
Power Efficiency Study of Multi-threading Applications

 for Multi-core Mobile Systems

MARIUS MARCU, DACIAN TUDOR, SEBASTIAN FUICU,

SILVIA COPIL-CRISAN, FLORIN MATICU, MIHAI MICEA

Computer Science and Engineering Department

“Politehnica” University of Timisoara

Timisoara, Bd. V. Parvan, No. 2

ROMANIA

e-mail: marius.marcu@cs.upt.ro, dacian@cs.upt.ro, sebastian.fuicu@cs.upt.ro,

silvia_copil@yahoo.co.uk, maticu_florin@yahoo.com, micha@dsplabs.upt.ro

Abstract: - One constant in computing which is true also for mobile computing is the continue requirement for

greater performance. Every performance advance in mobile processors leads to another level of greater

performance demands from newest mobile applications. However, on battery powered devices performance is

strictly limited by the battery capacity, therefore energy efficient applications and systems have to be

developed. The power consumption problem of mobile systems is in general a very complex one and remained

very actual for quite a long time. In this paper we aim to define a software execution framework for mobile

systems in order to characterize the power consumption profile of multi-threading mobile applications. Study

results for different thread libraries, multi-core processors and multithreaded parallelized applications are also

presented.

Key-Words: - power consumption, multi-threading, multi-core, mobile applications, power profiling

1 Introduction
Today personal communication devices are more

than voice call terminals. The evolution of portable

and mobile computation systems towards an

increased feature set as well as hardware and

software requirements demands, together with the

significant increase of market penetration in our

modern society, is raising complex problems from a

reasonable energy consumption level point of view

under different usage scenarios [1, 14]. The

computational demand of handheld mobile

applications is continually rising, which for example

have to process vast amounts of multimedia data or

support multi-threading parallel applications.

Unfortunately, the traditional approach of increasing

computational power by steadily accelerating the

processor clocks rated, cannot be pursued further as

it would increase the power consumption by factors

prohibitive for battery powered mobile devices. One

way out of this dilemma is to distribute the

computational load on multiple processor cores,

because this architecture allows to reduce clock

speeds and to minimize voltage supply, which in

turn enhances power-efficiency. As such technology

is not mature yet and chips are under design and not

available on a broad audience for mobile devices,

we propose a software approach on top of multi-

core processors, by designing an open, flexible

execution framework that minimizes the processor

load and thus reducing the energy consumption.

One large representative of battery powered

devices like the mobile handset is by its nature

limited in battery capacity and thus does not fit for

architectures with high power consumption. Thus

the future mobile computing platforms for handsets

will face a dramatic contradiction of increasing

requirements on computational resources while

keeping the power consumption at current levels or

even decreasing it. Looking at the world of non-

embedded personal or enterprise computing

systems, this clearly shows a trend towards multi-

core systems but with much less restrictions in the

power consumption requirements. Other aspects

differentiating the embedded communication

systems from the enterprise computing systems are

the requirements of hard real-time operations at

least for the modem part of the system and the high

level security [13, 15].

The power consumption problem of computing

systems is in general a very complex one [1]

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1875 Issue 12, Volume 7, December 2008

because each physical component from the system

has its own consumption profile depending

especially on the executed operation type. This

means that together with the physical components,

the software application layer has a big influence on

the energy consumption [2].

Therefore, the main goal of our work is to

design, implement and validate a software

framework for power-aware mobile applications in

order to reduce overall power consumption and

increase the efficiency of the energy usage. The

objective of our work for this paper is to create an

application-framework that would allow the

execution of different types of threads (by using

multiple thread libraries for Windows OS),

comparing their efficiency and measuring the power

consumption on mobile devices. Using this

framework we want to show how multithreading

mobile applications influence the power

consumption of the single-core/multi-core battery

powered devices. The threads were created by use

of Win32, Boost and Pthreads for Windows

libraries.

2 Multithreading and multi-core

mobile systems

2.1 Multi-core systems
Future handheld computing systems must bridge the

contradiction between high computational resources

and low power consumption. The continuous

increasing market demanded functionality leads to a

drastic increase of the cost factor of required

computational hardware and software resources. As

a result, designing a non-scalable and non-

programmable hardware solution in order to meet

the requirements is either very difficult to

implement or prohibitively expensive. A

programmable multi-core architecture should offer

the optimal solution in terms of power consumption,

performance, flexibility and cost. A multi-core

architecture can be defined as an architecture

consisting on multiple processing cores that are

manufactured on the same integrated circuit. Most

multi-core architectures have been driven by major

market player like Intel, AMD, Sun or IBM as a

primary solution to achieve higher processor

performance and to overcome physical limitations

like clock frequency and heat dissipation. The

current situation in multi-core systems especially for

handheld devices is in its infancy. According to the

visions published in [8], it is believed that multi-

core systems can supply a substantial system

performance boost with reasonable power

consumption.

One of the challenges of multi-core systems is

task scheduling [9] [10]. The gap between multi-

core architecture, scheduling algorithm and power

consumption needs to be bridged especially for

handled SMP multi-core systems. In the diversity of

core packaging solutions and different operating

systems running on multi-core systems, it is

expected that task schedulers shall be architecture-

aware. Closely related to the scheduling problem,

investigations on heat dissipation and scheduling

extensions toward temperature control and power

consumption have been started for example in [11]

and [12]. In spite of many efforts of both research

and industrial communities on improving multi-core

scheduling techniques from the energy efficiency

point of view, there is little evidence on the

convergence of different proposed solutions.

Considering the vast number of possible systems

and applications, we expect that power efficient task

scheduling for handheld multi-core system to be one

of the hot research topics for the next period.

While for years, ever-higher clock speeds

granted that big application code would run faster,

the rules are different for the multi-core processors

of today. The problem is, that simply adding more

cores to a microprocessor does not increase the

speed or power of conventional application code. To

gain the maximum performance for an application

running on multi-core CPUs, application developers

need to design their code for these new architectures

[19]. New design patterns should be used for these

applications, based on multiple execution threads

exploiting problem concurrency, but power

consumption must be also addressed for battery

powered devices. Therefore we tried to design an

energy efficient framework for multithreading

mobile applications running on multi-core CPUs.

2.2 Multithreading libraries
Multithreading is a method of improving the

execution performance of a process by the use of

concurrency, that is allowing more than one thread

to run independently of each other within that

program. Since each thread could run on a different

core at the same time, it is hoped that multithreading

does not only improve efficiency of both single and

multi-core processors, but it could also increase the

battery life of mobile systems. When compared to

the cost of creating and managing a process, a

thread can be created with much less operating

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1876 Issue 12, Volume 7, December 2008

system overhead and requires fewer system

resources than managing processes.

There are three types of thread libraries [3]:

1. User-level libraries can use certain system calls

or characteristics of the OS kernel, but their

structures, code, and thread management are

located in user-space. The kernel does not

recognize and distribute individual threads to

the processor, so all of them will run on a

single core (e.g. Protothreads [4]).

2. Kernel-level libraries - are the ones that have

very little code in user-space and use mostly

system calls. These kind of libraries are very

fast and simple, offering support for building

other, more complex, structures on top (e.g.

Win32 threads [5]).

3. Hybrid libraries – are created by building on

top of a kernel library. The threads created and

managed in user-space are mapped over one or

more kernel level threads, by using system

calls. BOOST [6] and POSIX Pthreads for

Windows [7] are hybrid libraries, with 1:1

mapping ratio (one user-level thread mapped

over one kernel level thread).

Win32 threads can be implemented through the

system calls available in Win32 API. They are

known as kernel-level threads, because the core of

the OS is the only one managing them (creation,

synchronisation, processor allocation). Each is

identified by a block of data (ETHREAD block)

residing in the system address space, together with

the data structures it points to.

Fig. 1 Structure of an ETHREAD block

The KTHREAD block (Fig. 2) contains the

information that the Windows kernel needs to

access to perform thread scheduling and

synchronization on behalf of running threads.

POSIX Pthreads for Win32 is an open-source

thread library, written in POSIX 1003.1-2001

standard. It defines an API for multithreading

applications, which can be informally grouped into

three major classes: thread management, thread

synchronization and condition variables.

Fig. 2 Structure of a KTHREAD block

BOOST Threads is an open-source library,

written in C++. It offers classes and methods for

thread management and aims to ease the creation of

portable, safe, efficient and flexible multithread

applications.

Both thread libraries, POSIX Pthreads for

WIN32 and BOOST Threads, offer the user the

capability of accessing their source code. The code

compilation on a WIN32 platform offers as result

either a statically linked (.lib) or dynamically linked

(.dll) library. In the POSIX Pthreads case, the

compilation was performed for both INTEL X86

processors (Windows XP) and ARM processors

(Windows Mobile 5.0). For both platforms, the

choice was made for dynamically linked libraries to

be offered as a result. In the BOOST Threads case,

the compilation was performed only for INTEL X86

processors, resulting in a statically linked library..

3 Execution framework architecture
The general architecture of the application presented

in figure 3 has a modular structure divided in

several abstracting levels. On the low level of the

framework application will use the operating

system’s drivers of different physical components

took into account in the optimizing process of

energy consumption: the processor, the battery,

wireless chipset, main-board chipset, the memory

etc. The kernel of the execution framework reads

the available measurements through the monitoring

drivers, and calculates the energy consumption of

the running applications. It communicates with the

external components through the application

interface, by making use of specific energy

consumption control messages.

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1877 Issue 12, Volume 7, December 2008

Fig. 3 Framework architecture

In order to show how different types of

application level patterns influence the power

consumption of a mobile device at the application

level, we implemented a prototype of the

framework. The prototype was written in C++ using

MS Visual Studio 2005. The execution framework

prototype source code is portable so it was built and

tested on different Microsoft Windows platforms:

Win32, Window Mobile 5.0 PocketPC and

Windows Mobile 5.0 Smartphone.

The framework application is composed from a

number of specialized modules (Fig. 2):

- Battery monitor - is a software module

running at OS and drivers level, used to

achieve real-time on-line power

consumption measurements from battery

device;

- CPU monitor - is a software module used to

monitor CPU parameters such as load,

temperature, etc.;

- Wireless monitor - is a software module

implemented to monitor different parameters

of wireless communication: signal power

strength (RSSI), bandwidth, data transferred,

etc.;

- other types of monitoring modules could

also be implemented.

- Workload generator - it contains the multi-

threading independent architecture presented

bellow.

- Power profiler - logging and profiling

module to save all monitoring values from

all modules for offline analysis. This module

Fig. 4 Workload generator class diagram

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1878 Issue 12, Volume 7, December 2008

is used for application power consumption

profiling with respect to the used workload

pattern.

- Power framework core and power

framework API extract relevant monitoring

data and provide it to the application level.

These modules are used to implemented

auto-adaptable mobile applications aware of

their power consumption.

3.1 Workload generator
The code piece dealing with thread management

(Workload generator in Fig. 3) was written also in

Microsoft Visual Studio 2005 SP1 using C++. The

methodology consisted of creating a set of classes

that allow the user to create and run multiple

algorithmic interactions on different types of threads

(Fig. 4).

A first class created was CThread that defines the

abstract interface for thread execution and

management. Further, the MyCWinThread,

MyCBoostThread and MyPthreadThread classes

inherit this interface and implement its methods

according to the particularities of the thread library.

Another abstract class was Semaphore, that defines

the interface for the management of semaphores

used in thread synchronization. The classes

Win32Semaphor and PthreadSemaphor implement

this, but MyCBoostThread doesn’t, as the

semaphores were eliminated in Boost version

1.34.1, due to a security bug.

The abstract class Algorithm is inherited by all

the classes that implement an algorithmic operation

orchestration. This class contains several public

methods that help with the creation of threads, and

Fig. 5 Detailed framework architecture

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1879 Issue 12, Volume 7, December 2008

can be used for the generation of both simple and

multi-thread algorithms (classic multithreading

problems, like producer-consumer), defined in their

corresponding classes. Both the Algorithm type and

the Semaphore type objects were created using the

Factory method pattern.

3.2 Power framework core
The mechanism works on the principle of profiles

(Fig. 5). The basic idea is that the monitoring

framework defines a set of high level and domain

specific profiles where applications are registering.

The framework is informed by the application

whenever a change occurs in the profile

configuration data (e.g. download rate is changing).

Based on the registered profiles and the available

system measurements, the monitoring framework

performs active monitoring and provides a feedback

loop to applications or the operating system.

In the power efficiency monitoring framework,

the profiles are playing a key role. We considered

the following profile categories, which can be of

course extended to other profiles if required:

− Wireless – the wireless profile is typically used

by applications that are performing wireless

communication. The profile defines the

following parameters:

• Download rate

• Upload rate

• Radio signal strength

− CPU – the CPU profile is typically used by

applications that are performing a series of

computations such as image/sound decoding or

any other type of data processing. The profile

has the following parameters

• Thread ids – identifiers of the

processing threads

• Thread priorities – thread priorities for

each of the defined processing threads

• Thread wait state time – wait state time

that the each thread issues during one

loop

• Thread/core mapping – mapping

function from thread to processing cores

in case of multi-core systems.

The applications are registering to one or more

profiles, depending on their nature. Besides the

registration interface, applications need to provide

information on changes on their profile through a

state changed interface.

4 Experimental results
We used the framework application we

implemented to emphasize power consumption of

different components of a mobile device in special

multi-threading applications on mobile multi-core

systems.

4.1 Experimental test-cases
In order to evaluate power efficiency profiles for

multi-threading applications we elaborate a set of

experiments, based on them we established a set of

test cases. Every experiment ran for 30 minutes in

the same environmental conditions.

Three hardware devices we used in our tests:

- Fujitsu-Siemens LOOX T830 and Qtek 8310

SmartPhones;

- Fujitsu-Siemens LOOX N560 PocketPC;

- Fujitsu-Siemens Intel Pentium IV dual core

mobile 2000MHz laptop with 512 MB

RAM.

The proposed test cases try to cover different

aspects of multi-threaded applications:

- CPU power consumption;

- memory power consumption;

- thread-library power consumption;

- single-core, dual-core power consumption;

single-threaded, dual-threads and quad-threads

power consumption.

4.2 Power benchmark profiling
A computer benchmark is typically a computer

program that performs a strictly defined set of

operations (a workload) and returns some form of

result (a metric) describing how the tested computer

performed. Computer benchmark metrics usually

measure speed (how fast was the workload

completed) or throughput (how many workloads per

unit time were measured). Running the same

computer benchmark on multiple computers allows

a comparison to be made with respect to the applied

workload.

The concept of benchmarking could be extended

with another metric: the power consumption and we

name it power benchmark. We used the concept of

power benchmark profiling in our tests, therefore

the concept is detailed described in [13].

A power benchmark must by able to distinguish

the way power consumption is increasing with

workload related to idle state consumption and the

type of workload. Therefore, we define a power

benchmark to be composed by three intervals (Fig.

6):

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1880 Issue 12, Volume 7, December 2008

- the first time range [0-t1), is intended for

idle mode power consumption. In this step,

the component does not execute anything,

but the power saving mechanisms are

prevented to occur.

- the second time range [t1-t2) represents the

workload phase, when a certain stimulus is

executed. SPEC CPU2000 or any type of

other applications can be executed as

workload.

- the last time range [t2-t3) represents the

releasing phase intended for the component

to reach again the idle state power

consumption. In this step, the component

does not execute anything, but the power

saving mechanisms are also prevented to

occur.

There are two ways the power benchmark can be

implemented:

- fixed times power benchmark – the

benchmark times t1, t2 and t3 are predefined

and constant. This kind of power

benchmark shows the maximum component

power consumption when a certain

workload is applied for a constant period of

time (t2-t1);

- fixed power consumption values power

benchmark – the benchmark times are

variable and benchmark power measured

values are predefined and constant. This

benchmark shows how many workload

operations are executed per consumed

energy.

(a)

(b)

Fig. 6 Power benchmark definitions

4.3 Workload power consumption
By running the power benchmark with different

workloads for CPU, we obtain the results depicted

in Fig. 7 were obtained. In this case the benchmark

shows the consumption of the mobile

microprocessor when different workloads are

applied: integer, memory and float. Power

signatures in Fig. 7 are obtained for an Intel Pentium

IV dual core mobile 2000MHz laptop with 512 MB

RAM. For the mobile CPU power consumption we

observed that there are no major differences

between different types of CPU workload patterns

(float, integer), but the CPU power consumption

depends of CPU usage percent (CPU load).

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200 1400 1600 t [s]

Battery [s]

Integer

Memory

Float

Fig. 7 Power signatures of the processor for

different workloads

4.4 CPU load power consumption
We tried to run the same intensive computational

workload at different CPU loading percentage in

one thread and we measured their influence on

power consumption and battery discharge. It can be

observed that the usage of the processor under its

higher load capacity could increase the battery

lifetime for the same number of computations. After

the workload was finished different battery status

parameters were achieved depending of the used

CPU load (Fig. 8). Therefore the same numbers of

computations were executed with different power

consumption.

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

t [s]

battery [s]

Idle

60%

80%

100%

Fig. 8 Power signatures of the same workload at

different CPU loads

t [s] t1 t2 t3 0

Discharge rate [W]

t [s] t1 t2 t3 0

Remaining life-time [s]

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1881 Issue 12, Volume 7, December 2008

4.5 Multithreading power consumption
Another test we run was to launch the same

algorithm workload on different thread counts. We

started with one thread and one algorithm on one

dual-core laptop. The same algorithm was further

executed on two threads, each thread on one CPU

core. An increase in power consumption is observed

when the second core is used (Fig. 9). When four

threads were executed no significant increase of

power consumption was observed.

Fig. 9 Power signatures of different thread counts

4.6 Thread libraries power consumption
Next, we elaborated a set of tests in order to

distinguish how the three thread libraries we used

influence the power consumption. In these tests we

run the same workload in 1, 2 or 4 threads using

Win32, PThreads and Boost threads libraries. We

each test 3 times on two different devices: one dual-

core Intel processor notebook and one single core

ARM processor Look T830 PocketPC

-30000

-25000

-20000

-15000

-10000

-5000

0

1 201 401 601 801 1001

t [s]

D
is

c
h
a
rg

e
 r

a
te Win32

Pthread

Boost

Idle

Fig. 10 Power signatures for 1 thread running within

different thread libraries on a Notebook

We obtained the results in Fig. 10, 11, 12 and 13.

It can be observed that there is no significant power

consumption difference when different thread

libraries are used. When running the floating point

workload in one thread on the dual-core notebook

the power consumption increase with around 10 W

related to the idle state power consumption (15 W).

When two threads are running with the same

workload the power consumption increase is 15 W

related to the idle power consumption and only 5 W

related to the one threaded tests.

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

1 101 201 301 401 501

t [s]

D
is

c
h
a
rg

e
 r

a
te Win32

Pthread

Boost

Idle

Fig. 11 Power signatures for 2 concurrent threads

running within different thread libraries on a

Notebook

-40000

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

1 101 201 301 401

t [s]

D
is

c
h
a
rg

e
 r

a
te

Win32

Pthread

Boost

Fig. 12 Power signatures for 4 concurrent threads

running within different thread libraries on a

Notebook

4060

4080

4100

4120

4140

4160

4180

4200

4220

4240

4260

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851

Time [s]

B
a

tt
e

ry
 c

a
p

a
c

it
y

 [
m

V
]

Win32_float_1_thread Pthread_float_1_thread Batery_idle

Fig. 13 Power signatures for 1 thread running within

different thread libraries on a PocketPC

4.7 Multi-threaded producer-consumer

power consumption
Running the implementation of well known

producer-consumer problem on a single-core

PocketPC device using Pthread and Win32 threads

libraries the picture in Fig. 14 is obtained.

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1882 Issue 12, Volume 7, December 2008

Fig. 14 Single-core producer-consumer power

consumption (PocketPC)

On a dual-core CPU laptop the producer-

consumer power profile is presented in Fig. 15.

Fig. 15 Dual-core producer-consumer power

consumption (Laptop)

4.8 Multi-threaded matrix multiplication

power consumption
The last test was to implement a real life application

computing a large amount of data which could be

efficiently parallelized. We implemented a n x n

matrix multiplication algorithm parameterized with

the number of threads available in the threads pool.

When the matrix multiplication algorithm is

executed on a single-core CPU PocketPC device

using one or two threads in the pool, the power

profiles in Fig. 16 (Pthread library) and Fig. 17

(Win32) are obtained.

Fig. 16 Single-core matrix multiplication (PThread)

Fig. 17 Single-core matrix multiplication (Win32)

Running the matrix multiplication algorithm on a

dual-core CPU Laptop using one or two threads the

power profiles in figures 18, 19 and 20 are obtained.

All three thread libraries are used: PThread, Win32

and Boost. When using two threads the energy

efficiency of the algorithm is increasing with around

40-45% for all thread libraries.

Fig. 18 Dual-core matrix multiplication (PThread)

Fig. 19 Dual-core matrix multiplication (Win32)

Fig. 20 Dual-core matrix multiplication (Boost)

11200

11400

11600

11800

12000

12200

12400

12600

12800

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Timp[s]

T
e

n
s

iu
n

e
[m

V
]

Boost_matrix_matrix_1_thread Boost_matrix_matrix_2_thread Batery_idle

11000

11200

11400

11600

11800

12000

12200

12400

12600

12800

1 51 101 151 201 251 301 351 401 451 501 551 601

Timp[s]

T
e

n
s

iu
n

e
[m

V
]

Win32_matrix_matrix_1_thread Win32_matrix_matrix_2_thread Batery_idle

11200

11400

11600

11800

12000

12200

12400

12600

12800

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Timp[s]

T
e

n
s

iu
n

e
[m

V
]

Pthread_matrix_matrix_mullt_1_thread Pthread_matrix_matrix_mullt_2_thread Batery_idle

4060

4080

4100

4120

4140

4160

4180

4200

4220

4240

4260

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901

Timp[s]

T
e

n
s

iu
n

e
[m

V
]

Win32_matrix_matrix_1_thread Win32_matrix_matrix_2_thread Batery_idle

4060

4080

4100

4120

4140

4160

4180

4200

4220

4240

4260

1 35 69 103 137 171 205 239 273 307 341 375 409 443 477 511 545 579 613 647 681 715 749 783 817 851

Timp[s]

T
e

n
s

iu
n

e
[m

V
]

PTHREAD_matrix_matrix_1_thread PTHREAD_matrix_matrix_2_thread Batery_idle

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1883 Issue 12, Volume 7, December 2008

We tried to run the matrix multiplication

algorithm with different CPU loads and uneven

thread balanced (Fig. 21).

Fig. 21 Dual-core matrix multiplication with

different CPU loads

5 Conclusion
In our work we tried to create an application

framework that allows the execution of different

types of threads (by using multiple thread libraries

for Windows OS), comparing their efficiency and

measuring the power consumption on mobile

devices. We used this framework to show how

multithreading mobile applications influence the

power consumption of the single-core/multi-core

battery powered devices. We tested the framework

with Win32 threads and we have to run the same

tests for Boost threads and PThreads.

Mobile systems based on multi-core processors

will appear in short time, as today there are only

laptop systems based on this kind of processors.

When these mobile processor will appear, a lot of

opportunities will come up, opportunities will

address also the power consumption of multi-core

CPU. Introducing DPM algorithms for allocating

execution threads and processes on different cores

depending on the present situation of the system’s

supply is another future direction for our tests.

References:

[1] Jacob Sorber, Nilanjan Banerjee, Mark Corner,

and Sami Rollins, “Turduken: Hierarchical

Power Management for Mobile Devices”, The

Third International Conference on Mobile

Systems, Applications and Services,

Mobisys2005, Jun. 6-8, 2005, USA.

[2] Lin Zhong and Niraj Jha, “Energy Efficiency of

Handheld Computer Interfaces: Limits,

Characterization and Practice”, The Third

International Conference on Mobile Systems,

Applications and Services, Mobisys2005, Jun.

6-8, 2005, USA.

[3] PThreads Primer. A Guide to Multithreaded

Programming. SunSoft Press.Prentice Hall

Title. 1996. ISBN 0-13-443698-9.

[4] Protothreads - Lightweight, Stackless Threads

in C, http://www.sics.se/~adam/pt/

[5] Microsoft® Windows® Internals, Fourth

Edition: Microsoft Windows Server 2003,

Windows XP, and Windows 2000. Microsoft

Press. Copyright 2004. ISBN 0-73-561917-4.

[6] Boost C++ libraries, www.boost.org

[7] Open Source POSIX Threads for Win32

http://sourceware.org/pthreads-win32

[8] Wireless World Research Forum, Book of

Visions 2001, http://www.wireless-world-

research.org

[9] Suresh Siddha et all, Process Scheduling

Challenges in the Era of Multi-core Processors,

Intel Technology Journal, Volume 11, Issue 04,

ISSN 1535-864X, November 2007

[10] Mohan Rajagopalan, Brian T. Lewis, Todd A.

Anderson, Thread scheduling for multi-core

platforms, Proceedings of the 11th USENIX

workshop on Hot topics in operating systems,

p.1-6, May 07-09, 2007, San Diego, CA

[11] Christiana Ioannou, Yiannakis Sazeides, Pierre

Michaud, Martha Vasiliadou. Thermal Aware

Multi-Core Scheduler, ACACES 2007, July

2007

[12] Zili Shao et al, Real-Time Dynamic Voltage

Loop Scheduling forMulti-Core Embedded

Systems, IEEE Transactions on Circuits and

Systems II (TCAS-II), Volume 54, Issue 5, pp

445-449, 2007

[13] Marius Marcu, Mircea Vladutiu, Horatiu

Moldovan, “Microprocessor Thermal

Characterization using Thermal Benchmark

Software”, WSEAS TRANSACTIONS on

COMPUTERS, Issue 11, Volume 5, ISSN

1109-2750, pp. 2628-2633, November 2006.

[14] T. Hubbard, R. Lencevicius, E. Metz and G.

Raghavan, “Performance Validation on

Multicore Mobile Devices”, Proceedings of

IFIP Working Conference on Verified

Software: Tools, Techniques and Experiments,

VSTTE2005, Zurich, Switzerland, 2005

[15] J. Levendovszky, A. Bojarszky, B. Karlocai, A.

Olah, “Energy Balancing by Combinatorial

Optimization for Wireless Sensor Networks”,

pp. 27-32, WSEAS TRANSACTIONS on

COMMUNICATIONS, Issue 2, Volume 7,

February 2008.

[16] Z. Toprak, Y. Leblebici, “A Low-Power

Adaptive Bias/Clock Generator for Fine-

Grained Voltage and Frequency Scaling in

Multi-Core Systems”, WSEAS

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1884 Issue 12, Volume 7, December 2008

TRANSACTIONS on SYSTEMS, vol. 4, num.

12, 2005, p. 2390-2397.

[17] Euiseong Seo, Jinkyu Jeong, Seonyeong Park,

Joonwon Lee, "Energy Efficient Scheduling of

Real-Time Tasks on Multicore Processors,"

IEEE Transactions on Parallel and Distributed

Systems, 17 June 2008.

[18] D. Petcu, A. Eckstein, C. Giurgiu, “Adapting a

Legacy Code for Ordinary Differential

Equations to Novel Software and Hardware

Architectures”, WSEAS TRANSACTIONS on

COMPUTERS, Issue 5, Volume 7, pp. 463-

472, May 2008

[19] Chris Kanaracus, “Intel, Microsoft: Multi-core

chips need new developer skills”, Macworld,

http://www.macworld.com/article/132630/2008

/03/multicore.html, Mar. 2008.

WSEAS TRANSACTIONS on COMPUTERS
Marius Marcu, Dacian Tudor, Sebastian Fuicu,
Silvia Copil-Crisan, Florin Maticu, Mihai Micea

ISSN: 1109-2750 1885 Issue 12, Volume 7, December 2008

