
Datapath Error Detection with No Detection Latency
for High-Performance Microprocessors

YUNG-YUAN CHEN1, KUEN-LONG LEU2, KUN-CHUN CHANG1

1Department of Computer Science and Information Engineering
Chung-Hua University

No. 707, Sec. 2, Wu-Fu Rd., Hsin-Chu
TAIWAN

chenyy@chu.edu.tw, m09402023@cc.chu.edu.tw
2Department of Electrical Engineering

National Central University
No. 300, Jhongda Rd., JhongLi City, Taoyuan County

TAIWAN
945401025@cc.ncu.edu.tw

Abstract: - Error detection plays an important role in fault-tolerant computer systems. Two primary
parameters concerned for error detection are the coverage and latency. In this paper, a new, hybrid
error-detection approach offering a very high coverage with zero detection latency is proposed to protect
the data paths of high-performance microprocessors. The feature of zero detection latency is essential to
real-time error recovery. The hybrid error-detection approach is to combine the duplication with
comparison, triple modular redundancy (TMR) and self-checking mechanisms to construct a formal
framework, which allows the error-detection schemes of varying hardware complexity, performance and
error-detection coverage to be incorporated. An experimental 32-bit VLIW core was employed to
demonstrate the concept of hybrid detection approach. The hardware implementations in VHDL and
simulated fault injection experiments were conducted to measure the interesting design metrics, such as
hardware overhead, performance degradation and error-detection coverage.

Keywords: Concurrent error detection, error-detection coverage, error-detection latency, fault injection,
hybrid detection approach.

1 Introduction
The rate of radiation-induced soft errors increases
rapidly, especially in combinational logic, while the
chip fabrication enters the very deep submicron
technology [1-3]. Such an influence raises the urgent
need to incorporate the fault tolerance into the
high-performance microprocessors, system-on-chip
(SoC) and embedded systems for safety-critical
applications [4-6]. Concurrent error detection
provides an effective approach to detect the errors
caused by transient and intermittent faults [7-10].
One principal concern in the design of
error-detection schemes is the error-detection latency,
which dominates the time efficiency of the error
recovery. The previous researches in reliable
microprocessor design are mainly based on the
concept of time redundancy approach [7-9], [11-18]
that uses the instruction replication and
recomputation to detect the errors by comparing the
results of regular and duplicate instructions. The

error-detection latency can be calculated from the
time of regular instruction execution to the time of
duplicate instruction recomputation. Drawbacks of
the previous studies are: • variable detection latency
which complicates the analysis of the impact of error
recovery on performance; • lengthy detection latency
that increases the error-recovery time as well as
program execution time. For example, the
error-detection scheme presented in [18] holds 692
cycles of detection latency on average, and 36183
cycles for the worst case. Such a lengthy latency
requires more time for the error recovery and this
will degrade the performance significantly once the
errors occur. Such a lengthy recovery may be
detrimental to the real-time computing applications.
Besides that, error-detection schemes with variable
detection latency would pay a higher hardware cost
to implement the error-recovery process.

In this study, to minimize the effect of
error-detection latency on the recovery performance
and hardware complexity, the zero detection latency

WSEAS TRANSACTIONS on COMPUTERS

Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1337 Issue 8, Volume 7, August 2008

is set as our design goal so as to accomplish the
real-time error recovery by simply using the
cost-effective instruction-retry method. To fulfill the
requirement of zero detection latency, it demands
that the execution results of each instruction must be
examined immediately and if errors are found, the
erroneous instructions are retried at once to
overcome the errors. So, the error-detection problem
can be formalized as how to verify the execution
results promptly for each instruction. In this work, a
new, hybrid error-detection approach is proposed to
detect the faults occurring in the data paths during
the instruction executions with zero detection
latency.

The paper is organized as follows. In Section 2, a
general framework of hybrid error-detection
approach is proposed and demonstrated by a case
study to explore the design options with various
hardware redundancy, time redundancy and
error-detection coverage (EDC). Section 3 presents
the hardware implementations of the demonstrated
detection schemes illustrated in Section 2 in an
experimental 32-bit VLIW core and the
measurements of hardware overhead and
performance degradation. Experimental results and a
thorough analysis of EDC are given in Section 4. The
conclusions appear in Section 5.

2 Hybrid Error-Detection Approach
In addition to the single fault model commonly
adopted previously, two classes of faults described
below (named ‘fault class 1’ and ‘fault class 2’) are
particularly addressed in our error-detection approach:
1. Correlated transient faults [19, 20] (e.g., a burst of
electromagnetic radiation) which could cause
multiple module failures. 2. A single event upset
(SEU) could possibly generate a multiple transient
fault, which may lead to a bidirectional error at the
logic circuit output [21]. Such a SEU effect could
seriously degrade the EDC for self-checking circuits
generally designed with a single fault assumption
[21]. It is evident that the adopted fault model in this
study is more rigid and complete compared to the
single fault assumption commonly applied before.
However, we note that due to the more rigid fault
model and severe fault situations considered, it
requires developing a more powerful error-detection
approach to raise the EDC to a sound level.

Basically, the data paths consist of register file
and various functional units. We assume that the
register file is protected by an error-correcting code.
Therefore, in the following, we focus on the issue of
how to detect the faults occurring in the functional

units with zero detection latency. A
high-performance processor core may possess several
different types of functional units in the data paths,
such as integer ALU and load/store units. One or
more than one identical units are provided for a
specific functional type.
Hybrid approach: The fundamental concept of our
approach is to recover the execution errors promptly
for each instruction run. To achieve the real-time
error recovery by exploiting the simple
instruction-retry method, the execution results of
each instruction must be checked immediately to
detect the errors. We propose a hybrid detection
approach combining the duplication with comparison,
henceforth referred to as comparison, triple modular
redundancy (TMR) and self-checking methodologies
[22] to fulfill the requirement of zero detection
latency. Our hybrid approach is quite comprehensive
in that it offers the design options based on the
trade-offs among the hardware redundancy, time
redundancy and EDC. Such trade-offs can be
achieved through the choices of the following design
parameters: how many spare units, comparators
(CPR), majority voters (MV) and self-checking
functional units employed in the error-detection
scheme.

To cope with the correlated transient faults,
which may cause the multiple module failures, the
TMR scheme is enhanced to have the ability to detect
the multiple module errors. It is worth noting that
why we exploit the TMR for the error detection? This
is because TMR has a benefit to avoid activating the
procedure of error recovery while only one faulty
unit happens. In contrast to TMR, comparison and
self-checking schemes need to spend time for error
recovery. In an extreme case of a permanent fault
occurring in one unit, the system utilizing the
comparison and self-checking methods needs to
perform the error-recovery process to overcome the
errors every time when the faulty unit is used and the
permanent fault is activated to produce the output
errors; this will significantly degrade the performance.
Instead, the TMR can tolerate one faulty unit, and
therefore, no error recovery is required. Hence, using
TMR can lower the performance degradation caused
by the error recovery. The performance concern here
is the consideration of the real-time computing
applications, which have a strict time constraint.
However, TMR needs more resources to carry out the
error detection compared to the comparison and
self-checking methods.

We further discuss why we combine the
self-checking with TMR as well as comparison
schemes? As we know, the advantages of TMR and

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1338 Issue 8, Volume 7, August 2008

comparison schemes are as follows: simple concepts,
easy design and implementation, and suitable for any
hardware entity. More importantly, the interference
of SEUs as mentioned in the fault class 2 has no
impact on the EDC for TMR and comparison
schemes. However, they suffer from a higher
hardware redundancy. Contrary to the TMR and
comparison schemes, the self-checking circuits
generally enjoy less hardware redundancy, but suffer
from multiple transient faults induced by the SEUs as
stated in the fault class 2. Moreover, they have more
complicated design concepts, and higher
implementation complexity. Therefore, the principal
idea of our hybrid approach is to utilize the hardware
advantage of the self-checking scheme and the
coverage advantage of the TMR and comparison
schemes to form a feasible error-detection
framework.

2.1 Detection Framework with Zero Latency
The following notations are developed:
n: Number of identical modules for a specific

functional type x, n > 1; n is also the
maximum number of instructions that can be
executed concurrently in the modules of type x;

ns-c: Number of modules equipped with self-checking
ability in the n modules of type x, 0 ≤ ns-c ≤ n.

s: Number of spare modules added to the type x, s
≥ 0.

ss-c: Number of spare modules equipped with
self-checking capability in the s spares of type x,
0 ≤ ss-c ≤ s.

m: Number of instructions in an execution packet
for type x, m ≤ n. An execution packet is
defined as the instructions in the same packet
can be executed in parallel.

ETMR/ECMP: Enhanced TMR/Enhanced
comparison schemes are the combination of
TMR/comparison schemes with the self-checking
methodology. It means that at least one module used
in TMR/comparison possesses the self-checking
function. The enhanced TMR majority voter
(ETMR_MV)/enhanced comparator (E_CPR)
receives the module outputs as well as the
self-checking error signals produced from the
modules equipped with self-checking function. The
goal of ETMR and ECMP is to conquer the
common-mode failures [23, 24] which could occur in
TMR and comparison schemes when two or three
modules produce the identical, erroneous results to
TMR_MV or two modules produce the same,
erroneous results to comparator.

We use the following example to show the power
of ETMR. Given identical modules A, B, and C that
are employed in TMR operation, where module B is
furnished with the self-checking function. We assume
that modules A and B are faulty and produce the
same, erroneous results. Under the circumstances, the
errors will cause a common-mode failure in
traditional TMR scheme. However, the ETMR
scheme can be aware of this kind of error by using
the error signal delivered from the self-checking unit.
If the error signal provided from module B shows
that the output of module B is wrong, then the
common-mode failure caused by the modules A and
B is discovered; otherwise, the common-mode failure
escapes being detected. It is evident that the EDC of
self-checking technique decides the detection
capability of the common-mode failures for ETMR.

Following the above illustration, the principal
concept behind the ETMR scheme is described below.
The ETMR possesses a two-layer fault protection in
that it exploits the results of TMR and self-checking
techniques to determine the output of ETMR or
trigger the error signal to activate the error-recovery
process. First of all, we employ the outcome of TMR
voter to compare with each module output. The
results of such comparisons can be exploited to
identify the outputs of three modules that could fall
into one of the following situations: 1. three modules
have identical outputs; 2. two of three modules hold
the same outputs; 3. three modules have different
outputs. Then, each situation described above is
associated with the self-checking results to decide the
outcome of ETMR. The handling processes for each
situation are depicted as follows:
Situation 1: In this situation, if the self-checking
results show no errors, then the results of
self-checking are consistent with the result of TMR,
and clearly, ETMR employs the outcome of TMR as
its output; else, the common-mode failure is
identified, and therefore, the error signal is triggered
to activate the error-recovery process.
Situation 2: There are two cases to consider in this
situation.
Case 1: At least one module out of the modules
having identical outputs is equipped with the
self-checking function. In this case, if the results of
self-checking are consistent with the result of TMR,
then ETMR employs the outcome of TMR as its
output; else, the common-mode failure is recognized
and ETMR triggers the error signal to activate the
error-recovery process.
Case 2: The modules with identical outputs do not
hold the self-checking capability. As a result, the
module judged as faulty by the TMR owns the

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1339 Issue 8, Volume 7, August 2008

self-checking function. If the self-checking result is
normal, then a conflict between TMR and
self-checking results occurs; under the circumstances,
ETMR triggers the error signal to activate the
error-recovery process. Otherwise, ETMR employs
the outcome of TMR as its output.
Situation 3: TMR fails if the outputs of three modules
fall into this situation. Hence, ETMR triggers the
error signal to activate the error-recovery process.
The principal concept behind the ECMP scheme is
similar to ETMR and omitted here.
Error-detection framework: The core of the
framework is based on the hybrid detection approach
which consists of the following basic detection
techniques: ETMR, ECMP, TMR, comparison and
self-checking techniques as described before.
According to the previous discussion, we rank the
priority of the usage of the above error-detection
techniques from high to low as ETMR, ECMP, TMR,
comparison and self-checking, where the technique’s
rank has reference to the capability of the fault
tolerance for the considered schemes. Given n, ns-c, s
and ss-c, the design issue is how to check each
instruction under the resource constraint to achieve
the zero error-detection latency, to minimize the
performance degradation and importantly to gain a
better EDC. The objective of zero error-detection
latency can be accomplished by verifying the
execution results promptly for each instruction.
Therefore, each instruction execution will require
some extra resources such that the results of each
instruction can be validated immediately. As a result,
more resources are needed to execute the m
instructions in a packet simultaneously. The
additional resource requirement resulting from the
error-detection demand may violate the resource
constraint. If such a resource violation occurs, then
the processor won’t have the adequate resources to
execute and check the m instructions in a packet
concurrently. Consequently, some instructions in a
packet cannot be protected and this flaw will degrade
the EDC. For coverage concern, the complete check
of each instruction becomes a must. To solve the
coverage problem, a method of packet partition is
developed and it is to partition such a packet into
several packets which will be executed sequentially.
However, such partitions will induce some extra
cycles, and therefore, degrade the performance of
program execution. The error-detection algorithm is
presented as follows:
Algorithm 1: Given n, ns-c, s and ss-c, the expression
2(m - ns-c - ss-c) ≤ (n - ns-c) + (s - ss-c), called
expression (1), is used to examine whether the m

instructions in present packet can be executed and
checked simultaneously or not. If expression (1) is
true, then the m instructions in the packet can be
executed and checked in parallel; else, the packet
partition is required to guarantee that each instruction
execution will be verified. We now explain the
meaning of expression (1). There are two cases to
consider in expression (1). The first case is ns-c + ss-c
= 0. Expression (1) becomes 2m ≤ n + s. It is obvious
that if the number of available modules n + s is
greater than or equal to 2m, then the m instructions in
present packet can be executed and checked in
parallel. The second case is ns-c + ss-c ≠ 0. In this case,
if expression (1) is true, then one possibility is to let
(ns-c + ss-c) of m instructions be checked each by
self-checking scheme. After that, the remaining
instructions can be examined by comparison and/or
TMR. The details are given below:
if (2(m - ns-c - ss-c) ≤ (n - ns-c) + (s - ss-c)) then
{m instructions in present packet can be executed
and checked simultaneously. We first divide the m
instructions into five groups: G(1) to G(5); there are
m1, m2, m3, m4 and m5 instructions in G(1), G(2), G(3),
G(4) and G(5) respectively, and m1 + m2 + m3 + m4 +
m5 = m, where m1, m2, m3, m4, m5 ≥ 0. The
instructions in G(x), x = 1 to 5, can be examined by
ETMR, ECMP, TMR, comparison and self-checking
schemes, respectively. The following two equations
are derived from the module resource constraint: 3m1
+ 2m2 + 3m3 + 2m4 + m5 ≤ n + s and m1-sc + m2-sc + m5
≤ ns-c + ss-c, where m1-sc and m2-sc are the number of
modules equipped with the self-checking functions,
which are used in the ETMR and ECMP schemes,
respectively. It is clear that the above three equations
could have one or several solutions, where a solution
is represented as (m1, m2, m3, m4, m5, m1-sc, m2-sc). So
the next question is if several solutions exist, how to
choose an effective solution that is superior to most
of the feasible solutions derived from the above
equations. The choice is in accordance with which
solution that can provide a better EDC. The rank of
the basic detection schemes mentioned earlier is
exploited to select a sound solution. The guideline of
the selection of an effective solution is presented
next.

if (ns-c + ss-c ≠ 0) then
{A flow chart as shown in Fig. 1 is used to
characterize the selection criterion. It is evident
that a solution selected based on this criterion is
effective from the EDC point of view. }
else {We choose a solution whose m3 value is
maximal.}}

else

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1340 Issue 8, Volume 7, August 2008

{Due to lack of the enough module resources, we
need to partition the current packet into two or three
packets which will be executed sequentially. Such
partitions will induce some extra cycles, and
therefore, degrade the performance of program
execution. If n is odd with no redundancy added, i.e.
s = ns-c = ss-c = 0, then the worst partition occurs in a
packet containing n instructions, which requires
partitioning into three packets. It is easy to see that a
packet normally requires partitioning into two
packets except the worst partition depicted above. As
a result, the partition of a packet will normally
induce one extra execution cycle except the worst
partition, where two extra cycles are needed. Next,
the principle of instruction partitioning is described

as follows. For two packet’s partition, if m is even,
then we distribute

2
m instructions to each packet; else,

1
2

+⎥⎦
⎥

⎢⎣

⎢m and ⎥⎦

⎥
⎢⎣

⎢
2
m instructions to the first and second

packets respectively. For three packet’s partition, we
first distribute ⎥⎦

⎥
⎢⎣

⎢
3
m instructions to each packet; next,

if 1)3
3

(=×⎥⎦
⎥

⎢⎣

⎢− mm , then the remaining instruction is

assigned to the first packet; if 2)3
3

(=×⎥⎦
⎥

⎢⎣

⎢− mm , then the

remaining two instructions are evenly distributed to
the first and second packets.}

Start

All feasible solutions are collected
into an initial set S1

block(3): it is the same as block(1) except that
m1 + m2 is changed to m3 + m4 represented as
m1 + m2 m3 + m4; also S1 S3 and S2 S4

block(4): it is the same as block(1)
except m1 + m2 m3; S1 S4 and S2 S5

block(5): it is the same as block(1)
except m1 + m2 m1-sc + m2-sc;

S1 S5 and S2 S6

End

End

block(1)

block(2)

Choose one from S6
whose m1-sc value is maximal

yes

yes

No

No

End

Collect those solutions which have the same
maximum of m1 in S2 into set S3

Choose the solution which has
the maximal value of m1 in S2

as the answer

Dose more than one
solution have the same maximum of m1 among

the solutions in S2 ?

Collect those solutions which have the same
maximum of m1 + m2 in S1 into set S2

Choose the solution which has
the maximal value of m1 + m2 in

S1 as the answer

Dose more than one solution
have the same maximum of m1 + m2 among the

solutions in S1 ?

Fig. 1: Selection criterion.

We use the following example to demonstrate
our hybrid error-detection approach:
Example 1: Given n = 4, ns-c = 0, s = 1 and ss-c = 1,
according to error-detection framework described
above, while m = 1, the set of feasible solutions is
{(1, 0, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0,
0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0)}. Next,
from block (2) of Fig. 1, (m1, m2, m3, m4, m5, m1-sc,
m2-sc) = (1, 0, 0, 0, 0, 1, 0) is selected as the answer.
So if an execution packet contains only one
instruction then it will be checked by ETMR scheme.
While m = 2, the set of feasible solutions is {(1, 0, 0,
1, 0, 1, 0), (0, 1, 1, 0, 0, 0, 1), (0, 1, 0, 1, 0, 0, 1), (0,
0, 1, 0, 1, 0, 0), (0, 0, 0, 2, 0, 0, 0), (0, 0, 0, 1, 1, 0,
0)}. Again, from block (2) of Fig. 1, (1, 0, 0, 1, 0, 1,

0) is selected as the answer. So if a packet contains
two instructions then one instruction will be checked
by ETMR and the other by comparison scheme.
While m = 3, (0, 0, 0, 2, 1, 0, 0) is the only solution.
As a result, a packet holds three instructions, two
checked by comparison and the rest one verified by
self-checking mechanism. For m = 4, due to limited
resources, we need to partition this packet into two
packets, and each packet contains two instructions.

2.2 Case Study
In the following illustration, for simplicity of
presentation, we assume only one type of functional
unit, namely ALU, in the data paths, and use three
identical ALUs (n = 3) to demonstrate our hybrid

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1341 Issue 8, Volume 7, August 2008

detection approach. Each ALU includes a multiplier.
Since three ALUs are offered, the processor can issue
three ALU instructions at most per cycle. Given n = 3,
s = 1, and with various ns-c and ss-c, we construct three
hybrid error-detection schemes based on the
framework presented above to explore the design
compromise among the hardware overhead,
performance degradation and EDC. The
self-checking design adopts the mod-3 residue code,
also known as low-cost residue code for ALUs. With
reference to Fig. 2, 3 and 4, the ‘Error Signal’ is used
to indicate that the corresponding output is correct or
not. If ‘Error Signal’ is on, the instruction-retry
process is activated immediately to recover the
current errors. We describe three schemes as follows:
Scheme 1: Self-checking technique is not employed
in this scheme, i.e. ns-c = ss-c = 0. According to
error-detection framework, (m1, m2, m3, m4, m5, m1-sc,
m2-sc) = (0, 0, 1, 0, 0, 0, 0) is selected as the solution
for m = 1. So if an execution packet contains only
one ALU instruction then it will be checked by TMR
scheme. For m = 2, 2m is equal to n + s, so (m1, m2,
m3, m4, m5, m1-sc, m2-sc) = (0, 0, 0, 2, 0, 0, 0). Hence,
each instruction will be verified by comparison
technique. For m = 3, 2m > n + s, the three
concurrent ALU instructions need to be scheduled to
two sequential execution packets where one packet
contains two instructions and the other holds the rest
one; and therefore, one extra ALU cycle is required
to complete the execution of three concurrent ALU
instructions for concurrent error-detection need.
Clearly, the instruction partition resulting from the
lack of ALU resources will cause the performance
degradation. It is evident that three spare ALUs are
required to fully eliminate the performance
degradation. However, it pays very high hardware
cost.
Scheme 2: This scheme exploits the self-checking
methodology to remove the performance degradation
as seen in Scheme 1. Let ns-c = 1, and ss-c = 1. Note
that an ALU equipped with the self-checking
mechanism as illustrated in Fig. 3 comprises a
self-checking adder/multiplier/logic circuit. For m =
1, (m1, m2, m3, m4, m5, m1-sc, m2-sc) can be (1, 0, 0, 0, 0,
1, 0), (1, 0, 0, 0, 0, 2, 0), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0,
0, 0, 0, 2), (0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0) or (0,
0, 0, 0, 1, 0, 0). Clearly, (1, 0, 0, 0, 0, 2, 0) is selected
as the final solution. So, if a packet contains only one
ALU instruction, then it will be checked by ETMR
scheme. For m = 2, (0, 2, 0, 0, 0, 0, 2) is the solution,
and therefore, both instructions can be verified by
ECMP scheme. For m = 3, it satisfies the condition
2(m - ns-c - ss-c) = (n - ns-c) + (s - ss-c), and the solution
is (0, 0, 0, 1, 2, 0, 0). Compared to Scheme 1, the

self-checking technique allows us to spend less
hardware to achieve no performance degradation.
This is the role of self-checking technique played in
the hybrid detection approach. As can be seen from
Fig. 3, two instructions will be verified only by
self-checking technique when a three instruction’s
packet is executed. Under the circumstances, how
serious of the SEU interference will have a
significant impact on the EDC of self-checking
circuits. According to our experimental results, we
observed that the worse the SEU interference is, the
lower the EDC of self-checking circuits. For one and
two instructions’ packets, the ETMR and ECMP
mechanisms are used to examine the instruction
executions, which can further enhance the EDC
compared to TMR and comparison techniques
employed in Scheme 1.
Scheme 3: This scheme represents a compromise
between Schemes 1 and 2. We only offer the
multiplier in ALU_3, the adder as well as logic unit
in ALU_4 having self-checking function. Clearly,
Scheme 3 has lower hardware overhead than Scheme
2, but cannot completely eliminate the performance
degradation. The instruction types of an ALU can be
categorized into ‘add (+)’, ‘multiply (×)’, and ‘logic
(L)’ three classes. Since the self-checking design is
furnished partially compared with Scheme 2, a
packet containing three instructions may still require
partitioning to two execution packets. The need of
partition or not depends on the type of instruction
combinations in a packet. For example, three
instructions in a packet are all from the same
instruction class, such as ‘add’ class. In this case, one
‘add’ instruction can be verified by comparison
(using ALU_1 and ALU_2) and the second one by
the self-checking adder in ALU_4. However, there is
no resource left to check the third ‘add’ instruction
because of no self-checking adder provided in
ALU_3. Consequently, the third ‘add’ instruction is
postponed to the next cycle. Contrary to the above
example, if three instructions are all from different
classes, they can be executed at the same cycle as
exhibited in Fig. 4. The EDC of Scheme 3 is slightly
lower than Scheme 2 due to the following reasons.
One is ETMR used in Scheme 3 has only one module
equipped with the self-checking function, whereas
Scheme 2 has two modules equipped with the
self-checking function. Another is in the execution of
two instructions’ packets. The packets, like (‘+’, ‘+’),
(‘×’, ‘×’), (‘L’, ‘L’) and (‘+’, ‘L’), will be verified
one by ECMP and the other by comparison in
Scheme 3. Contrast to that, all two instructions’
packets in Scheme 2 will be checked by ECMP.

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1342 Issue 8, Volume 7, August 2008

Er
ro

r S
ig

na
l

ALU_1

ALU_2

ALU_3

I1

TMR_MV

Output

ALU_4

I2

I1

CPR Output

CPR
Output

ALU_1

ALU_2

ALU_3

ALU_4

I1

I2

I3

I1

I2

I3

packet1packet2

Partition

execution
packet

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

ALU_1

ALU_2

ALU_3

I1

TMR_MV

Output

ALU_4

I2

I1

CPR Output

CPR
Output

ALU_1

ALU_2

ALU_3

ALU_4

I2

I1

CPR Output

CPR
Output

ALU_1

ALU_2

ALU_3

ALU_4

I1

I2

I3

I1

I2

I3

packet1packet2

Partition

execution
packet

I1

I2

I3

I1

I2

I3

I1

I2

I1

I2

I3

packet1packet2

Partition

execution
packet

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Fig. 2: Scheme 1, left/middle/right for one/two/three instructions in a packet.

ALU_1

ALU_2

ALU_3

I1

Enhanced
TMR_MVOutput

SC

ALU_4

SC

ALU_1

ALU_2

ALU_3

SC

ALU_4

SC

I1

I2
E_CPR

Output

E_CPR
Output

I1

I3

I2

ALU_1

ALU_2

ALU_3

SC

ALU_4

SC

E_CPR Output

Output

Output

Error Signal

Error Signal

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

2

2

ALU_1

ALU_2

ALU_3

I1

Enhanced
TMR_MVOutput

SC

ALU_4

SC

ALU_1

ALU_2

ALU_3

SC

ALU_4

SC

I1

I2
E_CPR

Output

E_CPR
Output

I1

I3

I2

ALU_1

ALU_2

ALU_3

SC

ALU_4

SC

E_CPR Output

Output

Output

Error Signal

Error Signal

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

2

2

Fig. 3: Scheme 2, where ‘SC’ represents self-checking.

‘logic’

‘add’

‘multiply’

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+,L)

E_CPR Output

Output

Output

Error Signal

Error Signal

ALU_1

ALU_2

ALU_3

‘multiply’

Enhanced
TMR_MVOutput

SC (×)

ALU_4

SC (+, L)

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+, L)

‘multiply’

‘add’
E_CPR

E_CPR

Er
ro

r S
ig

na
l

Output

Output

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

2

2

‘logic’

‘add’

‘multiply’

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+,L)

E_CPR Output

Output

Output

Error Signal

Error Signal

‘logic’

‘add’

‘multiply’

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+,L)

E_CPR Output

Output

Output

Error Signal

Error Signal

ALU_1

ALU_2

ALU_3

‘multiply’

Enhanced
TMR_MVOutput

SC (×)

ALU_4

SC (+, L)

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+, L)

‘multiply’

‘add’
E_CPR

E_CPR

Er
ro

r S
ig

na
l

Output

Output

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

2

2

Fig. 4: Scheme 3, where ‘SC (×)’ means the corresponding ALU only supports the SC multiplier; similarly for

SC (+, L).

2.3 Generic Design Consideration
In last section, we use three identical modules to
demonstrate our approach. The number of identical
modules could be various in data paths of
high-performance processors. In this section, we use
three to five identical modules to discuss the generic
design consideration in terms of hardware overhead,
performance degradation and error-detection scheme.
Table 1 lists the data of design parameters derived
from the error-detection framework presented in

Section 2.1 for various numbers of identical
modules.

The hardware overhead in Table 1 simply counts
the part of modules themselves and does not include
other circuit portions resulting from the demand of
fault tolerance, such as comparators and majority
voters. The notations A and As shown in the column
of hardware overhead represent the area of an ALU
and the area induced by the self-checking design,
respectively. As mentioned before, the demand of
zero detection latency results in the performance

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1343 Issue 8, Volume 7, August 2008

degradation due to the partition of instructions into
several sequential execution packets. We use the
notation, for example, 3→ (2, 1) to represent the
partition of three instructions in a packet into two
sequential packets where one packet contains two
instructions and the other holds the rest one.
Similarly, 5→ (2, 2, 1) will cause two cycle’s
performance degradation. The notations shown in the
column of error-detection scheme represent the
methodologies used to detect the errors. For instance,
‘2: (1: ETMR, 1: ECMP)’ represents an execution
packet with two instructions where one instruction is
checked by ETMR technology and the other is
examined by ECMP scheme; likewise, ‘2: ETMR’
means that it is an execution packet containing two
instructions and each instruction is verified by
ETMR scheme.

As can be seen from Table 1, for a specific
number n, our approach offers several design options

based on the trade-off among the metrics of hardware
overhead, performance degradation and fault
tolerance capability. Without loss of generality, we
use n = 5 as an example to explain the design
trade-off. For n = 5, there are three design choices
shown in Table 1. If the design is
performance-oriented, we could choose the design
using s = 2, i.e., the design using two spares, and
three ALUs equipped with the self-checking
functions. Clearly, the design with no spare enjoys
the lowest hardware overhead but suffers from the
highest performance degradation and the lowest EDC
among three design options. Generally speaking, the
design with more spares has the advantages of lower
performance degradation and higher EDC but suffers
from higher hardware overhead. From the above
discussion, it is obvious that our hybrid approach can
be extended easily to a generic processor core where
the data paths have more than one functional type.

Table 1: Data of design parameters for various numbers of identical modules, where HO is an abbreviation of
hardware overhead, IP is instruction partitioning, COM is comparison, and SC is self-checking.

n ns-c s ss-c HO IP Error-detection Scheme

3 0 1 0 1/3 3→ (2, 1) 1: TMR; 2: COM

3 1 1 1 (A+2As)/3A None 1: ETMR; 2: ECMP; 3: (1: COM, 2: SC)

3 0 2 2 2(A+As)/3A None 1: ETMR;2: (1: ETMR, 1: ECMP);

3: (1: ECMP, 1: COM, 1: SC)

4 0 0 0 0% 3→ (2, 1);

4→ (2, 2)

1: TMR;

2: COM

4 0 1 1 (A+As)/4A 4→ (2, 2) 1: ETMR; 2: (1: ETMR, 1: COM);

3: (2: COM, 1: SC);

4 2 1 1 (A+3As)/4A None 1: ETMR; 2: (1: ETMR, 1: ECMP)

3: (2: ECMP, 1: SC); 4: (1: COM, 3: SC)

5 0 0 0 0%
3→ (2, 1);

4→ (2, 2);

5→ (2, 2, 1);

1: TMR;

2: (1: TMR, 1: COM)

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1344 Issue 8, Volume 7, August 2008

5 1 1 1 (A+2As)/5A 5→ (3, 2); 1: ETMR; 2: ETMR; 3: (2:ECMP, 1: COM);
4: (2:COM, 2: SC)

5 1 2 2 (2A+3As)/5A None 1: ETMR; 2: ETMR;3: (1: ETMR, 2:
ECMP);4: (1: ETMR, 1: COM, 2: SC);

5: (2: COM, 3: SC)

3 Hardware Implementation and
Performance Evaluation

To evaluate our hybrid approach, Schemes 1, 2 and 3
were implemented in an experimental 32-bit VLIW
core respectively. The features of this 32-bit VLIW
processor are stated as follows: • the instruction set is
composed of twenty-five 32-bit instructions; • each
ALU includes a 32x32 multiplier; • a register file
containing thirty-two 32-bit registers with 12 read
and 6 write ports is shared with modules and
designed to have bypass multiplexers that bypass
written data to the read ports when a simultaneous
read and write to the same entry is commanded; •
data memory is 1K x 32 bits. The core consists of
five pipeline stages: ‘instruction fetch and instruction
dispatch (IF & ID)’, ‘decode and operand fetch from
register file (DRF)’, ‘execution (EXE)’, ‘data
memory reference (MEM)’ and ‘write back into
register file (WB)’ stages. This experimental
architecture can issue at most three ALU and three
load/store instructions per cycle. Fig. 5 shows the
architectural implementation of Scheme 2. The
architectures of Schemes 1 and 3 are similar to Fig. 5.
The purpose of ‘ALU_Control’ unit is to carry out
the control tasks for error detection and error
recovery, where the process of error recovery adopts
a simple instruction-retry method. Note that the
‘Error Analysis’ block in execution stage was created
only for the purpose of the measurement of the EDC
during the fault injection campaigns.

The hardware implementations for three schemes
in VHDL were performed to measure the design
metrics. The implementation data by UMC 0.18μm
process are shown in Table 2, where HO and PD are
the abbreviation of hardware overhead and
performance degradation, respectively. The original
VLIW core is termed as Scheme 0. The area excludes

the instruction memory as well as the ‘Error
Analysis’ block. The term of hardware overhead
includes the overheads caused by the circuits
developed for error detection and error recovery. It is
worth noting that the overhead of ‘ALU_Control’
unit for three schemes is only 0.25~0.3 percent
compared to the area of the non fault-tolerant VLIW
core. This implies that the control task of our hybrid
schemes is simple and easy to implement. For
performance consideration, we require that the clock
frequency of the fault-tolerant VLIW processors must
retain the same as that of non fault-tolerant one, i.e.
128 MHz. Eight benchmark programs including
heapsort, quicksort, four queens, 5 × 5 matrix
multiplication, FFT and IDCT (8×8) were developed
to measure the performance degradation resulting
from the error detection in Schemes 1 and 3. As can
be seen from Table 2, Schemes 1, 2 and 3 show
clearly the design compromise between the hardware
redundancy and time redundancy.

Table 2: The data of hardware overhead and

performance degradation.

Scheme Area (μm2) HO PD

0 9319666 0% 0%

1 10708296 14.9% 0.6% - 34.3%

2 12152844 30.4% 0%

3 11630943 24.8% 0.01% - 15%

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1345 Issue 8, Volume 7, August 2008

Instruction
Memory

Next
address
selector

Instruction D
ispatch

Shared R
egistter File

Select
ALU_1

ALU_2

ALU_3

L/S
Unit
L/S
Unit
L/S
Unit

0
1
2
3
4
5

E_CPR
1

E_CPR
2

ETMR
_MV

D
ata M

em
ory

Schedule

ALU_4

ALU_Control

I1_out

I2_out
SelSch_sel

Func_2

Func_4

Func_3

Select_sel

Stage Idle

Safe
failure

IF & ID DRF EXE MEM WB

Func_1Forw
arding

Error_
signal

N
ext sequential

Jum
p address

B
ranch address

Main_Control

Recovery
Idle

6x32-bit

6x32-bit

SC

SC

op_1(I1)
op_2(I1)
op_1(I2)
op_2(I2)

Func_I1
Func_I2

Inst_count

op_1(I3)
op_2(I3)

Func_I3 I3_out

Error Analysis

Ne
Ne-det
Ne-rec
Ne-esc-det
Ne-nrec-f-s
Ne-nrec-f-uns

Fig. 5: Fault-tolerant VLIW architecture (Scheme 2).

4 Error-Detection Coverage Analysis
In this section, the analysis of EDC based on the
simulation-based fault injection [25-27] is conducted
to validate our hybrid schemes. A comprehensive
fault tolerance verification platform comprising a
simulated fault injection tool [28, 29], ModelSim
VHDL simulator and data analyzer has been built. It
offers the capability to effectively handle the
operations of fault injection, simulation and error
coverage analysis. The core of the verification
platform is the fault injection tool that can inject the
transient and permanent faults into VHDL models of
digital systems at chip, RTL and gate levels during
the design phase. Injection tool can inject the
following classes of faults: ‘0’ and ‘1’ stuck-at faults,
‘Z’: high-impedance and ‘X’: unknown faults.
Weibull fault distribution is employed to decide the
time instant of fault injection.

A new characteristic of our injection tool is to
offer users the statistical analysis of the injected
faults. The statistical data for each injection
campaign exhibit the degree of fault’s severity,
which represents a fault scenario (or called fault
environment). The degree of fault’s severity is

relative to the probability of i faults (denoted as Pi)
occurring concurrently while a fault-tolerant system
is simulated in the injection campaign, where i ≥ 1.
For example, P1 = 98% and P2 = 2% mean that 98
percent is one fault and two percent is two faults
when the faults occur throughout the injection
campaign. Hence, the injection tool can assist us in
creating the proper fault environments that can be
used to effectively validate the capability and the
strength of a fault-tolerant system under various fault
scenarios. As a result, the validation process will be
more comprehensive and complete. In a word, the
proposed verification platform helps us raise the
efficiency and validity of the dependability analysis.

4.1 Interesting Design Metrics
As seen before, five basic error-detection
mechanisms, i.e. ETMR, ECMP, TMR, comparison
and self-checking, are used in Schemes 1, 2 and 3. It
should be pointed out that each basic error-detection
mechanism could fail to detect some specific types of
errors as described below: • For ETMR, two or three
ALUs produce the identical, erroneous results to
TMR and the self-checking function also fails to

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1346 Issue 8, Volume 7, August 2008

identify this common-mode failure. • For ECMP, two
ALUs produce the same, erroneous results to
comparator and the self-checking function also fails
to identify this common-mode failure. • For TMR,
two or three ALUs produce the identical, erroneous
results to TMR. • For comparison, two ALUs
produce the same, erroneous results to comparator. •
For self-checking, the faults escape being detected
due to multiple transient faults. Such detection
defects will result in the unsafe failures. In summary,
there are two kinds of errors that will lead to the
unsafe failure; one is errors resulting in
common-mode failures and the other is multiple
transient faults going undetected by self-checking
circuits.

Let Ce-det denote the EDC, i.e. probability of
errors detected; Pf-uns be the probability of system
entering the fail-unsafe state. The parameters Ne,
Ne-det, and Ne-esc-det represent the total number of
errors occurred, the number of errors detected, and
the number of errors undetected, respectively. The
Ce-det and Pf-uns can be expressed as:

(2) ; detdet
det

e

esce
unsf

e

e
e

N
NP

N
NC −−

−
−

− ==

4.2 Simulation Results and Discussion
We have conducted a huge amount of fault injection
campaigns to calculate the expression (2) under
various fault scenarios. The benchmark programs
mentioned in Section 3 are used in the fault injection
campaigns to analyze the design metrics expressed in
(2). The common rules of fault injection for the
experiments are: 1) value of a fault is selected
randomly from the s-a-1 and s-a-0; 2) injection
targets cover the entire ‘EXE’ stage except the
‘load/store’ and ‘Error Analysis’ units, as shown in
Fig. 5. To inject the faults into the inside of the
adders and multipliers, those components were
implemented at the gate level. As shown in [1], the
fault rate is proportional to the circuit area. So, the
fault distribution for each injection campaign is
based on the area complexity of the components
which are considered to be the injection targets. The
common data of fault injection parameters are: α=1
(useful-life), failure rate (λ) = 0.001, probability of
permanent fault occurrence = 0, fault duration = 5
clock cycles. Table 3 lists the statistical data for five
injection campaigns, where Pi is the probability of i
faults occurring concurrently while the fault-tolerant
system is simulated in the injection campaign.
Clearly, from Table 3, five campaigns represent five
different fault environments, where the fault

environment is getting worse from Campaigns 1 to 5
because the occurring probability of multiple faults
Pi (i ≥ 2) is getting higher from Campaigns 1 to 5.
Therefore, the statistical analysis helps designers
choose a set of desired fault scenarios to test the
ability of fault-tolerant systems. As a result, the
proposed verification platform can furnish more
comprehensive and solid measurement of
fault-tolerant design metrics.

Table 4 illustrates the experimental results of
Ce-det and Pf-uns for Schemes 1, 2 and 3 under various
injection campaigns. The results obtained in Table 4
have 95% confidence interval of ±0.14% to ±0.98%.
The salient points of the results presented in Table 4
are summarized as follows. One is the EDC
decreases and the probability of unsafe failure
increases as the fault environment becomes worse. It
is evident that the increase of the occurring
probability of multiple faults will raise the
probability of unsafe failures caused by the error
scenarios described in Section 4.1. Another chief
point is the rank of scheme’s EDC is Scheme 2 >
Scheme 3 > Scheme 1. As a result, among Schemes 1,
2 and 3, Scheme 1 enjoys the lowest hardware
overhead, but suffers from the highest performance
degradation and lowest EDC, whereas Scheme 2 has
the advantages of lowest performance degradation
and highest EDC, but suffers from the highest
hardware overhead. Apparently, our hybrid approach
offers the design options based on the trade-offs
among the hardware redundancy, time redundancy
and EDC. The last point worth to be mentioned is the
results presented are quite positive and sound those
declare the effectiveness of our fault-tolerant
methodology even in a very severe fault
environment.

The concept of hybrid approach can be further
extended by including the self-checking design using
various error detecting codes, such as residue, Berger
and parity codes. The choice of self-checking
techniques has an impact on the hardware overhead,
performance degradation and EDC. Table 5 gives a
comparison for several self-checking techniques used
in an array multiplier. The faults are injected into the
inside of the multiplier. The EDC reduces rapidly
when the number of faults existing in the same unit
increases. This phenomenon has been discovered in
paper [21] as well. It is clear that the various
self-checking techniques have significant difference
in hardware overhead, performance and EDC in this
specific study. Consequently, we need to carefully
choose the self-checking mechanisms to gain a good
trade-off among the interesting design metrics.

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1347 Issue 8, Volume 7, August 2008

Table 3: Statistical data for various fault injection campaigns.

Campaign

Pi (%)
1 2 3 4 5

P1 96.1 ~ 96.77 76.17 ~ 76.88 55.12 ~ 55.46 37.04 ~ 37.8 22.1 ~ 22.43

P2 3.02 ~ 3.31 19.39 ~ 20.08 32.19 ~ 33.27 37 ~ 37.57 34.23 ~ 36.4

P3 0.21 ~ 0.59 2.85 ~ 3.75 9.95 ~ 10.63 19.08 ~ 19.79 28.01 ~ 28.13

P4 0.15 ~ 0.31 1.42 ~ 1.77 4.88 ~ 5.43 10.93 ~ 12.44

P5 0.02 ~ 0.07 0.13 ~ 0.19 0.68 ~ 0.72 2.18 ~ 2.77

P6 0.03 ~ 0.08 0.22 ~ 0.32

P7 0.02 ~ 0.06

Table 4: Ce-det and Pf-uns for Schemes 1, 2 and 3 under various injection campaigns.

1 2 3 4 5 Campaign

Scheme Ce-det Pf-uns Ce-det Pf-uns Ce-det Pf-uns Ce-det Pf-uns Ce-det Pf-uns

1 0.9931 0.0069 0.9923 0.0077 0.987 0.013 0.9866 0.0134 0.9751 0.0249

2 0.998 0.002 0.9942 0.0058 0.9938 0.0062 0.9925 0.0075 0.992 0.008

3 0.9949 0.0051 0.9925 0.0075 0.9884 0.0116 0.9872 0.0128 0.9805 0.0195

Table 5: Comparison of various self-checking techniques, where the data shown in the columns of
Single/Double/Triple are the EDC for single/double/triple faults injected into an array multiplier.

Technique Area(μm2) Overhead Performance Single Double Triple

Plain Multiplier 759876 0% 9.8 ns 0% 0% 0%

Mod-3 863678 13% 11.56 ns 100% 82% 75%

Mod-7 882406 16% 12.32 ns 100% 97% 93%

Berger [30] 1487615 95% 12.97 ns 100% 95% 90%

Bose-Lin [31] 1297667 70% 11.60 ns 100% 91% 82%

Parity [32] 915250 20% 11.83 ns 100% 65% 57%

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1348 Issue 8, Volume 7, August 2008

4.3 Comparisons
As we know, the effectiveness of fault-tolerant
schemes for high-performance microprocessors
can be measured by: 1. hardware overhead, 2.
performance degradation, 3. program space
overhead, 4. error-detection coverage, 5.
error-detection latency, and 6. error-recovery
efficiency. Therefore, the design is to find a
good trade-off among those six properties. In
other words, each method may focus the
attention on some design attributes and
meanwhile degrade others. For instance, the
compiler-based software redundancy schemes
[15], [16] are able to perform the error detection
without hardware modification and overhead,
but have worse performance degradation and
program space overhead than our method. In
addition, the software redundancy schemes
increase the compiler complexity as well.
Further, most of the methods in the literature
only address the issue of error detection and do
not provide enough data, such as hardware
overhead and error coverage, to allow us to
compare the various schemes fairly. Besides that,
the comparisons should also be based on the
same or at least similar conditions, like which
fault model considered. Consequently, we adopt
the qualitative approach to compare our scheme
with others.

The comparisons are summarized as
follows: 1. our method is more complete in that
it offers an effective error-handling process
comprising the error detection and error
recovery. In the design of fault-tolerant systems,
the adopted error-detection scheme determines
the error-detection latency and the length of
latency could affect the implementation
complexity and time efficiency of the
error-recovery process. Our error-detection
mechanism enjoys no detection latency such that
we can utilize a very simple instruction-retry
method to recover the errors in real-time manner.
Other schemes with variable error-detection
latency would pay a higher hardware cost to
implement the error-recovery process and more
execution time to correct the errors. For example,
the error-detection scheme presented in [18]
holds 692 cycles of detection latency on average,
and 36183 cycles for the worst case. Such a

lengthy latency requires more time for the error
recovery. That will degrade the performance
significantly once the errors occur. However, the
scheme in [18] provides the detection coverage
of the transient faults for the entire pipeline,
whereas our scheme only covers the data paths,
but can conquer the transient and permanent
faults. 2. This work offers the more complete
and solid results including hardware overhead,
performance degradation, and fault-tolerant
design metrics. Based on such results, our
method can be thoroughly validated with
confidence. Those data are valuable and
important for us to justify whether the scheme is
workable or not. Apart from that, we introduce a
concept of fault scenario to imitate various
degrees of fault’s severity. Therefore, we can
examine how strong our scheme can achieve in
different fault scenarios. Through this
investigation, we can gain an insight into the
impact of the fault environment on the capability
of our scheme.

5 Conclusions
This paper presents a new, hybrid error-detection
approach with no detection latency for
high-performance microprocessors. No detection
latency is essential to real-time error recovery, which
is important to the highly dependable real-time
computing applications. A general error-detection
framework based on our hybrid approach with a more
rigid fault model is developed and then three
representative schemes generated from the
framework are used to demonstrate the spirit of our
hybrid concept. A thorough evaluation of design
metrics for those three demonstrated schemes was
performed to characterize the effect of various
complexities of hybrid designs on the hardware
overhead, performance degradation and
error-detection capability. The results presented
exhibit several design options that our error-detection
framework could furnish. Therefore, the framework
provides an opportunity for the designers to choose
an efficient design solution to best meet the design
requirements from the possible design options
offered by the framework. We should point out that a
huge amount of fault injection campaigns were
conducted to estimate the EDC of the schemes under
a variety of fault scenarios so as to investigate the
capability of our hybrid approach in different fault
scenarios. Such experiments can give us more

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1349 Issue 8, Volume 7, August 2008

realistic and comprehensive simulation results. The
effectiveness of our mechanism even in a very severe
fault scenario is justified from the experimental
results. The concept of hybrid approach can be
further extended by including the self-checking
design using various error detecting codes, such as
residue, Berger and parity codes. The choice of
self-checking techniques has an impact on the
hardware overhead, performance degradation and
EDC.
Acknowledgements. The authors acknowledge the
support of the National Science Council, Republic of
China, under Contract No. NSC 96-2221-E-216-006.

References:
[1] Shivakumar, P. et al.: ‘Modeling the Effect of

Technology Trends on the Soft Error Rate of
Combinational Logic’, IEEE Intl. Conf. on
Dependable Systems and Networks (DSN’02),
2002, pp. 389-398.

[2] Karnik, T., Hazucha, P. and Patel, J.:
‘Characterization of Soft Errors Caused by
Single Event Upsets in CMOS Processes’,
IEEE Trans. on Dependable and Secure
Computing, 2004, 1, (2), pp. 128-143.

[3] Saggese, G. P. et al.: ‘Microprocessor
Sensitivity to Failures: Control vs. Execution
and Combinational vs. Sequential Logic’,
IEEE Intl. Conf. on Dependable Systems and
Networks (DSN’05), 2005, pp. 760-769.

[4] Short, M., Schwarz M. and Boercsoek J.:
‘Efficient Implementation of Fault-Tolerant
Data Structures in Embedded Control
Software’, WSEAS TRANSACTIONS on
ELECTRONICS, 5, (1), January 2008, pp.
12-24.

[5] Hahanov, V., Hahanova, A., Chumachenko, S.
and Galagan, S.: ‘Diagnosis and Repair
Method of SoC Memory’, WSEAS
TRANSACTIONS on CIRCUITS AND
SYSTEMS, 7, (7), July 2008, pp. 698-707.

[6] Hahanov, V., Obrizan, V., Litvinova, E. and
Man, K. L.: ‘Algebra-Logical Diagnosis Model
for SoC F-IP’, WSEAS TRANSACTIONS on
CIRCUITS AND SYSTEMS, 7, (7), July 2008,
pp. 708-717.

[7] Sohi, G. S., Franklin, M. and Saluja, K. K.:
‘A Study of Time-Redundant Fault
Tolerance Techniques for
High-Performance Pipelined Processors,’
19th IEEE FTCS, 1989, pp.436-443.

[8] Holm, J. G. and Banerjee, P.: ‘Low Cost
Concurrent Error Detection in A VLIW

Architecture Using Replicated Instructions’, Intl.
Conf. on Parallel Processing, 1992, pp.
192-195.

[9] Franklin, M.: ‘A Study of Time Redundant
Fault Tolerance Techniques for Superscalar
Processors’, IEEE Intl. Workshop on Defect and
Fault Tolerance in VLSI Systems (DFT’95),
1995, pp. 207-215.

[10] Chen, Y. Y.: ‘Concurrent Detection of Control
Flow Errors by Hybrid Signature Monitoring’,
IEEE Trans. on Computers, 54, (10), October
2005, pp. 1298-1313.

[11] Rotenberg, E.: ‘AR-SMT: A Microarchitectural
Approach to Fault Tolerance in
Microprocessors’, 29th IEEE FTCS, 1999,
pp.84-91.

[12] Rebaudengo, M. et al.: ‘Soft-Error Detection
through Software Fault-Tolerance Techniques’,
DFT’99, 1999, pp. 210-218.

[13] Nickle, J. B., and Somani, A. K.: ‘REESE: A
Method of Soft Error Detection in
Microprocessors’, IEEE Intl. Conf. on
Dependable Systems and Networks (DSN’01),
2001, pp. 401-410.

[14] Kim, S. and Somani, A. K.: ‘SSD: An
Affordable Fault Tolerant Architecture for
Superscalar Processors’, Pacific Rim Intl.
Symposium. On Dependable Computing, 2001,
pp. 27-34.

[15] Oh, N., Shirvani, P. P. and McCluskey, E. J.:
‘Error Detection by Duplicated Instructions in
Super-Scalar Processors’, IEEE Trans. on
Reliability, 51, (1), March 2002, pp. 63-75.

[16] Bolchini, C.: ‘A Software Methodology for
Detecting Hardware Faults in VLIW Data
Paths’, IEEE Trans. on Reliability, 52, (4), 2003,
pp. 458-468.

[17] Mitra, S. et al.: ‘Robust System Design with
Built-In Soft-Error Resilience’, IEEE computer,
Feb. 2005, pp. 43-52.

[18] Qureshi, M. K., Mutlu, O. and Patt, Y. N.:
‘Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors’, DSN’05, June-July 2005, pp.
434-443.

[19] Kwak, S. W. and Kim, B. K.: ‘Task-Scheduling
Strategies for Reliable TMR Controllers Using
Task Grouping and Assignment’, IEEE Trans.
on Reliability, 49, (4), December 2000, pp.
355-362.

[20] Avizienis, A., Laprie, J.-C., Randell, B. and
Landwehr, C.: ‘Basic Concepts and Taxonomy
of Dependable and Secure Computing’, IEEE
Trans. on Dependable and Secure Computing, 1,

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1350 Issue 8, Volume 7, August 2008

(1), Jan.-March 2004, pp. 11-33.
[21] Rossi, D. et al.: ‘Multiple Transient Faults in

Logic: An Issue for Next Generation ICs?’,
IEEE Intl. Symposium on Defect and Fault
Tolerance in VLSI Systems, 2005, pp. 352-360.

[22] Lala, P. K.: ‘Self-Checking and Fault-Tolerant
Digital Design’ (MORGAN KAUFMANN,
2001).

[23] Johnson, B. W.: ‘Design and Analysis of Fault
Tolerant Digital Systems’, Addison Wesley,
1989.

[24] Mitra, S., Saxena, N. R. and McCluskey, E. J.:
‘Common-Mode Failures in Redundant VLSI
Systems: A Survey’, IEEE Trans. on Reliability,
49, (3), Sept. 2000, pp. 285 – 295.

[25] Clark, J. and Pradhan, D.: ‘Fault Injection: A
Method for Validating Computer-System
Dependability’, IEEE Computer, 28, (6), June
1995, pp. 47-56.

[26] Hsueh, M. C., Tsai, T. K. and Iyer, R. K.:
‘Fault Injection Techniques and Tools’, IEEE
Computer, 30, (4), April 1997, pp. 75-82.

[27] Constantinescu, C.: ‘Experimental Evaluation of
Error-Detection Mechanisms’, IEEE Trans. on
Reliability, 52, (1), March 2003, pp. 53-57.

[28] Jenn, E. et al.: ‘Fault Injection into VHDL
Models: The MEFISTO Tool’, 24th IEEE
FTCS, 1994, pp. 66-75.

[29] Gracia, J. et al.: ‘Comparison and Application
of Different VHDL-Based Fault Injection
Techniques’, DFT’01, 2001, pp. 233-241.

[30] Lo, J. C. et al.: ‘An SFS Berger Check
Prediction ALU and Its Application to
Self-Checking Processor Designs’, IEEE Trans.
on CAD, 11, (4), 1992, pp. 525-540.

[31] Bose, B., and Lin, D. J.: ‘Systematic
Unidirectional Error Detecting Codes’, IEEE
Trans. on Computers, 34, (11), 1985, pp.
1026-1032.

[32] Nicolaidis, M. et al.: ‘Fault-Secure Parity
Prediction Arithmetic Operators’, IEEE Design
& Test of Computers, 14, (2), 1997, pp. 60-71.

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1351 Issue 8, Volume 7, August 2008

