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Abstract: - Inevitabl in the practical supply chain planning, uncertainties, including unsure demand and 
various risks such as machine failure and transportation loss, are fundamental issues for all members of the 
supply chain. In this research, a mathematic model of supply chain with risk and uncertain demand are 
established and solved. The inherent complexity of such an integer programming model leads to the solving 
difficulty in speedily finding exact and integer optimal solutions. Therefore, a quick and decent answer 
becomes essential to pace up with the competitive business world, even it is usually only an approximate 
estimate. Four types of model are discussed in this study, including certain demand without risk, certain 
demand with risk, uncertain demand without risk, and uncertain demand with risk. After model verification 
and validation, computer simulations are performed with three selecting policies, namely “low cost first”, 
“random”, and “minimum cost path”. The results are analyzed and compared, in which the “minimum cost 
path” is the better policy for node selection according to simulation runs. A general linear programming 
solver called LINDO was used to find the optimal solutions but took days as the problem size increases, 
while simulation model obtains an acceptable solution in minutes. For small size problems, numerical 
examples show that the Mean Absolute Percentage Error (MAPE) between integer simulation solution and 
mathematical non-integer solution falls into the range of 3.69% to 7.34%, which demonstrates the feasibility 
and advantage of using simulation for supply chain planning. 
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1 Introduction 
In this decade, supply chain management is now a 

fertilized field in both research and practical. The 

essential reasons may be the long term mutual benefit of 

business entities within the supply chain and sustainable 

development. Various types of supply chain models are 

built and solved, but eventually the target is always to 

minimize total costs or maximize overall profits. The 

model constrains usually include material, demand, 

supply, production capacity, and etc., a typical example 

is as in [1]. A general model that suits all situations is 

not yet found, in fact, it may not be possible to find one.  

A typical supply chain or logistics network 

considers moving a product or service optimally from 
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supplier to customer, subject to satisfaction of each 

component in the chain. Owing to different purposes, 

various researches form diverse points of view are 

proposed, such as supply chain management, green 

supply chain, modeling of supply chain, supply chain 

optimization, supply chain security, and so on.  

Beamon [2] defined the supply chain as “an 

integrated manufacturing process wherein raw materials 

are converted into final products, then delivered to 

customers”. He also divided the supply chain modeling 

into four categories: deterministic analytical models, 

stochastic analytical models, economic models, and 

simulation models. Most related researches fit into the 

classification. Although various researches built 

numerous models from different point of view, the 

problem domain was originally confined within some 

certainty assumptions due to the system complexity or 

solving efficiency, such as Geoffrion & Graves [3], Pyke 

& Cohen [4], and Chaudhry et al. [5]. However, the 

ubiquitous uncertainty and risks are inevitable when 

dealing with practical situations, which bring about 

stochastic models and often entail imprecise answer  or 

long solving time. Being often integer programming 

problems, such stochastic models are discussed more 

recently, including Beamon [2], Applequist et al. [6], 

and Takashi [7]. A recent review with classification can 

be referred to Sarimveis et al. [8]. Among these 

researches, a common problem to face is how to solve 

the integer programming or mixed-integer programming 

quickly, optimally, and efficiently. Furthermore, the 

parameters in a supply chain are often dynamic due to 

varying resources, changing environment, or uncertain 

customer demand. Researches addressing such dynamic 

supply chain are fertilized, such as Riddalls et al. [16], 

Towill et al.[17], and Towill et al.[18].  

Since the modeling of different manufacturing and 

supply chain processes are concerned, along with 

investigating the effects of uncertainty and forecasting 

error on these processes in a dynamic environment, 

empirical models and computer simulation are among 

the most popular techniques in solving such models. 

Example researches simulating risks or demand 

uncertainty of a supply chain include Towill et al. [9], 

Bhaskaran [10], Evans [11] and Leopoulos et al. [12]. In 

Towill et al. [9], simulation was used for design of a 

supply and comparing of different strategies. In 

Bhaskaran [10], simulation was the major tool to 

analyze the instability and inventory of an automobile 

supply chain. Evans [11] provided a case study of a 

logistical control system with dynamic behaviour using 

simulation technique. Leopoulos et al. [12] identified 

the risks of a Greek Pharmaceutical Supply Chain and 

used SWOT technique, but did not quantify the risks. 

Other cases applying simulation technologies in related 

supply chain areas can be found in Chen et al. [13], 

Henesey et al. [14], Deleris et al. [19], and Deleris and 

Erhun [20]. The reviewed literatures indicate that the 

simulation technique is a useful method in supply chain 

analysis, especially when uncertainties or risks exist, 

improvement or design to be justified before actual 

implement, or strategies to be compared.  

 

 

2 Modeling 
In this research, a supply chain with uncertainty in 

demand, manufacturing failure, and transportation risks 

is considered. To support decision making in such a 

dynamic environment, a simulation model that can give 

quick answers to what-if questions are desired and thus 

built. The considered supply chain consists of 4 levels of 

nodes, including n1 suppliers, n2 manufacturers, n3 

distributors, and n4 retailers, as shown in Figure 1. Other 

pre-assumptions are listed below: 

1. Feed forward only network. 

2. No transshipment. 

3. Transportation time is ignored. 
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4. No inventory, single product. 

5. Risks exist in manufacturing/processing and 

transportation.  

6. Production capacity is considered, no upper limit in 

transportation. 

7. Minimal number to produce exists. 

8. Manufacturing/processing costs and transportation 

costs are known. 

 

 

Figure 1 The 4-level supply chain 

 

In the following sections, an integer programming 

model will first be constructed and then solved with 

optimal cost, as well as a simulation model. The results 

from both models will be analyzed and compared based 

on numerical examples with various distributing 

strategies. In addition, cases of certain demand and 

deterministic risks are also discussed as special cases of 

the primal model.   

 

 

3 Simulation analysis 
3.1 Model with risk and uncertain demand 
First, the notations are defined as below: 

iSUC  unit processing cost of i th supplier 

jMUC  unit processing cost of j th manufacturer  

kDUC  unit processing cost of k th distributor  

lRUC  unit processing cost of l th retailer 

iSR  Production risk of i th supplier 

jMR  Production risk of j th manufacturer  

kDR  Processing risk of k th distributor 

ijSTC  Unit transportation cost of i th supplier to 
j th manufacturer 

jkMTC
 

Unit transportation cost of j th 

manufacturer to k th  distributor 

klDTC  Unit transportation cost of k th distributor 
to l th  retailer 

ijSMR  Risk to distribute from i th supplier to 
j th manufacturer 

jkMDR
 

Risk to distribute from j th manufacturer 
to k th distributor 

klDRR  Risk to distribute from k th distributor to 
l th retailer 

iSLB  Minimum amount to start process for i th 

supplier 

iSUB  Capacity of i th supplier 

jMLB  Minimum amount to start process for j th 

manufacturer 

jMUB  Capacity of j th manufacturer 

kDLB  Minimum amount to start process for k th 

distributor  

kDUB  Capacity of k th distributor 

lRLB  Minimum amount to start process for l th 

retailer  

lRUB  Capacity of l th retailer 

TD  Total demand 

iSQ  Amount of process in i th supplier  

MQj Amount of process in j th manufacturer  

kDQ  Amount of process in k th distributor  

lRQ  Amount of process in l th retailer  

ijSMQ  
Amount of transport from i th  supplier to 

j th manufacturer 

jkMDQ

 

Amount of transport from j th 

manufacturer to k th distributor 

klDRQ

 

Amount of transport from k th distributor 

to l th retailer 

TC  Total cost 
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Thus the mathematical model of the considered supply 

chain with risk and uncertain demand can be formulated 

as below: 
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The constraints are illustrated below: 

EQ1 shows that the amount of successful process 

from i th supplier should be greater than or equal to the 

minimum amount to start process but less than or equal 

to its capacity. EQ2 EQ4 are similar to EQ1 but 

representing manufacturer, distributor, and retailer, 

respectively.  

EQ5 shows that amount of process in l th retailer 

is less than or equal to total amount of successful 

transport from all distributors to l th retailer. EQ6 shows 

that total amount of transport from k th distributor to all 

retailers is less than or equal to amount of successful 

process of k th distributor after risks. Similarly, EQ7

EQ8 represent the flow equivalency from manufacturers 

to distributors; EQ9 10 represent the flow equivalency 

from suppliers to manufacturers. 

EQ11 shows that the total amount of successful 

supply is greater than or equal to total amount of 

transport from suppliers to manufacturers. EQ12 shows 

that total amount of successful transport from suppliers 
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to manufacturers is greater than or equal to total amount 

of manufactures. Similarly, EQ13 EQ14 represent the 

flow equivalency from manufacturers to distributors, 

while EQ15 EQ16 from distributors to retailers. 

 

 

3.2 Simulation Model  
The simulation models are built using ARENA 11.0, 

which is a commercial and research software package. 

The interface of ARENA will not be discussed in this 

research. The tested node selecting policies for 

simulation are randomly selection, lower cost first, and 

lower path cost first. Randomly selection means that the 

selection of nodes is random, regardless of costs. Low 

cost first policy chooses the node according to the 

manufacturing/processing cost, the lower the better. 

Lower path cost first policy find the lowest cost 

considering manufacturing/processing costs and 

transportation costs, the lower the better.  

 

 

3.3 Simulation results 
The mixed-integer programming problem can be solved 

by LINDO, which is a commonly used Operations 

Research tool. The optimal solutions are then used to 

evaluate the simulation policies. Mean absolute 

percentage errors (MAPE) are employed for comparing 

the solving efficiencies. In this study, the MAPEs are 

calculated by the equation 100%*(Optimum

Simulation result)/Optimum. 

 

 

3.3.1 Model with certain demand and known 
risks 

Suppose the demand is a constant and there is no risk, 

the average MAPEs of 100 simulation runs with 

different cost combinations are calculated and listed in 

Table 1. As shown in Table 1, it is clear that the results 

from the third policy are very close to the optimal 

solutions and are significantly better than results from 

the first two policies.  

 

Table 1 MAPE for different policies, with certain 

demand and no risk 

 Random Lower 

cost first 

Lower path 

cost first 

MAPE for Cost 

combination I 
7.9859% 7.4627% 0.9519% 

MAPE for Cost 

combination II 
11.8920% 2.0708% 0.7845% 

 

 

3.3.2 Model with certain demand and 
uncertain risks 

Suppose the demand is a constant and all the risks are 

uniformly distributed between 0.02 and 0.08, the 

average MAPEs of 100 simulation runs are calculated 

and listed in Table 2. As shown in Table 2, the Lower 

path cost first policy is better than the others. In the 

following discussion of uncertain models, Lower path 

cost first policy will be applied.  

A numerical example simulation solution with 

certain demand of 1000 and uncertain risk of U[0.02, 

0.08] is as shown in Figure 2. In Figure 2 the numbers 

under pictures represent the amounts to process or 

received. The numbers on the arrows are the amounts to 

transport after manufacturing/processing loss. 

 

Table 2 MAPE for different policies, with certain 

demand and uniform [0.02 0.08] risks 

 Random Lower 

cost first 

Lower path 

cost first 

MAPE 8.7618% 7.6481% 0.9539% 
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3.3.3 Model with uncertain demand, known 
risks 

Following Cole[14] and Weng[15], which demonstrated 

the demand can be approached by normal distribution, 

this study assumes the demand is normally distributed. 

Suppose all the risks are uniformly distributed between 

0.02 and 0.08, and the demand is normally distributed 

with mean of 1000 and standard deviation of 50. The 

manufacturing/processing costs and transportation costs 

are assigned randomly and rounded to be integers. With 

uncertain demand and known risks, the problem is 

basically to determine how much to produce/process at 

the minimal cost.  

 

 
Figure 2 Example simulation solution for model with 

1000 demand and uniform [0.02 0.08] risks 

 

One of the numerical examples is demonstrated 

below. Table 3 shows the setting of costs, Table 4 is the 

setting of capacities, and Table 5 gives the risks for the 

numerical example. Figure 3 illustrates the solution of 

the example, unselected nodes are not shown. In this 

example, 100 simulation runs are tested with the 

minimal total cost of 41710, average cost of 42675, 

maximal cost of 43583, and the half-width of 95% 

confidence interval of 72.026. As the exact optimal 

solution is not easy to find for large problems, relaxation 

of constraints is a common technique to approach the  

Table 3 Costs for the numeric example 

iSUC  

=i  1 2 3 

cost 4 2 3 

ijSTC  

=j  1 2 3 4 1 2 3 4 1 2 3 4 

Suppliers 

cost 3 4 3 5 4 3 6 3 2 5 4 2 

jMUC  

=j  1 2 3 4 

cost 7 5 4 6 

jkMTC  

=k  1 2 1 2 1 2 1 2 

M
anufacturers 

cost 4 5 3 4 5 6 5 6 

kDUC  

=k  1 2 

cost 9 7 

klDTC  

=l  1 2 3 1 2 3 

D
istributors 

cost 7 8 6 8 7 7 

lRUC  

=l  1 2 3 

R
etailers 

cost 9 8 7 
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Table 4 Capacities for the numeric example 

 iSLB  iSUB  

=i  1 2 3 1 2 3 

Suppliers 

unit 0 0 0 730 670 650 

 jMLB  jMUB  

=j  1 2 3 4 1 2 3 4 

M
anufacturers 

unit 0 0 0 0 500 720 650 600 

 kDLB  kDUB  

=k  1 2 1 2 

D
istributors 

unit 0 0 730 700 

 lRLB  lRUB  

=l  1 2 3 1 2 3 

R
etailers 

unit 0 0 0 530 500 400 

 

Table 5 Risks for the numerical example 

iSR  0.03, 0.07 0.04, 0.06 0.02, 0.06  

jMR  0.03, 0.08 0.05, 0.06 0.04, 0.07 0.02, 0.08 

kDR  0.03, 0.08 0.04, 0.07   

0.02, 0.06 0.03, 0.08 0.03, 0.08  

0.03, 0.05 0.04, 0.07 0.02, 0.06  

0.03, 0.07 0.05, 0.06 0.04, 0.07  
ijSMR  

0.04, 0.08 0.02, 0.03 0.05, 0.06  

0.03, 0.06 0.04, 0.06 0.02, 0.07 0.04, 0.08 
jkMDR  

0.02, 0.07 0.03, 0.08 0.03, 0.08 0.03, 0.07 

0.02, 0.06 0.03, 0.07   

0.02, 0.06 0.04, 0.06   klDRR  

0.02, 0.07 0.03, 0.08   

Note: Numbers in the cells represent the parameters of uniform 

distributions. i=1…3; j=1…4; k=1,2; l=1…3.  

 

 

Note: 1. Numbers on the nodes: manufacturing/processing costs;  

2. Numbers under the nodes: (min, mean, max) manufacturing/processing amounts;  

3. Numbers on the arrows with  : transportation costs;  

4. Numbers on the arrows: (min, mean, max) transportation quantity. 

Figure 3 Solutions of the numerical example 
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optimum. By relaxing the integer constraints, the 

relaxed linear programming problems with maximum of 

44461.84 and minimum of 40389.38 can be used as 

upper and lower bounds. It implies that the MAPE of 

maximum is less than 1.9766% and the minimum is less 

than 3.27%. 

Taking various cost combinations and risks, it 

shows that all the MAPEs in maximum is between 

0.191% and 1.9766%, while MAPEs in minimum are 

between 0.01798% and 3.27%. In fact, since the 

numbers are calculated using upper and lower bound, 

the actual errors should be even smaller. 

 

 

3.3.4 Model with uncertain demand and 
uncertain risks 

Suppose the demand can be expressed as a normal 

distribution ~N(1000, 50), the risks are distributed 

uniformly between 0.02 and 0.08, costs are randomly 

assigned, node numbers of each layers are randomly 

selected, and the number of iterations is 100. A similar 

example as in 2.3.3 is also tested, with demand from 

884 to 1116. The simulation results show that average 

MAPE for the minimum cost is 5.7936% and the 

maximum is 4.3115%.  

Taking various cost combinations and risks, the 

simulation result for small size problems is listed in 

Table 6. In Table 6, it can be seen that the MAPEs are 

between 3.3331% and 10.171%, which aregreater than 

afore three cases. It may be due to more uncertainty 

existing in the models. 

For small size problems (numbers of nodes in each 

level ≤ 5), generally LINDO can obtain optimal 

solutions in one hour, while simulation models getting a 

approximate result in less than 1 minute. For 100 runs, 

the Mean absolute percentage errors (MAPE) vary 

between 3.6874% and 7.3362%. If demands are 

constants, the MAPE reduced to 0.7854 ~ 0.9539%, 

which are rather close to the optimal solutions. 

 

Table 6 Simulation results of small size problems with 

uncertain demand and risks 

Combination Minimum Maximum 

I 6.1498% 4.3113%

II 5.6879% 3.4178%

III 10.171% 3.3331%

Average MAPE 7.3362% 3.6874% 

 

  For larger problems, which LINDO can not solve 

efficiently because the problem is NP-hard, simulation 

can still give a close result as a lower bound or a “best 

feasible solution so far”. The MAPEs are not available 

in this case because the optimal solutions are unknown.  

 

 

4 Conclusions 
In this research, three policies for node selecting were 

tested and the “lower cost for whole path first” policy 

out-performed “random” and “Lower cost first”. It is 

also found that the priorities of node selections and 

routing choices are usually close in great portion of the 

network but slightly different from the relaxed linear 

programming solutions. However, simulation can find 

the exact optimal solutions for the deterministic models 

if supplied with enough iterations. More policies can be 

tested for further study.  

For supply chain problems, a very important task 

is to obtain an acceptable solution in a short time while 

the costs and risks vary all the time. Upon built, a 

simulation model can provide sensitivity analysis and 

quick solutions and answers to what-if questions. The 

results from simulations are usually straight-forward and 

easy to understand. In this study, simulation models 

showed the ability to approach optimal solutions in 100 
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runs, especially in small problems or deterministic 

models. It can also provide a lower bound for a large 

problem very quickly, while the linear programming 

tools can provide upper bound by relaxing some 

constraints. For further study with more iterations for 

simulation runs, it is expected that a better, even optimal 

if known, solution can be found within minutes, 

comparing to totally frozen screen by using some 

integer programming solvers for bigger problems. 

Furthermore, time and inventory costs can be 

incorporated in future study. 
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