
Implementation of Real-Time Video Conference System
Using high speed Multimedia Communication

Hyen Ki Kim

Department of Multimedia Engineering
Andong National University

388 Songcheon-dong Andong city Kyungbuk
Rep. of Korea

hkkim@andong.ac.kr http://www.andong.ac.kr

Abstract: - Recently, Peer to Peer(P2P) networks become more and more popular. This paper describes an
implementation of real-time video conference system using high speed multimedia communication. The proposed
real-time video conference system has hybrid Peer to Peer architecture based on a client-server and peer-to-peer,
where client-server is used for exchange of account management, client list and status information and P2P is used
for the real-time video conference. The proposed real-time video conference system decreases the traffic of server, and can
cuts down the load of multimedia communication. Because the multimedia data is decentralized to client by hybrid
peer-to-peer network architecture. Also, the proposed system is implemented and tested by the real-time video
conference system using communication protocol and application software through high speed multimedia
communication

Key-Words: - Real-Time, Video conference, High speed, Hybrid, P2P, Multimedia, Communication

1. Introduction

In the video conference system, multimedia data are
processed compression and decompression function
for real time simultaneously. Also, high-speed
telecommunication network is necessary that can
transfer large scale multimedia data such as audio and
video. It is now feasible to deliver video streams over
the Internet as the rapid development of multimedia
and Internet technology. Most of video streaming
systems adopt the client-server model and each video
stream is carried on a point-to-point real-time
protocol(RTP) connection. As a consequence, the
video server likely to become the bottleneck of the
system, making scalability become the critical issue of
video streaming. A client mainly retrieves media data
from the media server directly in the client/server
extension approach. It only retrieves the media data
from other client when the media server is
overwhelmed. In multimedia streaming applications
like video conference system, multimedia data is
transmitted to one or more than one destination
process in various types of communication
networks[1]. The video conference systems such as
skype and AOL IM is one of the applications for
broad-band data transmission[2-5].

Because these systems need no dedicated lines

between participants, we can communicate with each
other at a lower cost. In the RTVC(Real-Time video
conference) system, the video and audio data is
compressed and decompressed by the Codec for real
time video conference[6-9]. Also, high-speed
telecommunication network is necessary that can
transfer large scale multimedia data such as audio and
video. To perform efficiently multimedia data in
computer based video conference system, it is
essential to have support from a well architecture.
Peer to Peer technology support exchange of
real-time communication or data between
users[10-11]. Peer to Peer system process service as
equivalent relation of clients.

This paper describes describes implementation of
real-time video conference system using high speed
multimedia communication. In the following sections,
we begin with the architecture of real-time video
conference system, and implementation of
multiconference are discussed. Finally we discuss
experiment of real-time video conference.

In Chapter 2 of this paper explains the hybrid P2P
architecture. Chapter 3 explains the design of
multi-party video conferencing system. Chapter 4
shows the implementation and the experiment, and the
paper is concluded in Chapter 5.

WSEAS TRANSACTIONS on COMPUTERS

Hyen Ki Kim

ISSN: 1109-2750 1385 Issue 9, Volume 7, September 2008

2. Architecture of video conference
system

The level of multimedia data for computer based

video conference system is as follows.

· Audio: Stereo of CD level(44.1 KHz, 16 bit
 quantization)

· Video: 30 frames/sec, full colors(24 bit
 RGB), 640 pixel x 480 lines/frames

· Graphics: 1024 x 768(resolution), 256
 colors

 From video conference point of view, software only
solution can’t fully process the multimedia data
mentioned above. So, the partial of function for
multimedia data processing require the
implementation of hardware[4-6]. From hardware
point of view, architecture of desktop computer based
video conference system to support multimedia data
processing function is Fig. 1.

Fig. 1 Architecture of desktop computer based video
conference system

From Fig. 1, The function of multimedia processing
unit and bus architecture is as follows.

· Multimedia processing unit is capable of capture,

playback, encoding and decoding functions of
audio-visual data

· The bus is composed of architecture of hierarchical
bus according to bandwidth.

· Main CPU is operating with multimedia data
independently.

The block diagram of multimedia processing unit is

Fig. 2. This block diagram consists of six modules;
that is overlay module, audio module, video module,

graphic module, network module, controller module.

 System bus

Graphic
module

Video
memory

Video
Input

Mike Speaker

Camera Monitor

Video
overlay

Audio
processor

Audio
I/O

Audio
memory

Audio
codec

Video
codec

 Network
module

Local
memory

DAC

 Audio module Video module

 Overlay module

 Codec controller

 Controller module

Fig. 2. Block diagram of multimedia processing unit

Overlay module mixes video and graphics data,

and audio module must operate recording and
playback of audio simultaneously. The video module
must separate the function of
compression/decompression for real time processing
and the controller module is communicate with host
for information exchange.

System bus

Main CPU
Main

memoryCache

System bus
controller

SCSI
Multimedia
processing

unit

Graphic
board

Network
interface

card

CPU bus

Network

System bus

Main CPU
Main

memoryCache

System bus
controller

SCSI
Multimedia
processing

unit

Graphic
board

Network
interface

card

CPU bus

Network

3. Hybrid P2P architecture

The RTVC(Real-Time Video Conference)system uses
two separate network architecture models,
client-server for the communication with the
MCU(Multipoint Control Unit) Presence server for
account management, contact lists, and presence
status information, and peer-to-peer for the real-time
video and audio conferencing and text
messaging[4-5].

3.1 Client-Server architecture

The MCU component is a centralized server, which
runs on a single machine, and hosts the contact-list
(buddy-list) presence information database (XML),
which includes lists of usernames,
user_IDs(Identification), and passwords for all
recognized users. The MCU also receives and
publishes status changes to all logged-in users, such as
when a user comes online, goes offline, becomes busy,
etc. It also handles requests to add and/or remove
contacts from a specific users contact list, and update
user account information such as username and

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1386 Issue 9, Volume 7, September 2008

password. Fig. 3 shows client server architecture of
MCU and RTVC clients.

MCU

Server

Client 2

TCP

UDP
P2P

Sign In
Buddy list TCP

…
UDP
P2P

Client 1 Client N

MCU

Server

Client 2

TCP

UDP
P2P

Sign In
Buddy list TCP

…
UDP
P2P

Client 1 Client N

Fig. 3 Client server architecture of MCU and RTVC
clients

The RTVC clients have a client-server relationship
with the central MCU server. The TCP protocol is
used for network communications. When a RTVC
client starts up, the user must initially log in to the
MCU. The user enters his username and password
into a dialog box, along with the static IP address of
the remote MCU server. The information is posted to
the server, which verifies the information against its
accounts database, and sends back either a login
success or failure notification. The RTVC client also
requests the MCU to send a copy of the user’s
buddy-list down to it.

3.2 P2P architecture

Since the RTVC client has a local current copy of

the IP address and status information for each contact,
the peer-to-peer network is used for the actual
conference network. When a user selects one or more
online contacts and starts a new conference,
invitations are sent directly to each remote participant
using UDP. The MCU is not involved in this process.
Secondary interconnections between all the other
conference members are also automatically
established when remote participants accept the
conference invitation. A custom session control
protocol is used to handle the conference invitation,
acceptance, refusal, and termination. The MCU
server is not involved. Fig. 4 shows the P2P 3-way
network of RTVC clients.

Fig. 4 P2P architecture of RTVC clients

3.3 Network subsystem

Both TCP and UDP protocols are used in the
RTVC client, over IP and Ethernet. TCP is used for
communications with the MCU server, for
login/logout, account management, and contact list
presence information. UDP is used for the
peer-to-peer conference data transfers, including both
the out-of-band session control protocol data and the
real-time streaming of video and audio data as well as
text messaging data exchanges. Figure 5 shows
network layer model.

F

Fig. 5 Network layer model

This category includes the UDP streaming of audio
and video data, captured by the local microphone audio
capture device and the local webcam video capture
device, as well as the related codecs such as the Audio
Codec and the Video Codec. It is helpful to define the
main network protocol models which are used in the
RTVC system. They provide a general categorization
of the behavior, role, and responsibilities associated
with the different network operations which the system
performs. This refers to the TCP client-server model,

Application Protocol Layer

TCP/UDP Protocol Layer

IP Protocol Layer

Ethernet Protocol Layer

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1387 Issue 9, Volume 7, September 2008

which is used for login/logoff operations, client
account management such as username & password
changes, and the ongoing contact (buddy) presence
status information which is distributed to all logged-in
users.

This category includes the UDP streaming of audio
and video data, captured by the local microphone audio
capture device and the local webcam video capture
device, as well as the related codecs and classes such as
the AudioCodec (G723.1) and the VideoCodec
(Windows Media Video VCM 9 codec). Data packets
sent peer-to-peer between contacts during the
conference, which include the session control protocol
and the real-time audio and video streaming, and text
message data exchange, are handled primarily by the
audio-video manager class.

4. Design of video conference system

Initially an online user will become the conference

host by selecting one or more online buddies in the
user list dialog and starting a call. Where, all calls are
handled by same subsystem code, whether 1-to-1 or
1-to-many.

First, an array of multi-party video conference
structures is dynamically allocated, since we don’t
know ahead of time how many participants any
conference might contain. There is a structure for the
host and one for each remote participant.

Next, the pointer to the array of multi-party video
conference structures is assigned to an element within
the multi-conference data structure, which also stores
a default conference title string, the username of the
conference host, the number of conference
participants (including the host), and a randomly
generated conference id, thus each conference should
have a unique ID.

Finally, the multi-party video conference data is
assigned to a member element of the multi-party
video conference global structure variable. If the
initialization of the global multi-party video
conference data structures is successful, then video
dialog next calls into audio-video manager to send
out the conference invitation packets over the
network, directly to each remote participant using the
peer-to-peer network model. Again, the MCU server
is not directly involved in this process.

4.1 Video conference invitation process

After video dialog calls into audio-video manager,
first a check is made to ensure the maximum number
of supported participants has not already been
reached. Then, the number of participants is retrieved
from the global multiconference data. A network
packet is formatted which contains both the standard
packet header CMD_HEADER as well as extra data
appended containing the multiconference data
structures. Fig. 6 shows the network packet structure
for initial CMD_MC_INVITE packet.

CMD_
HEADER

MULTICONF_
GLOBAL

MULTICONF_
PARTICIPANT_
INFO(0)

The data_size_extra
Field of this struct
Will contain the size
Of the additional
MULTICONF_GLOBAL
and participant data
Structures which are
appended

MULTICONF_
PARTICIPANT_
INFO(0)

MULTICONF_
PARTICIPANT_
INFO(n-1)

N contigous MULTICONF_PARTICIPANT_INFO structures
Appended, one for each participant including the host.

CMD_
HEADER

MULTICONF_
GLOBAL

MULTICONF_
PARTICIPANT_
INFO(0)

The data_size_extra
Field of this struct
Will contain the size
Of the additional
MULTICONF_GLOBAL
and participant data
Structures which are
appended

MULTICONF_
PARTICIPANT_
INFO(0)

MULTICONF_
PARTICIPANT_
INFO(n-1)

N contigous MULTICONF_PARTICIPANT_INFO structures
Appended, one for each participant including the host.

Fig. 6 Network packet structure for initial
CMD_MC_INVITE packet

After the CMD_MC_INVITE packet and extra
data is constructed, a loop is entered which retrieves
the user presence information for each remote
participant, obtains the remote network IP address
and port and sends the invitation packet, over UDP
using the audio-video manager command.

The invitation packets then go out across the wire
to each remote participant. It is important to
recognize that the order of receipt of the invitation
packets at the remote clients is inherently
unpredictable and random, since network latencies
and delays may differ along different routes taken.
Also, the time for processing of the initial invitation
packets at each remote participant, which culminates
with the transmission of either an Accept or Refuse
response back to the host, is also unpredictable and
depends on the human response time of each remote
participant, who may or may not even be at the
computer terminal when the invitation request is
initially received.

4.2 Data Structures and variables

struct UserPresence
For each contact (buddy) this holds the network address
and port, the contact status (online, offline, busy, etc), and
the username and userid. This provides the primary
information used for setting up a peer-to-peer session
between contacts.

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1388 Issue 9, Volume 7, September 2008

struct UserPresenceArray
Used to store a contiguous array of UserPresence structure
pointers. Also provides the number (count) of elements in
the array.

Struct
MULTICONF_PARTICIPANT_INFO
For each conference participant, holds the unique
participant id, the participant’s conference status
(connecting, connected, accepted, refused, hung up,
timeout), and the associated UserPresence data for the
contact.

struct MULTICONF_DATA
Holds the general conference data, such as unique
conference id, title, and hostname. Also stores number of
participants and a pointer to the detailed data for each
individual participant which is dynamically allocated for
each new conference. Only one conference is allowed to
exist at a time.

struct MULTICONF_GLOBAL
The topmost structure representing the current conference.
holds the overall conference status for the local client, also
the size (in Bytes) of the multiconference data structure(s)
including the dynamically allocated MULTICONF_
PARTICIPANT_INFO structs.

enum enMULTICONF_STATUS
Enumeration containing the valid statuses for a
multi-conference.

enum enPARTICIPANT_STATUS
Enumeration containing the valid statuses for each
participant in a multi-conference.

4.3 Audio-video manager
The audio-video manager is the central repository

and container class for all activities related to the
peer-to-peer conferencing support. It contains the
implementations of the conferencing session control
protocol, the network socket thread procedure which
receives UDP network requests, the send command
methods which provide support for sending the UDP
request packets to remote peers. It contains instances
of associated classes which provide the audio and
video streaming and the codec implementations. It
provides the conference management implementation.
Fig. 7 shows the block diagram of audio-video
streaming subsystem.

Audio
Capture

Video
Capture

Audio
Playback

Video
Playback

PCM Audio
Frame

Audio
CODEC

Audio
Packet

DIB Video
Format

YUV Video
Frame

Video
CODEC

Video
Packet

PCM Audio
Frame

Audio
Decoder

Audio
Packet

DIB Video
Frame

Video
Decoder

Video
Packet

Socket(UDP) Socket(UDP)Network

Sender Receiver

Audio
Capture

Video
Capture

Audio
Playback

Video
Playback

PCM Audio
Frame

Audio
CODEC

Audio
Packet

DIB Video
Format

YUV Video
Frame

Video
CODEC

Video
Packet

PCM Audio
Frame

Audio
Decoder

Audio
Packet

DIB Video
Frame

Video
Decoder

Video
Packet

Socket(UDP) Socket(UDP)Network

Sender Receiver

Fig. 7 The block diagram of audio-video streaming
subsystem

When a new conference request is created by the

host using the user list dialog, the request to start a
new conference is sent to audio-video manager.
When a remote user receives any inbound network
packet over UDP, it is received in socket class of to
audio-video manager and indicated up to command
class of to audio-video manager if it is a session
control protocol command packet. When the status of
a remote conference participant changes, such as
when they accept, refuse, or hang up a call, the status
is updated using update status class of audio-video
manager. When the local participant wants to
terminate a remote participant’s conference channel
structure, or hang up the conference and disconnect
completely, this is done using end talk class of
audio-video manager. These are just a few of the
primary roles and responsibilities of the audio-video
manager component.

On the conference host system, whenever a remote
participant’s accept command response is received, the
local system will first check that the request is not
coming from a participant who already exists in a
channel. If it is new, a new entry in the channel
structure of audio-video manager is created and
initialized, which is where all current connection
channels with remote participants are maintained.

A mechanism for automatic resending of network
requests is implemented, which along with the
application-layer packet Acknowledgement protocol
convention, provides the application-layer equivalent
of the TCP automatic retransmission and
acknowledgement support, at a hopefully lower
overhead. Whenever a command packet is sent out, the

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1389 Issue 9, Volume 7, September 2008

request is inserted into a Command Queue data
structure, which has an associated timer event. Fig 8
shows the flow chart of video conference system.

Start

Client Login

Buddylist download

Conference invitation

Conference
ACK. ?

Audio & Video
Streaming

Channel
Disconnect

End

Conference
continue

Conference
Disconnect

Y

Y

N

N

Start

Client Login

Buddylist download

Conference invitation

Conference
ACK. ?

Audio & Video
Streaming

Channel
Disconnect

End

Conference
continue

Conference
Disconnect

Y

Y

N

N

Fig. 8 Flow chart of video conference system

4.4 User interface architecture
At some point in the system design the decision was
made to define a user interface architecture which is
similar to that provided by the Microsoft Windows
Foundation Class (MFC) model, but does not actually
use MFC and rather defines a proprietary model. This
is called the WndX XSystem and is implemented
primarily in the WndX.h and WndX.cpp source files.

In this model, all user interface window and
component control classes derive from a hierarchy of
classes, the base of which is the CWndX class. Such
base classes can be recognized because they use the
naming convention CClassnameX, such as CDialogX,
CCtrlX, CMenuX, etc. Other UI classes then derive
from these base classes, which provide common
inherited behaviors for a general type, such as
CUserListDlg, which derives from CDialogX, as do all
other dialog classes using the CClassnameDlg naming
convention.

The WndX system also provides a window
management system. All the classes derived from
CWndX will be inserted into a window object hash
table, which is maintained by the window manager
class CWndMgr. Be sure to familiarize yourself with
this architecture before creating new UI classes or
modifying existing ones!

4.5 User interface components

User List Dialog
ID: IDD_USER_LIST
Associated Class(es): CUserListDlg
Roles & Responsibilities:

• display contact (buddy) list and statuses
• launch Sign In dialog box
• select contacts for call/conferencing and

launch new call/conference
• Sign Out, Exit application

Sign In Dialog
ID: IDD_SIGN_IN
Associated Class(es): CSignInDlg
Roles & Responsibilities:

• enter UserName, Password, and MCU
Server IP address

• initiate sign in request to MCU server

Main Window (Local Video)
ID: IDD_MAIN_DLG
Associated Class(es): CMainWnd
Roles & Responsibilities:

• display local video
• launch Text Chat dialog window
• launch Setup dialog
• hang up an existing call/conference
• change local audio/video quality settings

Remote Video Window(s)
ID: (dynamically created in CVWin by
RegisterClassEx, CreateWindowEx)
Associated Class(es): CVWin
Roles & Responsibilities:

• for each connected (accepted) remote user in a
conference, one instance of this window class will
be created, and will display the remote video
stream.

Multi-conference Status Dialog
ID: IDD_MULTICONF
Associated Class(es): CMultiUserConfDlg
Roles & Responsibilities:

• shows a list of each participant username &
participant status, in a two-column format

• the status is updated (by CAVIOMgr::
UpdateMcParticipantStatus and CmultiConfStatus
Dlg::UpdateStatus) as new session control protocol
packets are received and processed by
CAVIOMgr::OnCommand from the
SockThreadProc network sockets thread.

Text Chat Window
ID: IDD_TXT_DLG
Associated Class(es): CMsgTalkDlg

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1390 Issue 9, Volume 7, September 2008

Roles & Responsibilities:
• provides basic support for sending and receiving

text-based messages. Text messages are sent by
default to all participants who have accept the
conference invitation. All received text messages are
displayed in the same main text window of this dialog,
and are identified by the sender (source).

Ring Dialog
ID: IDD_MSGBOX
Associated Class(es): CRingDlg
Roles & Responsibilities:

• a modal pop-up messagebox which is created when
an incoming conference invitation is received by
CAVIOMgr::OnCommand of type
CMD_MC_INVITE.

• displays the remote inviter (host) IP address and
allows the local user to Accept or Refuse the
conference invitation. Note that based on the user’s
choice, all additional (secondary) invitations
corresponding to this conference ID will be
automatically (silently) accepted by the VICQ client.

Setup Dialog
ID: IDD_SETUP
Associated Class(es): CSetupDlg
Roles & Responsibilities:

• displays a dialog window which allows user to
specify setup preferences for whether a calling sound
should play when an incoming call request received
customize the calling sound from a list of sound
choices enable automatic pop-up of the text chat
window when new text messages are received.

5. Implementation and Performance
Evaluation

5.1 Implementation

At some point in the system design the decision

was made to define a user interface architecture
which is similar to that provided by the Microsoft
Windows Foundation Class (MFC) model, but does
not actually use MFC and rather defines a proprietary
model.

We implemented the MCU and the RTVC client
for the proposed system on Windows XP. The
implemented RTVC client consisted of about 30,000
lines of the source list that written in Visual
C++.NET. After implementing, we tested the desktop
video conference system using communication
protocol and application software through Ethernet

networks. In this paper, we implemented the desktop
video conference system based on client-server and
peer-to-peer. Fig. 9 shows contact list between RTVC
clients for multi-party video conference system.
Where, (a) shows initial contact list before
connection and (b) shows buddy-list of local and
remote client after connection.

(a) (b)

Fig. 9 Contact list between RTVC client for
multi-party video conference system: (a) initial
contact list and (b) buddy list of local and remote
client.

In Fig. 9-(b), client a, b and c connected by online

each other. Fig. 10 shows sign in dialog box of a
client.

Fig. 10 Sign in dialog box of a client

Fig. 11 shows user interface and screen capture for
participant display in the client. (a) shows local video
of client a and (b) shows remote video of client b in
the desktop video conference system.

(a) (b)

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1391 Issue 9, Volume 7, September 2008

Fig. 11 User interface and screen capture for
participant display in the client: (a) local video of
client a and (b) remote video of client b.

Fig. 12 shows example of text messaging between
client a and client b.

Fig. 12 Example of text messaging between client

a and client b. Fig 13 shows status information of
multi-party video conference participant

Fig. 13 Status information of multi-party video
conference participant

 Fig. 14 shows WMV user interface to control of

video quality in the video conference.

Fig. 14 WMV user interface

Fig. 15 shows total user interface screen of video
conference system.

Fig. 15 Total user interface screen of video conference
system

5.2 Experiment and Performance
Evaluation

This experiment is used H.263 compression and

decompression standard for multi-party video
conference, the operating system is used windows
XP[12-16]. The test environment for video
conference is as follows.

 Number of participant for video conference : N
 Size of video frame : 320 x 240 x 3Byte(QCIF), 160 x

120 x 3Byte(QCIF)
 Compression ratio of video data : 30:1 (H.263)
 Compression ratio of audio data : 20:1 (G.723.1)
 Number of transmission frame per second : 15

frames/sec
 Sampling rate of audio : 8 KHz PCM, 8 bit Mono
 Transmission speed of network : 100 Mbps

(Ethernet)

The Fig. 16 shows data transmission capacity
according to video compression ratio and number of
participant in case of CIF and QCIF in video
conference system. In case of CIF for video frame
size, the video compression ratio of 30:1 can perform
video conference until 3 participants. But the video
compression ratio of 150:1 can perform video
conference until 7 participants. Also, In case of QCIF
for video frame size, the video compression ratio of
30:1 can perform video conference until 7
participants and the video compression ratio of 150:1
can perform video conference until 15 participants.
So, the number of possible participant in video
conference decide according to compression ratio of
video data.

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1392 Issue 9, Volume 7, September 2008

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7

Number of participants

D
at

a
tra

ns
m

is
si

on
 c

ap
ac

ity
(M

30:01 50:1 100:1 150:1

(a)

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8

Number of part icipants

D
a
ta

 t
ra

n
s
m

is
s
io

n
 c

a
p
a
c
it
y(

M

30:01 50:1 100:1 150:1

(b)

Fig. 16 The data transmission capacity according to
video compression ratio and number of participant:
(a) CIF and (b) QCIF

Fig. 17 shows data transmission capacity according to

number of participants of video conference

0

5

10

15

20

25

30

2 3 4 5 6

참석자 수

데
이

터
 전

송
 용

량
(M

b
p
s
)

QCIF CIF

Fig. 17 Data transmission capacity according to number
of participants of video conference

The proposed multi-party video conference system using

hybrid peer-to-peer decreases the traffic of server, and can
cuts down the load of a network.

6. Conclusion

The real-time video conference system is
important and useful in a remote discussion with
multiple users. In this paper, we describe

implementation of real-time video conference system
using high speed multimedia communication. Also,
we implemented the real-time video conference
system and tested the system over the high speed
networks through a multi-party video conference.
In case of CIF for video frame size, the video
conference can perform from 3 participants to 7
participants according to the video compression
ratio(30:1~150:1). Also, In case of QCIF for video
frame size, the video conference can perform from 7
participants to 15 participants according to the video
compression ratio(30:1~150:1). In the future, we plan
to apply the embedded devices such as mobile phone
or PDA in Windows CE environment.

References

 [1] C. Perey and Matthew Feldman,

“Videoconferencing over IP Networks,” in
Broadband Networking, J. Trulove, ed.,
pp.193-210, CRC Press, 2000.

[2] A Kantarci and T. Tunali, A Video Streaming
Application on the Internet, ADVIS 2000,
LNCS 1909, pp.275-284, Springer-Verlag
Berlin Hedelberg, 2000.

[3] Jenq-Neng Hwang, "Constrained optimization for
audio-to-video conversion", IEEE Transactions
on Signal Processing, 52(6):1783-1790, June
2004.

[4] Hyen Ki Kim, “A Study on the Multimedia
Input/Output Model for Web based Video
Conference,” EALPIIT’03, 2003.

[5] M. J. van Sinderen and L. Nieuwenhuis,
Protocols for Multimedia Systems,
Springer-Verlag Berlin Hedelberg 2001.

[6] A Kantarci and T. Tunali, “A Video Streaming
Application on the Internet,” ADVIS 2000,
LNCS 1909, pp.275-284, Springer-Verlag
Berlin Hedelberg, 2000.

[7] Masayuki Arai etc, “Experiment for
High-Assurance Video Conference System over
the Internet,” Proc. of the 7th IEEE International
Symposium on HASE’02, 2002.

[8] S. Itaya, T. Enokido and M. Takizawa, “A
High-performance Multimedia Streaming Model
on Multi-source Streaming Approach in
Peer-to-Peer Networks,” Proc. of conference on
AINA’05, 2005.

[9] Li-wei He and Zhengyou Zhang, "Real-time
whiteboard capture and processing using a

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1393 Issue 9, Volume 7, September 2008

video camera for teleconferencing", IEEE July
2005.

[10] http://www.napster.com/what_is_nap ster.html
[11] A. Hudaib and K. Kaabneh, “Hybrid model for

people counting in a video stream”, 12th WSEAS
international conference on COMPUTER, 2008.

[12] http://www.javvin.com/protocolH323.html
[13] A. Takeda and D. Chakraborty etc, “A new

scalable distributed authentication for P2P
network and its performance evaluation”, 12th
WSEAS international conference on
COMPUTER, 2008.

[14] http://www.vocal.com/data_sheets/g723d1.html
[15] S. HA and J. JIN etc, “Hybrid machine learning

to improve predictive performance”, ACC’08,
2008.

[16] T. Klobucar, “Evaluation of personalized search
for learning resources”, Proceeding of the 6th
WSEAS international conference on distance
learning and Web engineering, 2006.

WSEAS TRANSACTIONS on COMPUTERS Hyen Ki Kim

ISSN: 1109-2750 1394 Issue 9, Volume 7, September 2008

http://www.napster.com/what_is_napster.html
http://www.javvin.com/protocolH323.html
http://www.vocal.com/data_sheets/g723d1.html

