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Abstract:- Data mining has been defined as the non- trivial extraction of implicit, previously unknown and potentially 

useful information from data. Association mining and sequential mining analysis are considered as crucial components of 

strategic control over a broad variety of disciplines in business, science and engineering. Association mining is one of the 

important sub-fields in data mining, where rules that imply certain association relationships among a set of items in a 

transaction database are discovered. In Sequence mining, data are represented as sequences of events, where order of 

those events is important. Finding patterns in sequences is valuable for predicting future events. In many applications 

such as the WEB applications, stock market, and genetic analysis, finding patterns in a sequence of elements or events, 

helps in predicting what could be the next event or element. At the conceptual level, association mining and sequence 

mining are two similar processes but using different representations of data. In association mining, items are distinct and 

the order of items in a transaction is not important. While in sequential pattern mining, the order of elements (events) in 

transactions (sequences) is important, and the same event may occur more than once. In this paper, we propose a new 

mapping function that maps event sequences into itemsets. Based on the unified representation of the association mining 

and the sequential pattern, a new approach that uses the Boolean representation of input database D to build a Boolean 

matrix M. Boolean algebra operations are applied on M to generate all frequent itemsets. Finally, frequent items or 

frequent sequential patterns are represented by logical expressions that could be minimized by using a suitable logical 

function minimization technique. 

 

Keywords:- Sequence mining, data mining, association mining, Boolean  association expressions, Boolean matrix, 

Association matrix. 

 

1 Introduction 
Data mining is the process of discovering potentially 

valuable patterns, associations, trends, sequences and 

dependencies in data [2, 3, 4, 5, 11, 17, 25, 16, 14]. Key 

business examples include web site access analysis for 

improvements in e-commerce advertising, fraud 

detection, screening and investigation, retail site or 

product analysis, and customer segmentation. Data 

mining techniques can discover information that many 

traditional business analysis and statistical techniques 

fail to deliver. Additionally, the application of data 

mining techniques further exploits the value of data 

warehouse by converting expensive volumes of data into 

valuable assets for future tactical and strategic business 

development. Management information systems should 

provide advanced capabilities that give the user the 

power to ask more sophisticated and pertinent questions. 

It empowers the right people by providing the specific 

information they need. 

Association mining and sequence mining are two of the 

central tasks in data mining. Association mining is the 

process of producing association rules to express 

positive connections between items 2, 3, 4, 5, 6, 18, 21, 

29, 9, 20], while sequence mining is the task of 
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discovering frequent patterns among a large sequence 

database [1, 7, 8, 10, 11,12, 15, 23, 26, 27, 14, 33]. 

There is a connection between the two tasks in the way 

of extracting knowledge. The two tasks are related in the 

way they are handled. The Apriori algorithm [2] has 

been conceptually used in handling the two tasks. 

The framework we develop derives from the observation 

that association mining and sequence mining are two 

similar processes on different representations of 

transactions. In association mining, the order of items in 

a transaction is not important, and all elements are 

distinct. While, in sequential pattern mining, the order of 

elements (events) in the transaction (sequence) record is 

important, and the same event may occur more than 

once. So, first we need to define a mapping function that 

maps a sequence of elements, which are ordered and 

could be repeated, into a set of elements, where ordering 

is not important, and elements are distinct.  

In this paper, we propose a new mapping function that 

maps event sequence into events set. Based on the 

unified representation of the association mining and the 

sequential pattern, a new approach that uses the Boolean 

representation of the input database D is introduced. 

Database D is scanned only once to build a Boolean 

matrix M. M has n columns and k rows, where N is the 

number of items in i, and k is the number of transactions 

in D. A position (i,j) in M is 1 iff in transaction I, item j 

exists, and 0 otherwise. Boolean algebra operations are 

applied on M to generate all frequent itemsets. Finally, 

frequent items or frequent sequential patterns are 

represented by a logical expression that could be 

minimized by using a suitable logical function 

minimization technique. The Boolean approach does not 

depend on a specific association mining technique. In 

this paper, we use the apriori like algorithm for 

demonstrating the Boolean mining approach.  

The rest of this paper is organized as follows: In section 

2, we give the problem definition. The sequential pattern 

mapping is given in section 3.  In section 4, the Boolean 

approach is presented. The frequent logical expressions 

are described in section 5. The performance study is 

given in section 6. Finally, the paper is concluded in 

section 7. 

 

 

2 Problem Definition 
 

 

2.1 Notation 

I  Set of all items {i1, i2, …, in} 

2
I
 Set of all possible transactions. 

T A transaction 

t An element in T, t Є T 

DT Set of transactions {T1, T2, …, Tk} 

S A sequence 

s an element in S 

DS Set of sequences {S1, S2, …, Sk} 

P(T) A mapping function that maps T into a sequence S 

Q(S) A mapping function that maps S into a transaction 

T 

x  Number of 1’s in vector x  

 

 

2.2  Association Mining 

Association mining that discovers dependencies among 

values of an attribute was first introduced by Agrawal et 

al.[2] and has emerged as a prominent research area. The 

association mining problem also referred to as the 

market basket problem can be formally defined as 

follows.  Let I = {i1,i2, . . . , in} be a set of items as  S = 

{s1, s2, . . ., sm} be a set of transactions,  where each 

transaction si∈ S is a set of items that is  si ⊆ I. An 

association rule denoted by  X ⇒ Y, where  X,Y ⊂
 
I and 

X ∩ Y = Φ, describes the existence of  a relationship 

between  the two itemsets X and Y. 

 

 

2.3  Sequence Mining 

Sequential patterns mining [1, 8, 10, 11, 17, 22, 25, 27, 

28, 16, 9] is the process of finding frequent sequential 

patterns in large transaction databases. It can be defined 

as followed. Let I = {i1, i2, … , in } be a set of distinct 

items, and S = e1, e2,…, em be an ordered sequence of 

events, where �����, 1 � 	 � 
, ����. In a sequence S, 

an event e may occur more than once, and the ordering 

of events in S is important, i.e., sequence AB in not the 

same as sequence BA. The number, l, of events in S is 

called the length of sequence S, and S is called an l-

sequence. As an example, S= BBBCCAD is an 8-

sequence of events. An event sequence S1=  	�
, 	��,,…, 

	�� , is contained in an event sequence S2 =  	�
 , 	�� ,,…, 

	��, 
 �  k,  if 	�
 �  	�
 , 	�� �  	�� , … , 	�� �  	��  . If 

an event sequence S1 is contained in event sequence S2, 
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S1 is called an event subsequence of S2, and S2 is called 

an event super-sequence of S1. S1 is an event 

subsequence of S1, and S1 is an event super-sequence of 

S1. 

 

3 Sequential Pattern Mapping 
Let I = {i1, i2, … , in } be a set of distinct events [30], 

and S = e1, e2,…, em be an ordered sequence of events, 

where �����, 1 � 	 � 
, ����. In a sequence S, the 

order of events is important and an event e could occur 

more than once.  

 

Example 3.1: Let I={A,B,C,D} be the set of all possible 

events in database D, where D is given in Table 1. 

 

ID Sequence 

1 ADCCABB 

2 DCACC 

3 BABCCA 

4 DCAA 

5 DACCC 

Table 1 
 

In the above database D, the first transaction T1 contains 

each of the events A, B and C  twice, and sequence 

‘ADC’ in transaction 1 is not the same as sequences 

‘DCA’ and ‘DAC’ in transactions 4 and 5, respectively.  

As a sequence representation, the two transactions 2 and 

5 are not the same, while if we consider D as a database 

of sets of items (ignore the repeated events), transactions 

2 and 5 are identical transactions. 

To unify the two representations of sets and sequences, 

we map the sequences into sets by identifying sequence 

elements by their positions. For a sequence S = �� ��,…, 

��, each element ��, 1 � � � 
, could be one of the 

possible n elements in I. If all possible elements at 

position j are labeled by j, then instead of writing S=  

	�
, 	��,,…, 	��, S could be written as S = 	�
,�, 	��,�,,…, 

	��,�. In this case, event 	�� , 1 � � � 
, that has order j 

in sequence S, would have a label j describing its 

position. 

 

Example 3.2: For the database D given in example 3.1, 

the mapping function applied on sequence transactions S 

produces the database DT given in Table 2. 

 

In example 3.2, sequence transaction Si is mapped into 

item transaction Ti by attaching element position j of 

elements in Si to be mapped into Ti. 

 

ID S T 

1 ADCCABB  A1 D2 C3 C4 A5 B6 B7 

2 DCACC  D1 C2 A3 C4 C5 

3 BABCCA  B1 A2 B3 C4 C5 A6 

4 DCAA  D1 C2 A3 A4 

5 DACCC  D1 A2 C3 C4 C5 

Table 2 

 
Definition 3.1: Let I = {i1, i2, … , in } be a set of distinct 

events, then for a sequence S = e1, e2,…, em , the 

transaction mapping function P applied on S, P: S→T is 

defined as 

 

P(S)={��,�| ���� � ∧ �� � �� ∧  ��,� � ��  � 

 

According to definition 3.1, ��,� � �� for all 1 � � � 
, 

and �� � ��,� for all 1 � � � 
. 
 

Lemma 3.1: The order of elements in T=P(S), is not 

important. 

Proof: Since each element ��� � is mapped to element 

��,� � !, where position j is preserved, if we change the 

order of elements in T, they are still identified by their 

positions. 

 

Definition 3.2: Let I = {i1, i2, … , in } be a set of distinct 

events, then for a transaction T = {��,�"  ��,� � ��  1 � 	 �
#, ����� of cardinality m and ordered according to j, the 

sequence mapping function Q applied on T, Q: T→S is 

defined as 

 

Q(T)= e1, e2,…, em, ej = ti,j and ��� � 

 

Definition 3.3: Let I = {i1, i2, … , in } be a set of distinct 

events, then for a transaction T = {��,�"  ��,� � ��  1 � 	 �
#, �����  of cardinality m and ordered according to j, the 

mapping factor mf of event  ��; 
$%��& is defined as the 

mapping space for ��; i.e., ' ��,� ' 

 

Example 3.3: For the database DT given in table 2, the 

mapping function applied on item transactions T’s 

produces the database Ds shown in table 3. 
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Table 3 

 

 

 

4 The Boolean Approach 
Given a set of items I = {i1, i2, …, in}, a transaction t is 

defined as a set of items such that t∈2
I
, where 2

I 
= {∅, 

{i1}, {i2},  …, {in}, {i1, i2}, …, { i1, i2, …, in}}. Let T ⊆ 2
I
 

be a given set of transactions {T1, T2, …, Tk}.  

 

Definition 4.1: Let DT = {T1, T2, …., Tk}  be the set of all 

transactions in database D, with k is the number of such 

transactions.  The Association Matrix M(DT) is a NK ×  

Boolean matrix where each element ai,j, 1 ≤  i ≤  K, 1 ≤  j 

≤ N, N ≤ n,  in M(DT) is defined as 

 

 







 ∈

=

wiseother

Ttif

a

ij

ji

0

1

,

 

 

Definition 4.2: Let DT = {T1, T2, …., Tk} be the set of all 

transaction in database D, with K is the number of such 

transaction. For element ej,  1 ≤  j ≤ N, Vector 

 

jf = 

(
))
)
*+�,�+�,�

+,,�-
..
.
/
 

 

is called the projection vector of ej, and 

 

support(ej)= 
1jf . 

 

Lemma 4.1: For elements ej and ek with projection 

vectors fj and fk, 

 

support(ej,ek)='$� 0∧ 0$12. 

 

Proof: Following the definition of Boolean operators, the 

proof of lemma 4.1 is straightforward.  

By generalizing lemma 4.1, we get the following lemma. 

 

Lemma 4.2: For elements e1, e2, …, em , with projection 

vectors  f1, f2 , …, fm ,  

 

support (e1, e2 , …, em )= 2$� 0∧$�∧… 0∧$�2 . 
 

Proof: By induction,  

for m=2 , support (e1, e2)= 2$� 00∧$�2 . 
suppose it is true for m=n,  

support (e1, e2 , …, en )= 2$� 0∧$�∧… 0∧$32, 

then  

support ((e1, e2 , …, en ), en+1 )= 

2%%$� 0∧$�∧…  ∧$3 0&∧$34�2. Q.E.D 

 

Example 4.1: Let I={A,B,C,D, E, F} be the set of all 

possible events in database D, where D is given in table 

4. 

ID Transaction 

1 ADCF 

2 ABCD 

3 ACEF 

4 BCDE 

5 CDEF 

Table 4 

 

The corresponding Boolean matrix M is given in table 5. 

 

ID A B C D E F 

1 1 0 1 1 0 1 

2 1 1 1 1 0 0 

3 1 0 1 0 1 1 

4 0 1 1 1 0 0 

5 0 0 1 1 1 1 

Table 5 
The projection vectors of A, B, C, D, E, and F are given 

in table 6. 

 

ID T Orderd T S 

1 A3 D4 C1 

C5 A2 B7 

B6 

C1A2A3D4C5B6B7 CAADCBB 

2 D1 C5 A4 

C3 C2 

D1C2C3A4C5 DCCAC 

3 B6 A1 B5 

C2 C3 A4 

A1C2C3A4B5B6 ACCABB 

4 D1 C3 A2 

A4  

D1A2C3A4 DACA 

5 D4 A5 C3 

C2 C1 

C1C2C3D4A5 CCCDA 
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ID  $5  $6  $7  $8  $9  $: 

1  1  0  1  1  0  1 

2  1  1  1  1  0  0 

3  1  0  1  0  1  1 

4  0  1  1  1  0  0 

5  0  0  1  1  1  1 

f   3  2  5  4  2  3 

Table 6 

 

The projection vectors of AB, BCD, and BDEF are 

given in table 7. 

 

 

 

 

 

 

 

 

 

 

Table 7 

 

The above Boolean expressions for calculating support 

using projection vectors could handle itemsets 

calculations where itemsets AB and BA are treated in 

the same way. For sequence database DS, with maximum 

record length N, and by using the transaction mapping 

function discussed in section 3, event A will be 

represented by items Ai, 1 ≤ i ≤N. Projection vector  

 

$5 =   ∨� ≤ � ≤=%$5�&   . 

 

Also, sequence AB will be represented by sequences 

AiBj , 1 ≤ i ≤N, i < j ≤N. Projection vector 

 

$56 =   ∨� ≤ � ≤=,� > � ≤=%$5� ∧ $6�&   . 

 

Example 4.2: Let I={A,B,C,D} be the set of all possible 

events in database D, where D is given in table 8. The 

association mapping of D is given in table 9, and the 

corresponding Boolean matrix M is given in table 10. 

 

The projection vector of A, given in table 11, is the 

result of applying the Boolean operation ∨ on $5� and 

$5?. 

ID Transaction 

1 CDA 

2 ADCD 

3 ADC 

4 BCAAD 

5 CBAD 

Table 8 

 
 

ID Transaction 

1 C1 D2 A3 

2 A1 D2 B3C4 D5 

3 A1 D2 C3 

4 B1 C2 A3 A4 D5 

5 C1 B2 A3 D4 

Table 9 

 
I

D 

A

1 

A

3 

A

4 

B

1 

B

2 

B

3 

C

1 

C

2 

C

3 

C

4 

D

2 

D

4 

D

5 

1 0 1 0 0 0 0 1 0 0 0 1 0 0 

2 1 0 0 0 0 1 0 0 0 1 1 0 1 

3 1 0 0 0 0 0 0 0 1 0 1 0 0 

4 0 1 1 1 0 0 0 1 0 0 0 0 1 

5 0 1 0 0 1 1 1 0 0 0 0 1 0 

Table 10 
 

In table 10, the mapping factors of events A, B, C, and D 

are 3, 3, 4, and 3, respectively.  

 

ID  $5  $5�  $5?  $5@ 

1  1  0  1  0 

2  1  1  0  0 

3  1 = 1 ∨ 0 ∨ 0 

4  1  0  1  1 

5  1  0  1  0 

f   5  --  --  -- 

Table 11 
 

The projection vectors of A, B, C, and D are given in 

table 12. 

 

ID  $5  $6  $7  $8 

1  1  0  0  1 

2  1  0  1  1 

3  1  0  1  1 

4  1  1  1  1 

5  1  1  1  1 

F  5  2  4  5 

Table 12 

ID  $56  $678  $689: 

1  0  0  0 

2  1  1  0 

3  0  0  0 

4  0  1  0 

5  0  0  0 

f   1  2  0 
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The projection vectors of AB are given in table 13. 

 

ID  $56  $5�  $6�  $5�  $6?  

1  0  0  0  1  0  

2  0  1  0  0  1  

3  0 = 

( 

1 ∧ 0 ) ∨ 

( 

0 ∧ 0 ) 

4  0  0  0  1  0  

5  1  0  1  1  1  

f   1  --  --  --  --  

Table 13 

 

Lemma 4.3: For elements �A and �1 in a sequence S, 

with projection vectors 

B$A,� , $A,�, … , $A,=� +#C B$1,� , $1,�, … , $1,=�  , 
 respectively,  

support (�A  , �1)=2 0∨� ≤ � ≤=,� > � ≤=%$DA,� 0 ∧ $D1,�&E 

 

Proof: Following the definition of Boolean operators, 

the proof of lemma 4.3 is straightforward.  

 

Lemma 4.4: For elements ��, ��, … , �3 in a sequence 

database DS , with projection vectors 

 

B$�,� , $�,�, … , $�,=� , B$�,� , $�,�, … , $�,=� , +#C B$3,� , $3,�, … , $3,=� 
 , respectively,  

 

Support(��, ��, … , �3)=

F ∨� ≤ �
 ≤=,�
 > �� ≤=,…,�GH
>�G ≤= %$D�,�
∧ $D�,��
 ∧ …  ∧ $D3,�G&F 

 

Proof: Following the definition of Boolean operators, 

the proof of lemma 4.4 is straightforward.  

In this paper, we have modified the Apriori like 

algorithm to demonstrate the Boolean approach used for 

data mining. The approach is assuming that the mining 

problem is already in the association mining domain. For 

sequence mining, we should include two modules to the 

algorithm. The first module, maps the sequence database 

into an itemset database, while the second module maps 

back the association mining results into the sequence 

mining domain. The Boolean approach is given in figure 

1.  

 

 

 

IJKJLMNJ OMLPJ QNJRSJNS TSQKP UVVOJMK MWWLVMXY 

Input: Transaction database DT 

Output: large itemsets L 

ZJPQK  
   [VL %\ � ]; _\`a b c; d e e&  

       ZJPQK 

          _\ �  c  

          f\ � MWLQVLQ g PJK%_\`a&; 

          [VL MOO X h f\ iV 

 ZJPQK 

      XMOXTOMNJ [X MS PQjJK QK OJRRM k. k ; 

       _\ � _\ l BX | [X m RQKSTW�; 

  JKi; 
          JKi; 
          _ � n _dd  

JKi. 
 

Fig. 1 Association Mining Using Boolean Approach 

 

5 Frequent Logical Expressions 
In the previous section, we have shown that frequent 

items or frequent sequential patterns are represented by a 

logical expression. In order to maximize the 

performance of our technique, we need to minimize the 

generated Boolean expressions by using a suitable 

minimization technique. 

 

Example 5.1: Using the Boolean matrix M in Table 10, 

with minimum support 2, the resulted frequent 

sequences are 

 

1-frequent sequences: 

 

(A1∨A3∨A4) ∨ (B1∨B2) ∨ (C1∨C2∨C3) ∨ 

(D2∨D4∨D5) 

 

2- frequent sequences: 

 

(A1∧C2)∨(A1∧C3)∨(A1∧C4)∨(A3∧C4) ∨(A1∧D2)∨ 

(A1∧D4)∨(A1∧D5)∨(A3∧D4) ∨ (A3∧D5)∨(A4∧D5)∨ 

(B1∧A3)∨(B1∧A4) ∨(B2∧A3)∨(B2∧A4)∨(B3∧A4)∨ 
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(B1∧D2) ∨(B1∧D4)∨(B1∧D5)∨(B2∧D4)∨(B2∧D5) ∨ 

(B3∧D4)∨(B3∧D5)∨(C1∧A3)∨(C1∧A4) ∨(C2∧A3)∨ 

(C2∧A4)∨(C1∧D2)∨(C1∧D4) ∨ (C1∧D5)∨(C2∧D4)∨ 

(C2∧D5)∨(C3∧D4) ∨ (C3∧D5)∨(D2∧C3) 

 

3- frequent sequences: 

 

(A1∧D2∧C3)∨(A1∧D2∧C4)∨(B1∧A3∧D4)∨(B1∧A3∧D5)∨ 

(B2∧A3∧D4)∨(B2∧A3∧D5)∨(C1∧A3∧D4)∨(C1∧A3∧D5)∨ 

(C2∧A3∧D4)∨(C2∧A3∧D5) ∨C3∧A4∧D5) 

 

After doing hand Boolean minimization, the Boolean 

expression of frequent sequences in D is 

 

(A1∧C2)∨(A3∧C4)∨(A1∧D4)∨(A1∧D5)∨(B1∧A4)∨ 

(B2∧A4)∨(B3∧A4)∨(B1∧D2)∨(B3∧D4)∨(B3∧D5)∨ 

(C1∧D2)∨(C3∧D4)∨(C3∧D5)∨(D2∧C3)∨(A1∧D2∧C3)∨ 

(A1∧D2∧C4)∨(B1∧A3∧D4)∨(B1∧A3∧D5)∨(B2∧A3∧D4)∨ 

(B2∧A3∧D5)∨(C1∧A3∧D4)∨(C1∧A3∧D5)∨(C1∧A4∧D5)∨ 

(C2∧A3∧D4)∨(C2∧A3∧D5)∨(C2∧A4∧D5)∨(C3∧A4∧D5) 

 

Which can be written as 

 

(A∧C)∨(A∧D)∨ (B∧A)∨ (B∧D)∨(C∧D)∨ (D∧C)∨ 

(A∧D∧C) ∨(B∧A∧D)∨(C∧A∧D) 

 

Or 

 

AC, AD, BA, BD, CD, DC, ADC, BAD, CAD 

 

The classical Karnaugh [15] maps approach could be 

used in minimizing Boolean expressions. The only 

problem of the Karnaugh maps approach is its limited 

task that is suited for at most 6 input variables and 

practical only for up to 4 variables.  It is even harder to 

be carried out in product term sharing for multiple 

output functions. Also, the Karnaugh maps technique 

can not be automated in a computer program. In Boolean 

data mining solution, we are usually concerned with the 

large number of variables. 

Quine and McCluskey [24] introduced the tabular 

method as the first alternative method to Karnaugh 

maps. It has two phases. It starts with the truth table for 

a set of logic expressions, a set of prime implicants is 

composed. In the second phase, A systematic procedure 

is followed to find the smallest set of prime implicants 

of output functions [19]. 

Although this Quine-McCluskey algorithm is very well 

suited to be implemented in a computer program.It 

produces the optimal logical expressions. The only 

problem we have with Quine-McCluskey algorithm is 

that it is not efficient in terms of processing time and 

memory usage. Increasing the number of variables by 

even one more variable to the function will double 

processing time and memory usage. The truth table 

length increases exponentially with the number of 

variables. So, the Quine-McCluskey method is practical 

only for functions with a limited number of input 

variables and output functions. 

A different approach to this issue is the Espresso 

approach [13]. Instead of expanding a logic function into 

minterms, the approach processes cubes, representing 

the product terms. The output from this approach is not 

the optimum one, but it is very closely approximated, 

while the solution is always free from redundancy. This 

approach is more efficient than many of the other 

methods. It reduces memory computation time by 

several orders of magnitude. The important part of this 

approach is it has no restriction on the number of 

variables, output functions and product terms of a 

combinational function block.  In our experimental 

study, we have used the Espresso approach for 

minimization.  

 

WSEAS TRANSACTIONS on COMPUTERS Hatim A. Aboalsamh

ISSN: 1109-2750 1358 Issue 8, Volume 7, August 2008



6 Performance Study 
In this section we present the performance results that 

have been collected. As a mining algorithm, we have 

used an Apriori-like algorithm as a local procedure to 

generate frequent itemsets (sequences). We would like 

to emphasize on the fact that our approach does not 

depend on the approach used to generate frequent 

itemsets. 

We ran our experiments on a 2.4 GHz machine, with 4 

GB of RAM and running windows Vista. The databases 

used were generated synthetically, to evaluate the 

performance of the algorithms over a range of data 

parameters. For 1000 distinct events (items), we assume 

that average value of the mapping factor for each event 

is set to 20. 

The range of database sizes is varied between 10,000 to 

100,000 transactions. The results were evaluated against 

the BIDE algorithm [26], which is one of the latest 

algorithms designed for mining closed frequent 

sequences. Our study is based on the total mining time 

consumed for the whole data mining process. We have 

measured the mining time for the different database 

sizes on various minimum support values ranges 

between 0.2% and 5%.  

Figures 2, 3 and 4 show the execution times for the three 

synthetic databases of sizes 100,000, 50000, and 10000 

transactions, respectively,  for minimum support values 

varies from 0.5% to 5%. As the minimum support 

decreases, the execution times of the two algorithms 

increase because of increases in the total number of 

candidate and large itemsets. In figures 2, 3, 4, the 

performance results are shown. 

Figure 5 shows the execution times for minimum 

support value equals 1%, and database sizes between 

10000 and 100000 transactions. . As the database size 

increases, the execution times of all the algorithms 

increase because of increases in the total number of 

candidate and large itemsets. In figure 5, the 

performance results are shown. 

It is clear that from the preliminary results depicted in 

figures 2-5, our implementation that is based on the 

Boolean approach has a better performance than the 

BIDE algorithm. 

 

 
Fig. 2 Database Size is 100000 transactions 

 

 
Fig. 3 Database Size is 50000 transactions 

 

 
Fig. 4 Database Size is 10000 transactions 
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Fig. 5 Minimum Support equals 1% 

 

7 Conclusions 
In this paper, we have proposed a new mapping function 

that maps event sequence into events set. Based on the 

unified representation of the association mining and the 

sequential pattern, a new approach that uses the Boolean 

representation of the input database D has been 

introduced, where database D is scanned only once to 

build a Boolean matrix M. M has N columns and K 

rows, where N is the number of items in I, and K is the 

number of transactions in D. A position (i,j) in M is 1 iff 

in transaction I, item j exists, and 0 otherwise. Boolean 

algebra operations are applied on M to generate all 

frequent itemsets. Finally, frequent items or frequent 

sequential patterns has been represented by a logical 

expression that could be minimized by using a suitable 

logic function minimization technique. The Boolean 

approach does not depend on the association mining 

methodology. In this paper, we have used the apriori like 

algorithm for demonstrating the Boolean mining 

approach.  

In the performance results, we have shown that our 

implementation that is based on the Boolean approach 

has a better performance than the BIDE algorithm. 
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