
                                                          

 

A Generalized Software Fault Classification Model 
 

OMAR SHATNAWI1 and P.K. KAPUR2 

1Department of Computer Science, Al al-Bayt University, Mafraq 25113, JORDAN 
2Department of Operational Research, University of Delhi, Delhi 110007, INDIA 

      dromali@lycos.com 
 

    
Abstract: - Most non-homogenous Poisson process (NHPP) based software reliability growth models (SRGMs) 
presented in the literature assume that the faults in the software are of the same type. However, this assumption 
is not truly representative of reality. It has been observed that the software contains different types of faults and 
each fault requires different strategies and different amount of testing-effort to remove it. If this assumption is 
not taken into account, the SRGM may give misleading results.  This paper proposes a generalized model based 
on classification the faults in the software system according to their removal complexity. The removal 
complexity is proportional to the amount of testing-effort required to remove the fault. The testing-effort 
expenditures are represented by the number of stages required to remove the fault after the failure observation / 
fault isolation (with time delay between the stages). Therefore, it explicitly takes into account the faults of 
different severity and can capture variability in the growth curves depending on the environment it is being 
used and at the same time it has the capability to reduce either to exponential or S-shaped growth curves. Such 
modelling approach is very much suited for object-oriented programming and distributed development 
environments. Actual software reliability data have been used to demonstrate the proposed generalized model. 
 
 
Key-Words: - Software engineering, Software testing, Software reliability, NHPP, SRGM, Fault severity. 
 
1 Introduction 
Software reliability modelling is very important 
due to the fact that it is not possible to produce 
fault-free software. The faults in the software occur 
due to human imperfection. These faults manifest 
themselves in terms of failures when the software is 
run. Testing phase in the software development 
process aims at detecting and removing these faults 
and making the software more reliable. Thus it is 
very important to evaluate software reliability 
during testing phase, based on software fault data 
analysis. Models concerned with the relationship 
between time span of testing and the cumulative 
numbers of faults removed through software testing 
are called software reliability growth models 
(SRGMs). Based on non-homogeneous Poisson 
process (NHPP), several SRGMs have been 
developed because the models can be easily applied 
in actual software development.  

In the software reliability literature, most 
researchers assume a constant fault removal rate per 
fault in deriving their NHPP based SRGMs [1-4]. 
That is, they assume that all faults have equal 
probability of being removed during the software 
testing process, and the rate remains constant. In 
reality, the fault removal rate strongly depends on 
the skill of test teams, program size and software 
testability [5-8]. Through real data experiments and 

analyzes on several software development projects, 
it has been observed that the fault removal rate has 
three possible trends as time progresses: increasing, 
decreasing or constants. It decreases when the 
software has been used and tested repeatedly, 
showing reliability growth. It can also increase if the 
testing techniques or requirements are changed, or 
new faults are introduced due to new software 
features or imperfect debugging. The learning-
process of test-team has also been studied. The 
learning is closely related to the changes in the 
efficiency of testing during a testing phase. The 
idea is that in organizations that have advanced 
software-process, testers might be allowed to 
improve dynamically their testing process as they 
learn more about the product. This could result in a 
fault removal rate which increases monotonically 
over the testing period. Learning usually manifests 
itself as a changing fault detection rate. To capture 
the learning-process, the researchers adopted a 
time-dependent fault removal rate [9-11].  

The rest of this paper is organized as follows: 
Section 2 revisits the software fault classification 
model and extends it to formulate the proposed 
generalized software fault classification model. 
Sections 3 and 4 present the method used for 
parameter estimation, and the criteria used for 
validation and selection respectively. Section 5 and 

WSEAS TRANSACTIONS on COMPUTERS
 

Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1375 Issue 9, Volume 7, September 2008



                                                          

 

6 provide the applications of the proposed model to 
actual software reliability data sets cited from real 
software development projects and model selection 
respectively. This paper concludes in Section 7. 
 
2 Software Reliability Modelling 
 
2.1 Model Development 
Most SRGMs developed in the literature, assume 
that the faults in the software are of the same type. 
This assumption implies that the fault removal rate 
per remaining fault is independent of the testing 
time and the fault removal intensity is linearly 
proportional to the remaining faults. Such 
assumption helps to simplify the problem of 
modelling and provides to a certain extent plausible 
results. However, this assumption is not truly 
representative of reality. It has been observed that 
the software contains different types of faults and 
each fault requires different strategies and different 
amount of testing-effort to remove it. If this 
assumption is not taken into account, the SRGM 
may give misleading results. To address this issue 
several SRGMs have been developed in the 
literature. Ohba proposed the hyper exponential 
model, assuming that software consists of different 
modules [12]. Each module has its own 
characteristics and thus the faults detected in a 
particular module have their own peculiarities. 
Therefore, the fault removal rate for each module is 
not the same. He suggested that the fault removal 
process for each module can be modelled 
separately and the total fault removal phenomenon 
is the sum of the fault removal process of all the 
modules. Yamada et al. proposed a modified 
exponential model assuming that the software 
contains two types of faults namely, simple and 
hard [13]. Both faults are modelled separately and 
accordingly the fault removal process is the sum of 
the two models. Kareer et al. proposed a model 
with two types of faults [14]. For each type, the 
fault removal rate per remaining faults is assumed 
to be time dependent. Each fault type is modelled 
by the Delayed S-shaped model [5]. The total 
removal phenomenon is modelled by the 
superposition of the two models. Kimura et al. 
proposed the exponential S-shaped model [15]. 
This model again assumes that the software 
contains two types of faults namely, simple and 
hard. The removal of simple faults is described by 
the exponential model [4] while the removal of 
hard faults is described by the Delayed S-shaped 
model [5]. The total fault removal process is again 

the superposition of the two models. Kapur et al. 
proposed a model with three types of faults [16], 
modelled by the exponential model [4], the 
Delayed S-shaped model [5] and the three-stage 
Erlang model [17]. For each type, the fault removal 
rate is assumed to be constant. In all these 
developed models, the authors ignore the role of 
the learning-process during the testing phase by not 
accounting for the experience gained with the 
progress of testing.  

To address these issues, we have recently 
proposed a software fault classification model 
based on the assumption that the testing phase 
consists of three processes namely, failure 
observation, fault isolation and fault removal [18]. In 
this model, software faults are classified into three 
types namely, simple, hard and complex according to 
the amount of testing-effort needed to remove them. 
The time delay between the failure observation and 
the subsequent fault removal is assumed to represent 
the severity of the faults. The model also 
incorporates a logistic learning function during the 
removal phase as it is expected the learning-process 
will grow with time. The total fault removal 
phenomenon is the superposition of the three 
processes. The model had been validated and 
compared with the well-established NHPP models 
including exponential [4], delayed S-shaped [5] and 
inflection S-shaped [6-8] based on actual software 
reliability data. The results were found to be fairly 
encouraging in terms of goodness-of-fit, predictive 
validity, and reliability evaluation measures.  

In this paper, the software fault classification 
model with three types of faults [18] is revisited 
and further extended to represent a software system 
with more than three types of faults. A method is 
adopted to select the number of faults type, which 
can be included in the proposed generalized 
software fault classification model, so that the 
model fits and predicts the fault removal process 
satisfactorily [2]. 
 
 
2.2 Model Assumptions 

1. Failure occurrence, fault detection, or fault 
removal phenomena follow an NHPP with 
mean value function mGE-n(t). 

2. Faults are classified depending on their 
severity and accordingly efforts are needed to 
detect and remove them. 

3. Fault removal process is prefect.  
4. Each time a failure occurs, an immediate 

(delayed) effort takes place to decide the 
cause of the failure in order to remove it. The 

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1376 Issue 9, Volume 7, September 2008



                                                          

 

time delay between the failure observation 
and its subsequent fault removal is assumed 
to represent the severity of the faults. The 
more severe the fault, more the time delay. 

5. Fault removal complexity is proportional to 
the amount of testing-effort the number 
remove the fault. The testing-effort 
expenditures are represented by the number 
of stages required to remove the fault after 
failure observation / fault detection (with 
time delay between the stages) 

6. Fault removal rate of the first fault type is 
proportionality constant and for the 
remaining faults types is a logistic function 
as it is expected the learning-process will 
grow with time. 

 
 
2.3 Model Notations 

a Initial fault-content of the software.  
i Type of fault (i=1,2,3,…,n). 
ai    Initial content of fault-type i )(

1
aan

i i∑ =
= . 

bi Proportionality constant represents failure 
rate / fault isolation(s) / fault removal rate 
per fault for fault-type i.  

bi(t) Logistic learning-process function, i.e., 
fault removal rate per fault for fault-type i. 

mii(t) Mean number of fault removed of type i in 
i number of processes (stages) by time t. 

β Constant parameter in the logistic learning 
function. 

 
 
2.4 Model Formulation 
Assuming that the software contains ‘n’ different 
types of faults and on each type of fault a different 
strategy is required to remove the cause of failures 
due to that fault. We assume that for a type 
i(i=1,2,3,..,n) fault, i different processes (stages) are 
required to detect/remove the cause of the failure.  
 The time-dependent fault removal rate per fault 
for i(i=2,3,..,n) fault-type, which is a nondecreasing 
S-shape curve and capture the learning-process of 
the software testers given as    

    
tb

i
i ie

btb −+
=

β1
)(                   (1) 

The expected number of faults removed in (t, 
t+Δt) is proportional to the number of faults 
remaining to be removed. Accordingly we may 
write the following differential equations: 
For i=1 
      ( ))()( 111111 tmabtm

dt
d

−=                            (2) 

For i=2 

    
( )

( ))()()()(

)()(

2221222

212221

tmtmtbtm
dt
d

tmabtm
dt
d

−=

−=
              

                                                                              (3) 
For i=3 

    

( )

( )

( ))()()()(

)()()(

)()(

3332333

3231332

313331

tmtmtbtm
dt
d

tmtmbtm
dt
d

tmabtm
dt
d

−=

−=

−=

              

                                                                              (4) 
Solving the differential equations given in (2), 

(3), and (4) under the initial conditions m11(t=0)=0, 
m22(t=0)=0, and m33(t=0)=0 respectively we get  

( )
( )

tb

tb

tb

tb

tb

e

etbtb
atmtm

e
etbatmtm

eatmtm

3

3

2

2

1

1
2

11
)()(

1
11)()(

1)()(

22
3

3

3333

2
2222

1111

−

−

−

−

−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

=≡

+
+−

=≡

−=≡

β

β
    

                   (5) 
The software fault classification model is the 

superposition of the three NHPP with mean value 
functions given in (5). Thus, the mean value 
function of the superposed NHPP is 

    

( ) ∑
∑

∑

=
−

−
−

=−

=
−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−=

=

3

2

1

0
1

3

1
3

1
!
)(1

1

)()(

1

i
tb

tb
i

j

j
i

i
tb

i
iGE

i

i

e

e
j
tb

aea

tmtm

β

   

             (6)                 
The removal rate per faults for the first three 

types of faults is given as 

)
2

1)(1(

)1)(1()
2

1(

)(

)(
)(

)1)(1(
)1()1(

)(

)(
)(

)(

)(
)(

22

3

33

22

33

33

3

3

2

222

22

2

2

1
11

1

1

3
3

3
3

2

2

tb
tbe

tbeb
tb

tbb

tma

tm
dt
d

td

tbe
ebtbb

tma

tm
dt
d

td

b
tma

tm
dt
d

td

tb

tb

tb

tb

++++

++−+++
=

−
=

+++
+−++

=
−

=

=
−

=

−

−

−

−

ββ

ββ

ββ
ββ

                                                      (7)             

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1377 Issue 9, Volume 7, September 2008



                                                          

 

We observe that d1(t) is constant with respect to 
time ‘t’ while d2(t) and d3(t) increase monotonically 
with time ‘t’ and tend to constants b2 and b3 
respectively as t→∞. Thus, in the steady state, m2(t) 
and m3(t) fault growth curves behave similar to the 
m1(t) fault growth curve and hence there is no loss 
of generality in assuming the steady state rates b2 
and b3 to be equal to b1.  

Substituting b3=b2=b1 in the right hand side of 
equation (6), yields to d3(t)<d2(t)<b1, which is in 
accordance with the severity of the faults [2,19]. 
Assuming b3=b2=b1=b(say), then equation (6) can 
be written as 

   

( ) ∑
∑

∑

=
−

−
−

=−

=
−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−=

=

3

2

1

0
1

3

1
3

1
!
)(1

1

)()(

i
bt

bt
i

j

j

i
bt

i
iGE

e

e
j

bt

aea

tmtm

β

                                                                                                      

                                                                              (8) 
The improvement in the performance of the 

software fault classification model was attributed to 
the inclusion of three types of faults [18]. This 
observation and results suggest that the inclusion of 
more fault type in the software fault classification 
model may further improve its performance. 

The procedure followed in equations (2), (3), 
and (4) can be extended to formulate the proposed 
generalized software fault classification model with 
‘n’ types of faults.  
Similarly for i=n, we have 

   

( )

( )

( )

( ))()()()(

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

)()()(

)()()(

)()(

1

323

212

11

tmtmtbtm
dt
d

tmtmbtm
dt
d

tmtmbtm
dt
d

tmabtm
dt
d

nnnnnnn

nnnn

nnnn

nnnn

−=

−=

−=

−=

−

     

                                                                              (9) 
Note that the first subscript stands for the type 

of fault and the second subscript stands for the 
number of processes (stages) required to remove 
the fault after it failure occurrence / fault detection 
and is dependent on the type of the fault, i.e., if the 
fault is of the type k, then it will be removed in k 
stages because of its complexity. 

Solving the differential equations (2), (3), (4), 
and (9) respectively we get  

      

( )
( )

tb

tb
i

j

j
i

nnnn

tb

tb

tb

tb

tb

e

e
j
tb

atmtm

e

etbtb
atmtm

e
etbatmtm

eatmtm

i

3

3

3

2

2

1

1
!
)(1

)()(

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1

2
11

)()(

1
11)()(

1)()(

1

0

22
3

3

3333

2
2222

1111

−

−
−

=

−

−

−

−

−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=≡

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

=≡

+
+−

=≡

−=≡

∑
β

β

β

     

                                                                            (10) 
The proposed generalized software fault 

classification model is the superposition of all the 
NHPP with mean value functions given in (10). 
Thus, the mean value function of the superposed 
NHPP is 

       

( ) ∑
∑

∑

=
−

−
−

=−

=
−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−=

=

n

i
tb

tb
i

j

j
i

i
bt

n

i
inGE

i

i

e

e
j
tb

aea

tmtm

2

1

0
1

1

1
!
)(1

1

)()(

β

        

                                                                            (11) 
The analysis followed in equation (7) can again 

be applied. Therefore, assume bn=…=b3=b2=b1=b. 
Accordingly, equation (11) can be rewritten as  

        

( ) ∑
∑

∑

=
−

−
−

=−

=
−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−=

=

n

i
bt

bt
i

j

j

i
bt

n

i
inGE

e

e
j

bt

aea

tmtm

2

1

0
1

1

1
!
)(1

1

)()(

β

       

                                                                            (12) 
The exponential, delayed S-shaped, inflection S-

shaped, exponential S-shaped, generalized Erlang, 
and software fault classification models given in 
[4,5,6-8,15,2,18] respectively, can be obtained from 
proposed generalized software fault classification 
model given in equation (12). Thus high lighting its 
applicability and flexibility. Here, we test the 
proposed generalized software fault classification 
model with ‘2’, ‘3’, ‘4’, and ‘5’ types of faults. 
These models are referred to mGF-2(t), mGF-3(t), mGF-

4(t), and mGF-5(t) respectively. 
 
                       

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1378 Issue 9, Volume 7, September 2008



                                                          

 

3 Parameter Estimation Technique 
The maximum likelihood estimation (MLE) 
method is used to estimate the parameters of the 
proposed generalized software fault classification 
model given in equation (12).  

Since all the data sets used are given in the form 
of pairs (ti,xi)(i=1,2,...,k), where xi is the cumulative 
number of faults detected by time ti (0<t1<t2<…<tk) 
and ti is the accumulated time spent to remove xi 
faults. The Likelihood function ‘L’ for the 
unknown parameters with the mean value function 
is given as  

( ) ( ) ( ))()(

1

1

1

1

1

)!(
)()(

),(| −

−
−−

−

−
−

= −
−

=∏ ii

ii
tmtm

ii

xx
ii

k

i
ii e

xx
tmtm

xtParameterL   

                                                                            (13) 
The MLE of the SRGM parameters can be 

obtained to by maximizing equation (13) with 
respect to the constraints: (ai≥0, 0<b<1, β≥0). 
 
 
4 Model Validation 
To check the validity of the proposed generalized 
software fault classification model to describe the 
software reliability growth, it has been tested on 
four software reliability data sets obtained from 
real software development projects.  

The first data set (DS-I) had been collected 
during 20 weeks of testing (10,000 CPU hours 
were utilized) one of four major releases of the 
software products at Tandem Computers Company, 
Los Anglos (CA), 100 faults were detected during 
the period [3].  

The second data set (DS-II) had been collected 
during 111 days of testing a real time monitor and 
control software system consist of about 200 
modules, on average has 1 KLOC written in 
FORTRAN, 481 faults were detected during the 
period [3].  

The third data set (DS-III) had been collected 
during 12 months of testing a command, control 
and communication software system of size 1317K 
LOC written by CENTRAN and ALC, 2657 faults 
were detected during the period [20]. 

The fourth data set (DS-IV) had been collected 
during 35 months of testing a defense, ground 
based radar software system of size 124K LOC 
written by Jovial, 1301 faults were detected during 
the period [20]. 

The performance of an SRGM judged by its 
ability to fit the past software fault data (goodness-
of-fit) and to predict satisfactorily the future 
behavior of the fault removal process from present 
and past data behaviour (predictive validity) [2,21].   

4.1 The Goodness-of-Fit Criteria 
 
4.1.1 The Sum of Squared Error (SSE) 
This metrics measures the distance of a model 
estimate value from the actual data, and defined as 
            ( )∑

=
− −=

k

i
iinGE xtmSSE

1

2)(ˆ               (14) 

where k is the number of observations, )(ˆ inGE tm −  is 
the estimated cumulative number of faults by time 
ti obtained from the fitted mean value function and 
xi is the total number of faults removed by time ti.  

Lower value of SSE indicates less fitting error, 
thus better goodness-of-fit.  
 
4.1.2 The Akaike Information Criterion (AIC) 
This metrics measures the ability of a model to 
maximize the likelihood function that is directly 
related to the degree of freedom during fitting, and 
defined as      
              ( ) NLofMaxAIC ×+×−= 2.log2          (15) 
where ‘N’ is the number of the parameters used in 
the model and ‘L’ likelihood function.  

Lower value of AIC indicates more confidence in 
the model thus a better fit and predictive validity. 
 
4.1.3 Coefficient of Multiple Determination (R2) 
This metric measures the percentage of the total 
variation about the mean accounted for by the fitted 
curve. It ranges in value from 0 to. We define this 
coefficient as the ratio of the Sum of Squares (SS) 
resulting from the trend model to that from a 
constant model subtracted from 1, that is   

       
SScorrected

SSresidualR −= 12              (16) 

Small values indicate that the model does not fit 
the data well.  
 
 
4.2 The Predictive Validity Criterion 
Predictive validity is defined as the capability of 
the SRGM to determine the fault removal 
phenomena from present and past fault removal 
data. This capability is significant only when the 
fault removal phenomena are changing [21].  

Suppose that we have found xk faults by the 
testing end time tk. The fault removal data up to 
time tj(≤tk), i.e., the software reliability data is 
truncated to time tj are used to estimate the 
parameters of the SRGM. The number of faults 
removals by time tk can be predicted by the SRGM 
and compared to the reported fault removal at this 
time, i.e., xk.  

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1379 Issue 9, Volume 7, September 2008



                                                          

 

We can check the predictive validity by 
tabulating the relative prediction error (RPE) values 
against the testing progress ratio (tj/tk) in percent 
for software reliability data.  

The relative prediction error (RPE) is defined as 
           ( )

k

kknGE

x
xtmRPE −

= − )(ˆ              (17) 

where )(ˆ inGE tm −  is the predicted cumulative 
number of faults by time tk. 

The RPE will approach zero as tj approaches tk. 
If the RPE values are positive/negative, the model 
tends to overestimate/underestimate the future fault 
removal phenomena. Numbers closer to zero imply 
more accurate prediction. The relative error is said 
to be acceptable if it is within ±10 percent [2]. 

 
4.3 Model Selection Criteria 
The software reliability data and the comparison 
criteria used earlier are applied to check the 
performance of the proposed generalized software 
fault classification model. The data are truncated 
into different proportions and used to estimate the 
parameters of the models under comparison. For 
each truncation, one value SSE and RPE are 
obtained [2]. For a given model, these values may 
vary from one point to another.  
 To measure the performance of the models under 
comparison all over the truncations, the following 
criteria are used  
• Average Sum of Squared Error (ASSE) 

             ∑
=

=
j

i

i

j
SSE

ASSE
1

            (18) 

where ‘j’ is the number of truncations and SSEi is 
the SSE of the ith data set truncation. 
• Average Relative Prediction Error (ARPE) 

                       ∑
=

=
j

i

i

j
RPE

ARPE
1

                   (19) 

where |RPEi| is the absolute value of the RPE of the 
ith data set truncation. 
 
 
5 Data Analyses and Model 

Comparisons 
The software reliability data and the comparison 
criteria in terms of goodness-of-fit and predictive 
validity defined earlier in Section 4 are applied to 
check the performance of the proposed generalized 
software fault classification model defined in 
equation (12) with ‘n’ types of faults. As the 
number of fault types may tend to be large, 
modelling each fault type individually is not 
practically possible. However, if the faults 

classified into a smaller number of groups, where 
each group contains the faults of common 
characteristics, the number of faults can be 
reduced. Therefore, we have tested this proposed 
generalized model for only five types of faults. 
That is, the models under comparison are mGF-2(t), 
mGF-3(t), mGF-4(t), and mGF-5(t) that estimates the 
presence of ‘2’, ‘3’, ‘4’, and ‘5’ types of faults 
respectively.  
 
 
5.1 First Software Development Project 
The results of the parameter estimation and the 
goodness-of-fit metrics in terms of SSE, AIC, and 
R2 of the models under comparison are given in 
Tables 1 and 2 respectively. On applying mGF-2(t), 
the model reveals the presence of two types of 
faults where the majority are of type ‘2’. 
Accordingly, the fault removal phenomena are 
described by a combination of types ‘1’ and ‘2’. On 
applying mGF-3(t), the model reveals the presence of 
two types of faults where the majority are of type 
‘3’. Accordingly, the fault removal phenomena are 
described by a combination of types ‘1’ and ‘3’. On 
applying mGF-4(t), the model reveals the presence of 
three types of faults where the majority are of type 
‘4’. Accordingly, the fault removal phenomena are 
described by a combination of types ‘1’, ‘3’, and 
‘4’. On applying mGF-5(t), the model reveals the 
presence of two types of faults where the majority 
are of type ‘5’. Accordingly, the fault removal 
phenomena are described by a combination of 
types ‘1’ and ‘5’. The duration of test justifies the 
estimation of high complexity fault-type (which 
required more testing-effort to be removed).  It is 
clear from Table 2 that the results of the goodness-
of-fit metrics are significantly improving with the 
introduction of more types of faults.  
 
Table 1. Parameter Estimation Results (DS-I)  

Parameter Estimation Models under
Comparison a1 a2 a3 a4 a5 b β 

mGF-2(t) 39 62 — — — 0.410 33.7
mGF-3(t)    40 0 62 — — 0.409 20.6
mGF-4(t) 39 0 12 52 — 0.441 13.4
mGF-5(t)    35 0 0 0 67 0.526 2.50

 
Table 2. Goodness-of-Fit Results (DS-I)  

Comparison Criteria Models under
Comparison SSE AIC R2 

mGF-2(t) 35.68 79.86 .998 
mGF-3(t)    34.10 80.03 .998 
mGF-4(t) 33.66 82.25 .998 
mGF-5(t)    30.33 79.43 .998 

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1380 Issue 9, Volume 7, September 2008



                                                          

 

The results of the SSE and RPE of the models 
under comparison for different truncations of the 
data set are given Tables 3 and 4 respectively. It is 
observed that the values vary from one truncation 
to another. Overall the values are significantly 
improving with the introduction of more types of 
faults. It is observed that the values vary from one 
truncation to another. It is clear from Table 4 that 
the values overestimates the fault removal process 
except when the testing progress ratio is about 80% 
(on applying mGF-2(t)), and 70% and 60% (on 
applying mGF-2(t) and mGF-3(t)) it underestimates the 
fault detection process. 

 
Table 3. SSE Metric Results (DS-I)  

Testing Progress Ratio Models under 
Comparison 60% 70% 80% 90% 

mGF-2(t) 146.4 63.7 36.5 35.8 
mGF-3(t)    77.5 42.7 38.0 34.8 
mGF-4(t) 34.4 44.4 39.3 35.8 
mGF-5(t)    39.4 36.8 38.0 32.6 

 
Table 4. RPE% Metric Results (DS-I)  

Testing Progress Ratio Models under 
Comparison 60% 70% 80% 90% 

mGF-2(t) -4.46 -2.18 -0.10 0.49 
mGF-3(t)    -2.39 -.730 2.53 1.07 
mGF-4(t) 1.38 2.73 2.27 1.79 
mGF-5(t)    2.60 2.41 2.53 1.90 

 
 
5.2 Second Software Development Project 
The results of the parameter estimation and the 
goodness-of-fit metrics in terms of SSE, AIC, and 
R2 of the models under comparison are given in 
Tables 5 and 6 respectively. On applying mGF-2(t), 
the model reveals the presence of two types of 
faults where the majority are of type ‘2’. 
Accordingly, the fault removal phenomena are 
described by a combination of types ‘1’ and ‘2’. On 
applying mGF-3(t), mGF-4(t) and mGF-5(t), they models 
reduce to mGF-2(t). The duration of test justifies the 
estimation of low complexity fault-type. It is clear 
from Table 6 that the results are not improving with 
the introduction of more than two types of faults.    
 
Table 5. Parameter Estimation Results (DS-II)  

Parameter Estimation Models under 
Comparison a1 a2 a3 a4 a5 b β 

mGF-2(t) 133 350 — — — 0.080 6.11
mGF-3(t)    133 350 0 — — 0.080 6.11
mGF-4(t) 133 350 0 0 — 0.080 6.11
mGF-5(t)    133 350 0 0 0 0.080 6.01

 
 

Table 6. Goodness-of-Fit Results (DS-II)  
Comparison Criteria Models under

Comparison SSE AIC R2 

mGF-2(t) 32793 659 0.987 
mGF-3(t)    32793 659 0.987 
mGF-4(t) 32793 659 0.987 
mGF-5(t)    32793 659 0.987 

 
The results of the SSE and RPE of the models 

under comparison for different truncations of the 
data set are given Table 7 and 8 respectively. It is 
observed that the values do not vary from one 
truncation to another. It is clear from Table 8 that 
the values overestimate the fault removal process. 

 
Table 7. SSE Metric Results (DS-II)  

Testing Progress Ratio Models under
Comparison 60% 70% 80% 90% 

mGF-2(t) 168134 58234 34364 32857
mGF-3(t)    168134 58234 34364 32857
mGF-4(t) 168134 58234 34364 32857
mGF-5(t)    168134 58234 34364 32857

 
Table 8. RPE% Metric Results (DS-II)  

Testing Progress Ratio Models under
Comparison 60% 70% 80% 90% 

mGF-2(t) 11.23 6.88 1.65 0.50 
mGF-3(t)    11.23 6.88 1.65 0.50 
mGF-4(t) 11.23 6.88 1.65 0.50 
mGF-5(t)    11.23 6.88 1.65 0.50 

 
 
5.3 Third Software Development Project 
The results of the parameter estimation and the 
goodness-of-fit metrics in terms of SSE, AIC, and 
R2 of the models under comparison are given in 
Tables 9 and 10 respectively. On applying mGF-2(t), 
the model reduces to mGF-1(t). On applying mGF-3(t), 
the model reveals the presence of three types of 
faults where the majority are of type ‘1’. 
Accordingly, the fault removal phenomena are 
described by a combination of types ‘1’, ‘2’, and 
‘3’. On applying mGF-4(t), the model reveals the 
presence of three types of faults where the majority 
are of type ‘4’. Accordingly, the fault removal 
phenomena are described by a combination of 
types ‘1’, ‘2’, and ‘4’. On applying mGF-5(t), the 
model reveals the presence of two types of faults 
where the majority are of type ‘5’. Accordingly, the 
fault removal phenomena are described by a 
combination of types ‘1’, ‘2’, and ‘5’. The duration 
of test justifies the estimation of high complexity 
fault-type. It is clear from Table 10 that the results 
are significantly improving with the introduction of 
more types of faults. 

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1381 Issue 9, Volume 7, September 2008



                                                          

 

Table 9. Parameter Estimation Results (DS-III)  
Parameter Estimation Models under 

Comparison a1 a2 a3 a4 a5 b β
mGF-2(t) 3330 0 — — — 0.136 0
mGF-3(t)    1683 97 1351 — — 0.306 0
mGF-4(t) 1168 668 0 1176 — 0.421 0
mGF-5(t)    786 868 0 0 1260 0.573 0

 
Table 10. Goodness-of-Fit Results (DS-III)  

Comparison Criteria Models under 
Comparison SSE AIC R2 

mGF-2(t) 11742 170 0.998 
mGF-3(t)    9530 172 0.998 
mGF-4(t) 8610 164 0.999 
mGF-5(t)    6242 152 0.999 

 
The results of the SSE and RPE of the models 

under comparison for different truncations of the 
data set are given Tables 11 and 12 respectively. It 
is observed that the values vary from one truncation 
to another. The values of mGF-5(t)) are the lowest 
except for truncation 70%. Overall the values are 
significantly improving with the introduction of 
more types of faults. The values of the models 
under comparison overestimates the fault removal 
process except when the testing progress ratio is 
about 70% (on applying mGF-2(t)) and 60% (except 
for mGF-5(t)) it underestimates the fault removal 
process. 

 
Table 11. SSE Metric Results (DS-III)  

Testing Progress Ratio Models under 
Comparison 60% 70% 80% 90% 

mGF-2(t) 83698 26919 11869 12050 
mGF-3(t)    27866 11091 17249 12924 
mGF-4(t) 61868 16123 23870 10654 
mGF-5(t)    13586 12595 10601 7325 

 
Table 12: RPE% Metric Results (DS-III)  

Testing Progress Ratio Models under 
Comparison 60% 70% 80% 90% 

mGF-2(t) -0.051 -0.019 0.010 0.012 
mGF-3(t)    -0.010 0.020 0.035 0.027 
mGF-4(t) -0.027 0.034 0.046 0.022 
mGF-5(t)    0.021 0.030 0.026 0.016 

 
 
5.4 Fourth Software Development Project 
The results of the parameter estimation and the 
goodness-of-fit metrics in terms of SSE, AIC, and 
R2 of the models under comparison are given in 
Tables 13 and 14 respectively. On applying mGF-

2(t), the model reveals the presence of two types of 
faults where the majority are of type ‘2’. 
Accordingly, the fault removal phenomena are 

described by a combination of types ‘1’ and ‘2’. On 
applying mGF-3(t), the model reduces to mGF-2(t). On 
applying mGF-4(t), the model reveals the presence of 
three types of faults where the majority are of type 
‘2’. Accordingly, the fault removal phenomena are 
described by a combination of types ‘1’, ‘2’, and 
‘3’. On applying mGF-5(t), the model reduces to mGF-

4(t). The duration of test justifies the estimation of 
high complexity fault-type. It is clear from Table 
14 that the results are improving with the 
introduction of more types of faults.    
    
Table 13. Parameter Estimation Results (DS-IV)  

Parameter Estimation Models under
Comparison a1 a2 a3 a4 a5 b Β 

mGF-2(t) 132 1184 — — — 0.224 29.32
mGF-3(t)    132 1184 0 — — 0.224 29.32
mGF-4(t) 136 934 248 0 — 0.225 27.29
mGF-5(t)    136 934 248 0 0 0.225 27.29

 
Table 14. Goodness-of-Fit Results (DS-IV)  

Comparison Criteria Models under
Comparison SSE AIC R2 

mGF-2(t) 3413 344 1.000 
mGF-3(t)    3413 344 1.000 
mGF-4(t) 3609 347 1.000 
mGF-5(t)    3609 347 1.000 

 
The results of the SSE and RPE of the models 

under comparison for different truncations of the 
data set are given Tables 15 and 16 respectively. It 
Overall the values are significantly improving with 
the introduction of more types of faults. It is clear 
from Table 16 that the values overestimates the 
fault removal process except when the testing 
progress ratio is about 70%, 80%, and 90% (on 
applying mGF-2(t)) and mGF-3(t)) it underestimates 
the fault removal process. 

  
Table 15: SSE Metric Results (DS-IV)  

Testing Progress Ratio Models under
Comparison 60% 70% 80% 90% 

mGF-2(t) 73257 3491 3493 3415
mGF-3(t)    73257 3491 3493 3415
mGF-4(t) 10078 3524 3659 4218
mGF-5(t)    10078 3524 3659 4218

 
Table 16: RPE% Metric Results (DS-IV)  

Testing Progress Ratio Models under
Comparison 60% 70% 80% 90% 

mGF-2(t) 2.09 -0.15 -0.52 -0.12 
mGF-3(t)    2.09 -0.15 -0.52 -0.12 
mGF-4(t) 0.51 -0.06 -0.68 0.38 
mGF-5(t)    0.51 -0.06 -0.68 0.38 

 

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1382 Issue 9, Volume 7, September 2008



                                                          

 

6 Model Selection 
As discussed earlier in Section 5, the proposed 
generalized software fault classification model was 
able provide a good fit and predictive validity for 
all software reliability data sets. It is observed that 
for each data set one version of the proposed 
generalized model with specific combination of 
faults types is selected. The mGF-5(t) can be selected 
to model DS-I and DS-III, while mGF-2(t) is selected 
to model DS-II and DS-IV. 

The problem is that the model selection is not a 
one step process. In some cases, there was a 
contradiction between the goodness-of-fit and the 
predictive validity. Also, we have observed that 
using the proposed generalized model with a higher 
number of faults improves the goodness-of-fit and 
the predictive validity in some cases (as in DS-I 
and DS-III) while it does not help in other case (as 
in DS-II and DS-IV). 

In this section, we select the best generalized 
software fault classification model with optimum 
(minimum) number of faults types. The model 
selection methodology is simple. We have to select 
from the models under comparisons, the one that 
provides the minimum values of ASSE and ARPE.  

Table 17 shows that the values of the ASSE are 
decreasing with the increase number of faults types 
while ARPE are increasing with the increase 
number of faults types except for mGF-3(t). Since the 
ARPE of the proposed generalized software fault 
classification model with five types of faults (i.e., 
mGF-5(t)) is within the acceptable level, it can be 
selected for the first software development project. 
The selection of this model does not necessarily 
mean that there are five types of faults in the 
software, but it means that the software system 
contains faults of type ‘five’ (i.e., highly complex 
faults, see Table 1) thus highlighting its flexibility.  

    
Table 17: Overall Performance Results (DS-I)  

Overall Performance Criteria Models under 
Comparison ASSE ARPE% 

mGF-2(t) 70.61 1.81 
mGF-3(t)    48.24 1.69 
mGF-4(t) 38.44 2.04 
mGF-5(t)    36.71 2.36 

 
Table 18 shows that the values of ASSE and 

ARPE remain the same in spite of increasing the 
number of types of faults. Thus, the proposed 
generalized software fault classification model with 
two types of faults (i.e., mGF-2(t)) can be selected 
for the second software development project.  
 

Table 18: Overall Performance Results (DS-II)  
Overall Performance CriteriaModels under

Comparison ASSE ARPE% 
mGF-2(t) 73397 6.06 
mGF-3(t)    73397 6.06 
mGF-4(t) 73397 6.06 
mGF-5(t)    73397 6.06 

 
Table 19 shows that the values of ASSE are 

decreasing with the increase number of faults types 
while ARPE values are very close to each other. It 
is clear that the proposed generalized software fault 
classification model with five types of faults (i.e., 
mGF-5(t)) can be selected for the third software 
development project.  
 
Table 19: Overall Performance Results (DS-III)  

Overall Performance CriteriaModels under
Comparison ASSE ARPE% 

mGF-2(t) 33634 0.023 
mGF-3(t)    17282 0.023 
mGF-4(t) 28129 0.032 
mGF-5(t)    11027 0.023 

 
Table 20 shows that the values of ASSE and 

ARPE are decreasing with the increase number of 
faults types. It is clear that the proposed 
generalized software fault classification model with 
four types of faults (i.e., mGF-4(t)) can be selected 
for the fourth software development project.  

 
Table 20: Overall Performance Results (DS-IV)  

Overall Performance Criteria Models under
Comparison ASSE ARPE% 

mGF-2(t) 13401 0.32 
mGF-3(t)    13401 0.32 
mGF-4(t) 5370 0.04 
mGF-5(t)    5370 0.04 

 
 
7 Conclusion 
The unified modelling approach adopted allows the 
proposed generalized software fault classification 
model to be flexible and simple. The flexibility is 
achieved by modelling the removal of each fault 
type by a specific growth curve according to the 
fault removal complexity. The objective of the 
unified modelling approach is to provide an 
efficient, reliable, and widely applicable model. 
Finally, we believe that the approach followed in 
this paper will help to a great extent in limiting the 
choice of finding the suitable model for a particular 
testing environment. 
 

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1383 Issue 9, Volume 7, September 2008



                                                          

 

References: 
[1] Xie M, Software Reliability Modelling, 

World Scientific, 1991.  
[2] Kapur PK, Garg RB and Kumar S, 

Contributions to Hardware and Software 
Reliability, World Scientific, 1999.  

[3] Pham H, Software Reliability, Springer-
Verlag. 2000.  

[4] Goel AL and Okumoto K, Time Dependent 
Error Detection Rate Model for Software 
Reliability and other Performance Measures, 
IEEE Transactions on Reliability, Vol. 28, 
No. 3, 1979, pp. 206-211. 

[5] Yamada S, Ohba M and Osaki S, S-shaped 
Reliability Growth Modelling for Software 
Error Detection, IEEE Transactions on 
Reliability, Vol. 32, No. 5, 1983, pp. 475-
478. 

[6] Ohba M, Inflection S-shaped Software 
Reliability Growth Model, In: Osaki S and 
Hatoyama Y (eds.) Stochastic Models in 
Reliability Theory, Springer-Verlag, Berlin, 
1984. 

[7] Bittanti S, Blozern P, Pedrotti E, Pozzi M and 
Scattolini A, A Flexible Modelling Approach 
in Software Reliability Growth, In Goos G 
and Hartmanis I (eds.), Software Reliability 
Modeling and Identification, Springer-
Verlag: Berlin, 1988, pp. 101-140. 

[8] Kapur PK and Garg RB, A Software 
Reliability Growth Model for Error Detection 
Phenomenon. Software Engineering Journal, 
Vol. 7, No. 4, 1992, pp. 291-294. 

[9]  Kuo S, Huang H and Lyu MR, Framework 
for Modelling Software Reliability using 
various Testing-Effort and Fault-Detection 
Rates, IEEE Transactions on Reliability, Vol. 
50, No. 3, 2001, pp. 310-320. 

[10] Pham H, Nordmann L and Zhang X, A 
General Imperfect Software-Debugging 
Model with S-shaped Fault Detection Rate, 
IEEE Transactions on Reliability, Vol. 48, 
No. 2, 1999, pp. 169-175. 

[11] Kapur PK, Gupta Anu, Shatnawi Omar and 
Yadavalli VSS, A Discrete NHPP Model for 
Software Reliability Growth with Imperfect 
Fault Debugging and Fault Generation, 
International Journal of Performability 
Engineering, Vol. 2, No. 4, 2006, pp. 321-
334. 

[12] Ohba M, Software Reliability Analysis 
Models, IBM Journal of Research and 
Development, Vol. 28, No. 4, 1984, pp. 428-
443. 

[13] Yamada S, Osaki S and Narihisa H, Software 
Reliability Growth Models with Two Types 
of Errors, Recherche Opérationnelle / 
Operations Research (RAIRO), Vol. 19, No. 
1, 1985, pp. 87-104.  

[14] Kareer N, Kapur PK and Grover PS., An S-
shaped Software Reliability Growth Model 
with Two Types of Errors, Microelectronics 
and Reliability, Vol. 30, No. 6, 1990, pp. 
1085-1090. 

[15] Kimura M, Yamada S and Osaki S, Software 
Reliability Assessment for an Exponential S-
shaped Reliability Growth Phenomenon, 
Computers and Mathematics with 
Applications, Vol. 24, No. 1/2, 1992, pp. 71-
78. 

[16] Kapur PK, Younes S and Agarawal S, 
Generalized Erlang Software Reliability 
Growth Model, ASOR Bulletin, Vol. 14, No. 
1, 1995, pp. 5-11. 

[17] Khoshogoftaar TM, Nonhomogenous Poisson 
Process for Software Reliability Growth, 
Proceedings of the International Conference 
on Computational Statistics (COMPSTAT), 
Copenhagen, Denmark, 1988, pp. 13-14. 

[18] Kapur PK, Shatnawi Omar and Yadavalli 
VSS, A Software Fault Classification Model. 
South African Computer Journal, Issue 33, 
2004, pp. 1-9. 

[19] Kapur PK, Bardhan AK and Shatnawi Omar, 
Why Software Reliability Growth Modelling 
should Define Errors of Different Severity, 
Journal of the Indian Statistical Association, 
Vol. 40, No. 2, 2002, pp. 119-143. 

[20] Brooks WD and Motley RW, Technical 
Report, Rome Air Development Center, New 
York, 1980. 

[21] Musa JD, Iannino A and Okumoto K, 
Software Reliability, McGraw-Hill, 1987. 

[22] Junhong G, Hongwei L, Xiaozong Y, and 
Cheng ZD, A Software Reliability Time 
Series Growth Model with Kalman Filter, 
WSEAS Transactions on Computers, Vol. 5, 
No. 1, 2006, pp. 1-8. 

[23] Junhong G, Hongwei L, Xiaozong Y, A 
Software Reliability Time Series Growth 
Model Transformed from Goel-Okumoto 
Model, WSEAS Transactions on Signal 
Process, Vol. 1, No. 1, 2005, pp. 39-46. 

[24] Junhong G, Hongwei L and Xiaozong Y, A 
Software Reliability Growth Model Based on 
Time Series Nonlinear Analysis, WSEAS 
Transactions on Signal Process, Vol. 1, No. 
1, 2005, pp. 47-54. 

WSEAS TRANSACTIONS on COMPUTERS Omar Shatnawi and P.K. Kapur

ISSN: 1109-2750 1384 Issue 9, Volume 7, September 2008




