pulls 
that were executed since the beginning of the algorithm. 
We consider the potential function F =ΣjCurrent(j) + x. 
Initially, F = 0 and at termination F = the number of 
nocancelling pulls = O(n1

2 p log C). The only way for F 
to decrease is by relabeling. Each relabeling of a node j 
decreases F by |N(j)|. Consequently, the total decrease of 
F, due to relabelings, is O(n1m). Thus, the total increase 
in F over the whole algorithm is O(n1

2 p log C + n1m). A 
parallel pull using k processors increases F by k or 
results in a relabeling. Ignoring the last iteration of the 
while loop in each parallel bipull_relabel, we find that 
there are at most O((n1

2 p log C + n1m)/p) iterations of 
the while loop. Because there are at most O(n1

2 log C) 
last iterations, overall there are O(n1

2 log C + n1m/p) 
iterations. 

 
Combining all the above results, we obtain the 

following theorem: 
 

Theorem 14 The parallel bipartite deficit scaling 
algorithm determines a minimum flow in a bipartite 
network in O(n1

2 log C log p) time using p = ⎡m/n1⎤ 
processors .  
 

Consequently, the parallel bipartite deficit scaling 
algorithm runs within a logarithmic factor of the running 
time of the sequential bipartite deficit scaling algorithm 
for minimum flow. 

 
 
5   Conclusion 
In this paper, we discussed the minimum flow problem, 
which is a network problem that is not often treated, 
although it has its own applications. 

First, we described the deficit scaling algorithm for 
minimum flow in a bipartite network G =             
(N1, N2, A, l, c, s, t). This algorithm was obtained from 
the deficit scaling algorithm for minimum flow in 
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regular networks developed by Ciupală in [5] by 
replacing a pull from a node with sufficiently large 
deficit with two consecutive pulls. This replacement 
ensured that only nodes in N1 can have deficits and it 
implied a reduction of the running time of the deficit 
scaling algorithm for minimum flow from              
O(nm + n2 logC) to O(n1m + n1

2 logC) when it is applied 
on bipartite networks.  

 

[3] J. Bang-Jensen and G. Gutin, Digraphs: Theory, 
Algorithms and Applications, Springer-Verlag, 
London, 2001. 

Then, we developed a parallel implementation of the 
deficit scaling algorithm for minimum flow in bipartite 
networks. This algorithm performs a pull from an active 
node with a large deficit and with the smallest distance 
label from N1 at a time, followed by pulls from several 
nodes in N2 in parallel. Consequently, it runs in         
O(n1

2 log C log p) time on a EREW PRAM with p = 
⎡m/n1⎤ processors, which is within a logarithmic factor 
of the running time of the sequential bipartite deficit 
scaling algorithm for minimum flow. 
 
 
6   Further improvements 
One needs to solve the problems from the real life more 
and more quickly. Solving some of these problems 
means solving network flow problems. This is one of the 
reasons for which the speeding-up of the network flow 
algorithms is researched. For obtaining more quickly a 
solution of a network flow problem, there are several 
approaches: designing more efficient algorithms, 
improving the running time of some of the existing 
algorithms (by using enhanced data structures or by 
using certain techniques, for instance technique of 
scaling the problem data etc.), developing parallel 
implementations of some of the existing algorithms etc. 
In this paper, we used two approaches: we improved a 
running time of the deficit scaling algorithm for 
minimum flow by using the particularities of the 
network on which it is applied (i.e., the particularities of 
a bipartite network) and we implemented it in parallel on 
an EREW PRAM. 

The deficit scaling algorithm for minimum flow in 
bipartite networks, developed in this paper, was obtain 
from deficit scaling algorithm for minimum flow in 
regular networks by replacing a pull from a node with 
sufficiently large deficit with two consecutive pulls. The 
same transformation can be applied to any of the variants 
of the deficit scaling algorithm for minimum flow, 
thereby improving their running time when they are 
applied on bipartite networks.  
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