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Abstract: - Error detection plays an important role in fault-tolerant computer systems. Two primary 
parameters concerned for error detection are the coverage and latency. In this paper, a new, hybrid 
error-detection approach offering a very high coverage with zero detection latency is proposed to protect 
the data paths of high-performance microprocessors. The feature of zero detection latency is essential to 
real-time error recovery. The hybrid error-detection approach is to combine the duplication with 
comparison, triple modular redundancy (TMR) and self-checking mechanisms to construct a formal 
framework, which allows the error-detection schemes of varying hardware complexity, performance and 
error-detection coverage to be incorporated. An experimental 32-bit VLIW core was employed to 
demonstrate the concept of hybrid detection approach. The hardware implementations in VHDL and 
simulated fault injection experiments were conducted to measure the interesting design metrics, such as 
hardware overhead, performance degradation and error-detection coverage.  

Keywords: Concurrent error detection, error-detection coverage, error-detection latency, fault injection, 
hybrid detection approach. 

1 Introduction 
The rate of radiation-induced soft errors increases 
rapidly, especially in combinational logic, while the 
chip fabrication enters the very deep submicron 
technology [1-3]. Such an influence raises the urgent 
need to incorporate the fault tolerance into the 
high-performance microprocessors, system-on-chip 
(SoC) and embedded systems for safety-critical 
applications [4-6]. Concurrent error detection 
provides an effective approach to detect the errors 
caused by transient and intermittent faults [7-10]. 
One principal concern in the design of 
error-detection schemes is the error-detection latency, 
which dominates the time efficiency of the error 
recovery. The previous researches in reliable 
microprocessor design are mainly based on the 
concept of time redundancy approach [7-9], [11-18] 
that uses the instruction replication and 
recomputation to detect the errors by comparing the 
results of regular and duplicate instructions. The 

error-detection latency can be calculated from the 
time of regular instruction execution to the time of 
duplicate instruction recomputation. Drawbacks of 
the previous studies are: • variable detection latency 
which complicates the analysis of the impact of error 
recovery on performance; • lengthy detection latency 
that increases the error-recovery time as well as 
program execution time. For example, the 
error-detection scheme presented in [18] holds 692 
cycles of detection latency on average, and 36183 
cycles for the worst case. Such a lengthy latency 
requires more time for the error recovery and this 
will degrade the performance significantly once the 
errors occur. Such a lengthy recovery may be 
detrimental to the real-time computing applications. 
Besides that, error-detection schemes with variable 
detection latency would pay a higher hardware cost 
to implement the error-recovery process.  

In this study, to minimize the effect of 
error-detection latency on the recovery performance 
and hardware complexity, the zero detection latency 
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is set as our design goal so as to accomplish the 
real-time error recovery by simply using the 
cost-effective instruction-retry method. To fulfill the 
requirement of zero detection latency, it demands 
that the execution results of each instruction must be 
examined immediately and if errors are found, the 
erroneous instructions are retried at once to 
overcome the errors. So, the error-detection problem 
can be formalized as how to verify the execution 
results promptly for each instruction. In this work, a 
new, hybrid error-detection approach is proposed to 
detect the faults occurring in the data paths during 
the instruction executions with zero detection 
latency. 

The paper is organized as follows. In Section 2, a 
general framework of hybrid error-detection 
approach is proposed and demonstrated by a case 
study to explore the design options with various 
hardware redundancy, time redundancy and 
error-detection coverage (EDC). Section 3 presents 
the hardware implementations of the demonstrated 
detection schemes illustrated in Section 2 in an 
experimental 32-bit VLIW core and the 
measurements of hardware overhead and 
performance degradation. Experimental results and a 
thorough analysis of EDC are given in Section 4. The 
conclusions appear in Section 5. 

2 Hybrid Error-Detection Approach 
In addition to the single fault model commonly 
adopted previously, two classes of faults described 
below (named ‘fault class 1’ and ‘fault class 2’) are 
particularly addressed in our error-detection approach: 
1. Correlated transient faults [19, 20] (e.g., a burst of 
electromagnetic radiation) which could cause 
multiple module failures. 2. A single event upset 
(SEU) could possibly generate a multiple transient 
fault, which may lead to a bidirectional error at the 
logic circuit output [21]. Such a SEU effect could 
seriously degrade the EDC for self-checking circuits 
generally designed with a single fault assumption 
[21]. It is evident that the adopted fault model in this 
study is more rigid and complete compared to the 
single fault assumption commonly applied before. 
However, we note that due to the more rigid fault 
model and severe fault situations considered, it 
requires developing a more powerful error-detection 
approach to raise the EDC to a sound level. 

Basically, the data paths consist of register file 
and various functional units. We assume that the 
register file is protected by an error-correcting code. 
Therefore, in the following, we focus on the issue of 
how to detect the faults occurring in the functional 

units with zero detection latency. A 
high-performance processor core may possess several 
different types of functional units in the data paths, 
such as integer ALU and load/store units. One or 
more than one identical units are provided for a 
specific functional type.  
Hybrid approach: The fundamental concept of our 
approach is to recover the execution errors promptly 
for each instruction run. To achieve the real-time 
error recovery by exploiting the simple 
instruction-retry method, the execution results of 
each instruction must be checked immediately to 
detect the errors. We propose a hybrid detection 
approach combining the duplication with comparison, 
henceforth referred to as comparison, triple modular 
redundancy (TMR) and self-checking methodologies 
[22] to fulfill the requirement of zero detection 
latency. Our hybrid approach is quite comprehensive 
in that it offers the design options based on the 
trade-offs among the hardware redundancy, time 
redundancy and EDC. Such trade-offs can be 
achieved through the choices of the following design 
parameters: how many spare units, comparators 
(CPR), majority voters (MV) and self-checking 
functional units employed in the error-detection 
scheme.  

To cope with the correlated transient faults, 
which may cause the multiple module failures, the 
TMR scheme is enhanced to have the ability to detect 
the multiple module errors. It is worth noting that 
why we exploit the TMR for the error detection? This 
is because TMR has a benefit to avoid activating the 
procedure of error recovery while only one faulty 
unit happens. In contrast to TMR, comparison and 
self-checking schemes need to spend time for error 
recovery. In an extreme case of a permanent fault 
occurring in one unit, the system utilizing the 
comparison and self-checking methods needs to 
perform the error-recovery process to overcome the 
errors every time when the faulty unit is used and the 
permanent fault is activated to produce the output 
errors; this will significantly degrade the performance. 
Instead, the TMR can tolerate one faulty unit, and 
therefore, no error recovery is required. Hence, using 
TMR can lower the performance degradation caused 
by the error recovery. The performance concern here 
is the consideration of the real-time computing 
applications, which have a strict time constraint. 
However, TMR needs more resources to carry out the 
error detection compared to the comparison and 
self-checking methods.  

We further discuss why we combine the 
self-checking with TMR as well as comparison 
schemes? As we know, the advantages of TMR and 
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comparison schemes are as follows: simple concepts, 
easy design and implementation, and suitable for any 
hardware entity. More importantly, the interference 
of SEUs as mentioned in the fault class 2 has no 
impact on the EDC for TMR and comparison 
schemes. However, they suffer from a higher 
hardware redundancy. Contrary to the TMR and 
comparison schemes, the self-checking circuits 
generally enjoy less hardware redundancy, but suffer 
from multiple transient faults induced by the SEUs as 
stated in the fault class 2. Moreover, they have more 
complicated design concepts, and higher 
implementation complexity. Therefore, the principal 
idea of our hybrid approach is to utilize the hardware 
advantage of the self-checking scheme and the 
coverage advantage of the TMR and comparison 
schemes to form a feasible error-detection 
framework.  

2.1 Detection Framework with Zero Latency 
The following notations are developed: 
n:  Number of identical modules for a specific 

functional type x, n > 1; n  is also the 
maximum number of instructions that can be 
executed concurrently in the modules of type x; 

ns-c: Number of modules equipped with self-checking 
ability in the n modules of type x, 0 ≤ ns-c ≤ n.  

s:  Number of spare modules added to the type x, s 
≥ 0. 

ss-c: Number of spare modules equipped with 
self-checking capability in the s spares of type x, 
0 ≤ ss-c ≤ s. 

m:  Number of instructions in an execution packet 
for type x, m ≤ n. An execution packet is 
defined as the instructions in the same packet 
can be executed in parallel. 

ETMR/ECMP: Enhanced TMR/Enhanced 
comparison schemes are the combination of 
TMR/comparison schemes with the self-checking 
methodology. It means that at least one module used 
in TMR/comparison possesses the self-checking 
function. The enhanced TMR majority voter 
(ETMR_MV)/enhanced comparator (E_CPR) 
receives the module outputs as well as the 
self-checking error signals produced from the 
modules equipped with self-checking function. The 
goal of ETMR and ECMP is to conquer the 
common-mode failures [23, 24] which could occur in 
TMR and comparison schemes when two or three 
modules produce the identical, erroneous results to 
TMR_MV or two modules produce the same, 
erroneous results to comparator.  

We use the following example to show the power 
of ETMR. Given identical modules A, B, and C that 
are employed in TMR operation, where module B is 
furnished with the self-checking function. We assume 
that modules A and B are faulty and produce the 
same, erroneous results. Under the circumstances, the 
errors will cause a common-mode failure in 
traditional TMR scheme. However, the ETMR 
scheme can be aware of this kind of error by using 
the error signal delivered from the self-checking unit. 
If the error signal provided from module B shows 
that the output of module B is wrong, then the 
common-mode failure caused by the modules A and 
B is discovered; otherwise, the common-mode failure 
escapes being detected. It is evident that the EDC of 
self-checking technique decides the detection 
capability of the common-mode failures for ETMR.  

Following the above illustration, the principal 
concept behind the ETMR scheme is described below. 
The ETMR possesses a two-layer fault protection in 
that it exploits the results of TMR and self-checking 
techniques to determine the output of ETMR or 
trigger the error signal to activate the error-recovery 
process. First of all, we employ the outcome of TMR 
voter to compare with each module output. The 
results of such comparisons can be exploited to 
identify the outputs of three modules that could fall 
into one of the following situations: 1. three modules 
have identical outputs; 2. two of three modules hold 
the same outputs; 3. three modules have different 
outputs. Then, each situation described above is 
associated with the self-checking results to decide the 
outcome of ETMR. The handling processes for each 
situation are depicted as follows: 
Situation 1: In this situation, if the self-checking 
results show no errors, then the results of 
self-checking are consistent with the result of TMR, 
and clearly, ETMR employs the outcome of TMR as 
its output; else, the common-mode failure is 
identified, and therefore, the error signal is triggered 
to activate the error-recovery process. 
Situation 2: There are two cases to consider in this 
situation. 
Case 1: At least one module out of the modules 
having identical outputs is equipped with the 
self-checking function. In this case, if the results of 
self-checking are consistent with the result of TMR, 
then ETMR employs the outcome of TMR as its 
output; else, the common-mode failure is recognized 
and ETMR triggers the error signal to activate the 
error-recovery process.  
Case 2: The modules with identical outputs do not 
hold the self-checking capability. As a result, the 
module judged as faulty by the TMR owns the 
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self-checking function. If the self-checking result is 
normal, then a conflict between TMR and 
self-checking results occurs; under the circumstances, 
ETMR triggers the error signal to activate the 
error-recovery process. Otherwise, ETMR employs 
the outcome of TMR as its output. 
Situation 3: TMR fails if the outputs of three modules 
fall into this situation. Hence, ETMR triggers the 
error signal to activate the error-recovery process. 
The principal concept behind the ECMP scheme is 
similar to ETMR and omitted here.  
Error-detection framework: The core of the 
framework is based on the hybrid detection approach 
which consists of the following basic detection 
techniques: ETMR, ECMP, TMR, comparison and 
self-checking techniques as described before. 
According to the previous discussion, we rank the 
priority of the usage of the above error-detection 
techniques from high to low as ETMR, ECMP, TMR, 
comparison and self-checking, where the technique’s 
rank has reference to the capability of the fault 
tolerance for the considered schemes. Given n, ns-c, s 
and ss-c, the design issue is how to check each 
instruction under the resource constraint to achieve 
the zero error-detection latency, to minimize the 
performance degradation and importantly to gain a 
better EDC. The objective of zero error-detection 
latency can be accomplished by verifying the 
execution results promptly for each instruction. 
Therefore, each instruction execution will require 
some extra resources such that the results of each 
instruction can be validated immediately. As a result, 
more resources are needed to execute the m 
instructions in a packet simultaneously. The 
additional resource requirement resulting from the 
error-detection demand may violate the resource 
constraint. If such a resource violation occurs, then 
the processor won’t have the adequate resources to 
execute and check the m instructions in a packet 
concurrently. Consequently, some instructions in a 
packet cannot be protected and this flaw will degrade 
the EDC. For coverage concern, the complete check 
of each instruction becomes a must. To solve the 
coverage problem, a method of packet partition is 
developed and it is to partition such a packet into 
several packets which will be executed sequentially. 
However, such partitions will induce some extra 
cycles, and therefore, degrade the performance of 
program execution. The error-detection algorithm is 
presented as follows:  
Algorithm 1: Given n, ns-c, s and ss-c, the expression 
2(m - ns-c - ss-c) ≤ (n - ns-c) + (s - ss-c), called 
expression (1), is used to examine whether the m 

instructions in present packet can be executed and 
checked simultaneously or not. If expression (1) is 
true, then the m instructions in the packet can be 
executed and checked in parallel; else, the packet 
partition is required to guarantee that each instruction 
execution will be verified. We now explain the 
meaning of expression (1). There are two cases to 
consider in expression (1). The first case is ns-c + ss-c 
= 0. Expression (1) becomes 2m ≤ n + s. It is obvious 
that if the number of available modules n + s is 
greater than or equal to 2m, then the m instructions in 
present packet can be executed and checked in 
parallel. The second case is ns-c + ss-c ≠ 0. In this case, 
if expression (1) is true, then one possibility is to let 
(ns-c + ss-c) of m instructions be checked each by 
self-checking scheme. After that, the remaining 
instructions can be examined by comparison and/or 
TMR. The details are given below: 
if (2(m - ns-c - ss-c) ≤ (n - ns-c) + (s - ss-c)) then 
{m instructions in present packet can be executed 
and checked simultaneously. We first divide the m 
instructions into five groups: G(1) to G(5); there are 
m1, m2, m3, m4 and m5 instructions in G(1), G(2), G(3), 
G(4) and G(5) respectively, and m1 + m2 + m3 + m4 + 
m5 = m, where m1, m2, m3, m4, m5 ≥ 0. The 
instructions in G(x), x = 1 to 5, can be examined by 
ETMR, ECMP, TMR, comparison and self-checking 
schemes, respectively. The following two equations 
are derived from the module resource constraint: 3m1 
+ 2m2 + 3m3 + 2m4 + m5 ≤ n + s and m1-sc + m2-sc + m5 
≤ ns-c + ss-c, where m1-sc and m2-sc are the number of 
modules equipped with the self-checking functions, 
which are used in the ETMR and ECMP schemes, 
respectively. It is clear that the above three equations 
could have one or several solutions, where a solution 
is represented as (m1, m2, m3, m4, m5, m1-sc, m2-sc). So 
the next question is if several solutions exist, how to 
choose an effective solution that is superior to most 
of the feasible solutions derived from the above 
equations. The choice is in accordance with which 
solution that can provide a better EDC. The rank of 
the basic detection schemes mentioned earlier is 
exploited to select a sound solution. The guideline of 
the selection of an effective solution is presented 
next. 

if (ns-c + ss-c ≠ 0) then  
{A flow chart as shown in Fig. 1 is used to 
characterize the selection criterion. It is evident 
that a solution selected based on this criterion is 
effective from the EDC point of view. } 
else {We choose a solution whose m3 value is 
maximal.}} 

else  
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{Due to lack of the enough module resources, we 
need to partition the current packet into two or three 
packets which will be executed sequentially. Such 
partitions will induce some extra cycles, and 
therefore, degrade the performance of program 
execution. If n is odd with no redundancy added, i.e. 
s = ns-c = ss-c = 0, then the worst partition occurs in a 
packet containing n instructions, which requires 
partitioning into three packets. It is easy to see that a 
packet normally requires partitioning into two 
packets except the worst partition depicted above. As 
a result, the partition of a packet will normally 
induce one extra execution cycle except the worst 
partition, where two extra cycles are needed. Next, 
the principle of instruction partitioning is described 

as follows. For two packet’s partition, if m is even, 
then we distribute

2
m instructions to each packet; else, 

1
2

+⎥⎦
⎥

⎢⎣

⎢m and ⎥⎦

⎥
⎢⎣

⎢
2
m instructions to the first and second 

packets respectively. For three packet’s partition, we 
first distribute ⎥⎦

⎥
⎢⎣

⎢
3
m instructions to each packet; next, 

if 1)3
3

( =×⎥⎦
⎥

⎢⎣

⎢− mm , then the remaining instruction is 

assigned to the first packet; if 2)3
3

( =×⎥⎦
⎥

⎢⎣

⎢− mm , then the 

remaining two instructions are evenly distributed to 
the first and second packets.}        

Start

All feasible solutions are collected 
into an initial set S1

block(3): it is the same as block(1) except that 
m1 + m2 is changed to m3 + m4 represented as 
m1 + m2 m3 + m4; also S1  S3  and S2  S4

block(4): it is the same as block(1) 
except  m1 + m2 m3; S1  S4  and S2  S5

block(5): it is the same as block(1) 
except  m1 + m2  m1-sc + m2-sc; 

S1  S5  and S2  S6

End

End

block(1)

block(2)

Choose one from S6
whose m1-sc value is maximal

yes

yes

No

No

End

Collect those solutions which have the same 
maximum of m1 in S2 into set S3

Choose the solution which has 
the maximal value of m1 in S2 

as the answer

Dose more than one 
solution have the same maximum of m1 among 

the solutions in S2 ? 

Collect those solutions which have the same 
maximum of m1 + m2 in S1 into set S2

Choose the solution which has 
the maximal value of m1 + m2 in 

S1 as the answer

Dose more than one solution 
have the same maximum of m1 + m2 among the 

solutions in S1 ? 

 
Fig. 1: Selection criterion. 

We use the following example to demonstrate 
our hybrid error-detection approach: 
Example 1: Given n = 4, ns-c = 0, s = 1 and ss-c = 1, 
according to error-detection framework described 
above, while m = 1, the set of feasible solutions is 
{(1, 0, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0, 
0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0)}. Next, 
from block (2) of Fig. 1, (m1, m2, m3, m4, m5, m1-sc, 
m2-sc) = (1, 0, 0, 0, 0, 1, 0) is selected as the answer. 
So if an execution packet contains only one 
instruction then it will be checked by ETMR scheme. 
While m = 2, the set of feasible solutions is {(1, 0, 0, 
1, 0, 1, 0), (0, 1, 1, 0, 0, 0, 1), (0, 1, 0, 1, 0, 0, 1), (0, 
0, 1, 0, 1, 0, 0), (0, 0, 0, 2, 0, 0, 0), (0, 0, 0, 1, 1, 0, 
0)}. Again, from block (2) of Fig. 1, (1, 0, 0, 1, 0, 1, 

0) is selected as the answer. So if a packet contains 
two instructions then one instruction will be checked 
by ETMR and the other by comparison scheme. 
While m = 3, (0, 0, 0, 2, 1, 0, 0) is the only solution. 
As a result, a packet holds three instructions, two 
checked by comparison and the rest one verified by 
self-checking mechanism. For m = 4, due to limited 
resources, we need to partition this packet into two 
packets, and each packet contains two instructions. 
 
2.2 Case Study 
In the following illustration, for simplicity of 
presentation, we assume only one type of functional 
unit, namely ALU, in the data paths, and use three 
identical ALUs (n = 3) to demonstrate our hybrid 
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detection approach. Each ALU includes a multiplier. 
Since three ALUs are offered, the processor can issue 
three ALU instructions at most per cycle. Given n = 3, 
s = 1, and with various ns-c and ss-c, we construct three 
hybrid error-detection schemes based on the 
framework presented above to explore the design 
compromise among the hardware overhead, 
performance degradation and EDC. The 
self-checking design adopts the mod-3 residue code, 
also known as low-cost residue code for ALUs. With 
reference to Fig. 2, 3 and 4, the ‘Error Signal’ is used 
to indicate that the corresponding output is correct or 
not. If ‘Error Signal’ is on, the instruction-retry 
process is activated immediately to recover the 
current errors. We describe three schemes as follows: 
Scheme 1: Self-checking technique is not employed 
in this scheme, i.e. ns-c = ss-c = 0. According to 
error-detection framework, (m1, m2, m3, m4, m5, m1-sc, 
m2-sc) = (0, 0, 1, 0, 0, 0, 0) is selected as the solution 
for m = 1. So if an execution packet contains only 
one ALU instruction then it will be checked by TMR 
scheme. For m = 2, 2m is equal to n + s, so (m1, m2, 
m3, m4, m5, m1-sc, m2-sc) = (0, 0, 0, 2, 0, 0, 0). Hence, 
each instruction will be verified by comparison 
technique. For m = 3, 2m > n + s, the three 
concurrent ALU instructions need to be scheduled to 
two sequential execution packets where one packet 
contains two instructions and the other holds the rest 
one; and therefore, one extra ALU cycle is required 
to complete the execution of three concurrent ALU 
instructions for concurrent error-detection need. 
Clearly, the instruction partition resulting from the 
lack of ALU resources will cause the performance 
degradation. It is evident that three spare ALUs are 
required to fully eliminate the performance 
degradation. However, it pays very high hardware 
cost. 
Scheme 2: This scheme exploits the self-checking 
methodology to remove the performance degradation 
as seen in Scheme 1. Let ns-c = 1, and ss-c = 1. Note 
that an ALU equipped with the self-checking 
mechanism as illustrated in Fig. 3 comprises a 
self-checking adder/multiplier/logic circuit. For m = 
1, (m1, m2, m3, m4, m5, m1-sc, m2-sc) can be (1, 0, 0, 0, 0, 
1, 0), (1, 0, 0, 0, 0, 2, 0), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 
0, 0, 0, 2), (0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0) or (0, 
0, 0, 0, 1, 0, 0). Clearly, (1, 0, 0, 0, 0, 2, 0) is selected 
as the final solution. So, if a packet contains only one 
ALU instruction, then it will be checked by ETMR 
scheme. For m = 2, (0, 2, 0, 0, 0, 0, 2) is the solution, 
and therefore, both instructions can be verified by 
ECMP scheme. For m = 3, it satisfies the condition 
2(m - ns-c - ss-c) = (n - ns-c) + (s - ss-c), and the solution 
is (0, 0, 0, 1, 2, 0, 0). Compared to Scheme 1, the 

self-checking technique allows us to spend less 
hardware to achieve no performance degradation. 
This is the role of self-checking technique played in 
the hybrid detection approach. As can be seen from 
Fig. 3, two instructions will be verified only by 
self-checking technique when a three instruction’s 
packet is executed. Under the circumstances, how 
serious of the SEU interference will have a 
significant impact on the EDC of self-checking 
circuits. According to our experimental results, we 
observed that the worse the SEU interference is, the 
lower the EDC of self-checking circuits. For one and 
two instructions’ packets, the ETMR and ECMP 
mechanisms are used to examine the instruction 
executions, which can further enhance the EDC 
compared to TMR and comparison techniques 
employed in Scheme 1. 
Scheme 3: This scheme represents a compromise 
between Schemes 1 and 2. We only offer the 
multiplier in ALU_3, the adder as well as logic unit 
in ALU_4 having self-checking function. Clearly, 
Scheme 3 has lower hardware overhead than Scheme 
2, but cannot completely eliminate the performance 
degradation. The instruction types of an ALU can be 
categorized into ‘add (+)’, ‘multiply (×)’, and ‘logic 
(L)’ three classes. Since the self-checking design is 
furnished partially compared with Scheme 2, a 
packet containing three instructions may still require 
partitioning to two execution packets. The need of 
partition or not depends on the type of instruction 
combinations in a packet. For example, three 
instructions in a packet are all from the same 
instruction class, such as ‘add’ class. In this case, one 
‘add’ instruction can be verified by comparison 
(using ALU_1 and ALU_2) and the second one by 
the self-checking adder in ALU_4. However, there is 
no resource left to check the third ‘add’ instruction 
because of no self-checking adder provided in 
ALU_3. Consequently, the third ‘add’ instruction is 
postponed to the next cycle. Contrary to the above 
example, if three instructions are all from different 
classes, they can be executed at the same cycle as 
exhibited in Fig. 4. The EDC of Scheme 3 is slightly 
lower than Scheme 2 due to the following reasons. 
One is ETMR used in Scheme 3 has only one module 
equipped with the self-checking function, whereas 
Scheme 2 has two modules equipped with the 
self-checking function. Another is in the execution of 
two instructions’ packets. The packets, like (‘+’, ‘+’), 
(‘×’, ‘×’), (‘L’, ‘L’) and (‘+’, ‘L’), will be verified 
one by ECMP and the other by comparison in 
Scheme 3. Contrast to that, all two instructions’ 
packets in Scheme 2 will be checked by ECMP. 

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Kuen-Long Leu and Kun-Chun Chang

ISSN: 1109-2750 1342 Issue 8, Volume 7, August 2008



 

Er
ro

r S
ig

na
l

ALU_1

ALU_2

ALU_3

I1

TMR_MV

Output

ALU_4

I2

I1

CPR Output

CPR
Output

ALU_1

ALU_2

ALU_3

ALU_4

I1

I2

I3

I1

I2

I3

packet1packet2

Partition

execution
packet

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

ALU_1

ALU_2

ALU_3

I1

TMR_MV

Output

ALU_4

I2

I1

CPR Output

CPR
Output

ALU_1

ALU_2

ALU_3

ALU_4

I2

I1

CPR Output

CPR
Output

ALU_1

ALU_2

ALU_3

ALU_4

I1

I2

I3

I1

I2

I3

packet1packet2

Partition

execution
packet

I1

I2

I3

I1

I2

I3

I1

I2

I1

I2

I3

packet1packet2

Partition

execution
packet

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

 
Fig. 2: Scheme 1, left/middle/right for one/two/three instructions in a packet. 
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Fig. 3: Scheme 2, where ‘SC’ represents self-checking. 

‘logic’

‘add’

‘multiply’

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+,L)

E_CPR Output

Output

Output

Error Signal

Error Signal

ALU_1

ALU_2

ALU_3

‘multiply’

Enhanced
TMR_MVOutput

SC (×)

ALU_4

SC (+, L)

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+, L)

‘multiply’

‘add’
E_CPR

E_CPR

Er
ro

r S
ig

na
l

Output

Output

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

2

2

‘logic’

‘add’

‘multiply’

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+,L)

E_CPR Output

Output

Output

Error Signal

Error Signal

‘logic’

‘add’

‘multiply’

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+,L)

E_CPR Output

Output

Output

Error Signal

Error Signal

ALU_1

ALU_2

ALU_3

‘multiply’

Enhanced
TMR_MVOutput

SC (×)

ALU_4

SC (+, L)

ALU_1

ALU_2

ALU_3

SC (×)

ALU_4

SC (+, L)

‘multiply’

‘add’
E_CPR

E_CPR

Er
ro

r S
ig

na
l

Output

Output

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

Er
ro

r S
ig

na
l

2

2

 
Fig. 4: Scheme 3, where ‘SC (×)’ means the corresponding ALU only supports the SC multiplier; similarly for 

SC (+, L). 

2.3 Generic Design Consideration 
In last section, we use three identical modules to 
demonstrate our approach. The number of identical 
modules could be various in data paths of 
high-performance processors. In this section, we use 
three to five identical modules to discuss the generic 
design consideration in terms of hardware overhead, 
performance degradation and error-detection scheme. 
Table 1 lists the data of design parameters derived 
from the error-detection framework presented in 

Section 2.1 for various numbers of identical 
modules. 

The hardware overhead in Table 1 simply counts 
the part of modules themselves and does not include 
other circuit portions resulting from the demand of 
fault tolerance, such as comparators and majority 
voters. The notations A and As shown in the column 
of hardware overhead represent the area of an ALU 
and the area induced by the self-checking design, 
respectively. As mentioned before, the demand of 
zero detection latency results in the performance 
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degradation due to the partition of instructions into 
several sequential execution packets. We use the 
notation, for example, 3→ (2, 1) to represent the 
partition of three instructions in a packet into two 
sequential packets where one packet contains two 
instructions and the other holds the rest one. 
Similarly, 5→ (2, 2, 1) will cause two cycle’s 
performance degradation. The notations shown in the 
column of error-detection scheme represent the 
methodologies used to detect the errors. For instance, 
‘2: (1: ETMR, 1: ECMP)’ represents an execution 
packet with two instructions where one instruction is 
checked by ETMR technology and the other is 
examined by ECMP scheme; likewise, ‘2: ETMR’ 
means that it is an execution packet containing two 
instructions and each instruction is verified by 
ETMR scheme. 

As can be seen from Table 1, for a specific 
number n, our approach offers several design options 

based on the trade-off among the metrics of hardware 
overhead, performance degradation and fault 
tolerance capability. Without loss of generality, we 
use n = 5 as an example to explain the design 
trade-off. For n = 5, there are three design choices 
shown in Table 1. If the design is 
performance-oriented, we could choose the design 
using s = 2, i.e., the design using two spares, and 
three ALUs equipped with the self-checking 
functions. Clearly, the design with no spare enjoys 
the lowest hardware overhead but suffers from the 
highest performance degradation and the lowest EDC 
among three design options. Generally speaking, the 
design with more spares has the advantages of lower 
performance degradation and higher EDC but suffers 
from higher hardware overhead. From the above 
discussion, it is obvious that our hybrid approach can 
be extended easily to a generic processor core where 
the data paths have more than one functional type. 

Table 1: Data of design parameters for various numbers of identical modules, where HO is an abbreviation of 
hardware overhead, IP is instruction partitioning, COM is comparison, and SC is self-checking. 

n ns-c s ss-c HO IP Error-detection Scheme 

3 0 1 0 1/3 3→ (2, 1) 1: TMR; 2: COM 

3 1 1 1 (A+2As)/3A None 1: ETMR; 2: ECMP; 3: (1: COM, 2: SC) 

3 0 2 2 2(A+As)/3A None 1: ETMR;2: (1: ETMR, 1: ECMP);  

3: (1: ECMP, 1: COM, 1: SC) 

4 0 0 0 0% 3→ (2, 1);  

4→ (2, 2) 

1: TMR;  

2: COM 

4 0 1 1 (A+As)/4A 4→ (2, 2) 1: ETMR; 2: (1: ETMR, 1: COM); 

3: (2: COM, 1: SC);  

4 2 1 1 (A+3As)/4A None 1: ETMR; 2: (1: ETMR, 1: ECMP) 

3: (2: ECMP, 1: SC); 4: (1: COM, 3: SC) 

5 0 0 0 0% 
3→ (2, 1); 

4→ (2, 2); 

5→ (2, 2, 1); 

1: TMR; 

2: (1: TMR, 1: COM) 
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5 1 1 1 (A+2As)/5A 5→ (3, 2); 1: ETMR; 2: ETMR; 3: (2:ECMP, 1: COM); 
4: (2:COM, 2: SC) 

5 1 2 2 (2A+3As)/5A None 1: ETMR; 2: ETMR;3: (1: ETMR, 2: 
ECMP);4: (1: ETMR, 1: COM, 2: SC);  

5: (2: COM, 3: SC) 

 

3 Hardware Implementation and 
Performance Evaluation 

To evaluate our hybrid approach, Schemes 1, 2 and 3 
were implemented in an experimental 32-bit VLIW 
core respectively. The features of this 32-bit VLIW 
processor are stated as follows: • the instruction set is 
composed of twenty-five 32-bit instructions; • each 
ALU includes a 32x32 multiplier; • a register file 
containing thirty-two 32-bit registers with 12 read 
and 6 write ports is shared with modules and 
designed to have bypass multiplexers that bypass 
written data to the read ports when a simultaneous 
read and write to the same entry is commanded; • 
data memory is 1K x 32 bits. The core consists of 
five pipeline stages: ‘instruction fetch and instruction 
dispatch (IF & ID)’, ‘decode and operand fetch from 
register file (DRF)’, ‘execution (EXE)’, ‘data 
memory reference (MEM)’ and ‘write back into 
register file (WB)’ stages. This experimental 
architecture can issue at most three ALU and three 
load/store instructions per cycle. Fig. 5 shows the 
architectural implementation of Scheme 2. The 
architectures of Schemes 1 and 3 are similar to Fig. 5. 
The purpose of ‘ALU_Control’ unit is to carry out 
the control tasks for error detection and error 
recovery, where the process of error recovery adopts 
a simple instruction-retry method. Note that the 
‘Error Analysis’ block in execution stage was created 
only for the purpose of the measurement of the EDC 
during the fault injection campaigns.  

The hardware implementations for three schemes 
in VHDL were performed to measure the design 
metrics. The implementation data by UMC 0.18μm 
process are shown in Table 2, where HO and PD are 
the abbreviation of hardware overhead and 
performance degradation, respectively. The original 
VLIW core is termed as Scheme 0. The area excludes 

the instruction memory as well as the ‘Error 
Analysis’ block. The term of hardware overhead 
includes the overheads caused by the circuits 
developed for error detection and error recovery. It is 
worth noting that the overhead of ‘ALU_Control’ 
unit for three schemes is only 0.25~0.3 percent 
compared to the area of the non fault-tolerant VLIW 
core. This implies that the control task of our hybrid 
schemes is simple and easy to implement. For 
performance consideration, we require that the clock 
frequency of the fault-tolerant VLIW processors must 
retain the same as that of non fault-tolerant one, i.e. 
128 MHz. Eight benchmark programs including 
heapsort, quicksort, four queens, 5 × 5 matrix 
multiplication, FFT and IDCT (8×8) were developed 
to measure the performance degradation resulting 
from the error detection in Schemes 1 and 3. As can 
be seen from Table 2, Schemes 1, 2 and 3 show 
clearly the design compromise between the hardware 
redundancy and time redundancy. 

 
Table 2: The data of hardware overhead and 

performance degradation. 

Scheme Area (μm2) HO PD 

0 9319666 0% 0% 

1 10708296 14.9% 0.6% - 34.3%

2 12152844 30.4% 0% 

3 11630943 24.8% 0.01% - 15%
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Fig. 5: Fault-tolerant VLIW architecture (Scheme 2). 

4  Error-Detection Coverage Analysis 
In this section, the analysis of EDC based on the 
simulation-based fault injection [25-27] is conducted 
to validate our hybrid schemes. A comprehensive 
fault tolerance verification platform comprising a 
simulated fault injection tool [28, 29], ModelSim 
VHDL simulator and data analyzer has been built. It 
offers the capability to effectively handle the 
operations of fault injection, simulation and error 
coverage analysis. The core of the verification 
platform is the fault injection tool that can inject the 
transient and permanent faults into VHDL models of 
digital systems at chip, RTL and gate levels during 
the design phase. Injection tool can inject the 
following classes of faults: ‘0’ and ‘1’ stuck-at faults, 
‘Z’: high-impedance and ‘X’: unknown faults. 
Weibull fault distribution is employed to decide the 
time instant of fault injection.  

A new characteristic of our injection tool is to 
offer users the statistical analysis of the injected 
faults. The statistical data for each injection 
campaign exhibit the degree of fault’s severity, 
which represents a fault scenario (or called fault 
environment). The degree of fault’s severity is 

relative to the probability of i faults (denoted as Pi) 
occurring concurrently while a fault-tolerant system 
is simulated in the injection campaign, where i ≥ 1. 
For example, P1 = 98% and P2 = 2% mean that 98 
percent is one fault and two percent is two faults 
when the faults occur throughout the injection 
campaign. Hence, the injection tool can assist us in 
creating the proper fault environments that can be 
used to effectively validate the capability and the 
strength of a fault-tolerant system under various fault 
scenarios. As a result, the validation process will be 
more comprehensive and complete. In a word, the 
proposed verification platform helps us raise the 
efficiency and validity of the dependability analysis.  

4.1 Interesting Design Metrics 
As seen before, five basic error-detection 
mechanisms, i.e. ETMR, ECMP, TMR, comparison 
and self-checking, are used in Schemes 1, 2 and 3. It 
should be pointed out that each basic error-detection 
mechanism could fail to detect some specific types of 
errors as described below: • For ETMR, two or three 
ALUs produce the identical, erroneous results to 
TMR and the self-checking function also fails to 
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identify this common-mode failure. • For ECMP, two 
ALUs produce the same, erroneous results to 
comparator and the self-checking function also fails 
to identify this common-mode failure. • For TMR, 
two or three ALUs produce the identical, erroneous 
results to TMR. • For comparison, two ALUs 
produce the same, erroneous results to comparator. • 
For self-checking, the faults escape being detected 
due to multiple transient faults. Such detection 
defects will result in the unsafe failures. In summary, 
there are two kinds of errors that will lead to the 
unsafe failure; one is errors resulting in 
common-mode failures and the other is multiple 
transient faults going undetected by self-checking 
circuits. 

Let Ce-det denote the EDC, i.e. probability of 
errors detected; Pf-uns be the probability of system 
entering the fail-unsafe state. The parameters Ne, 
Ne-det, and Ne-esc-det represent the total number of 
errors occurred, the number of errors detected, and 
the number of errors undetected, respectively. The 
Ce-det and Pf-uns can be expressed as: 

(2)         ; detdet
det

e

esce
unsf

e

e
e

N
NP

N
NC −−

−
−

− ==   

4.2 Simulation Results and Discussion 
We have conducted a huge amount of fault injection 
campaigns to calculate the expression (2) under 
various fault scenarios. The benchmark programs 
mentioned in Section 3 are used in the fault injection 
campaigns to analyze the design metrics expressed in 
(2). The common rules of fault injection for the 
experiments are: 1) value of a fault is selected 
randomly from the s-a-1 and s-a-0; 2) injection 
targets cover the entire ‘EXE’ stage except the 
‘load/store’ and ‘Error Analysis’ units, as shown in 
Fig. 5. To inject the faults into the inside of the 
adders and multipliers, those components were 
implemented at the gate level. As shown in [1], the 
fault rate is proportional to the circuit area. So, the 
fault distribution for each injection campaign is 
based on the area complexity of the components 
which are considered to be the injection targets. The 
common data of fault injection parameters are: α=1 
(useful-life), failure rate (λ) = 0.001, probability of 
permanent fault occurrence = 0, fault duration = 5 
clock cycles. Table 3 lists the statistical data for five 
injection campaigns, where Pi is the probability of i 
faults occurring concurrently while the fault-tolerant 
system is simulated in the injection campaign. 
Clearly, from Table 3, five campaigns represent five 
different fault environments, where the fault 

environment is getting worse from Campaigns 1 to 5 
because the occurring probability of multiple faults 
Pi (i ≥ 2) is getting higher from Campaigns 1 to 5. 
Therefore, the statistical analysis helps designers 
choose a set of desired fault scenarios to test the 
ability of fault-tolerant systems. As a result, the 
proposed verification platform can furnish more 
comprehensive and solid measurement of 
fault-tolerant design metrics.  

Table 4 illustrates the experimental results of 
Ce-det and Pf-uns for Schemes 1, 2 and 3 under various 
injection campaigns. The results obtained in Table 4 
have 95% confidence interval of ±0.14% to ±0.98%. 
The salient points of the results presented in Table 4 
are summarized as follows. One is the EDC 
decreases and the probability of unsafe failure 
increases as the fault environment becomes worse. It 
is evident that the increase of the occurring 
probability of multiple faults will raise the 
probability of unsafe failures caused by the error 
scenarios described in Section 4.1. Another chief 
point is the rank of scheme’s EDC is Scheme 2 > 
Scheme 3 > Scheme 1. As a result, among Schemes 1, 
2 and 3, Scheme 1 enjoys the lowest hardware 
overhead, but suffers from the highest performance 
degradation and lowest EDC, whereas Scheme 2 has 
the advantages of lowest performance degradation 
and highest EDC, but suffers from the highest 
hardware overhead. Apparently, our hybrid approach 
offers the design options based on the trade-offs 
among the hardware redundancy, time redundancy 
and EDC. The last point worth to be mentioned is the 
results presented are quite positive and sound those 
declare the effectiveness of our fault-tolerant 
methodology even in a very severe fault 
environment. 

The concept of hybrid approach can be further 
extended by including the self-checking design using 
various error detecting codes, such as residue, Berger 
and parity codes. The choice of self-checking 
techniques has an impact on the hardware overhead, 
performance degradation and EDC. Table 5 gives a 
comparison for several self-checking techniques used 
in an array multiplier. The faults are injected into the 
inside of the multiplier. The EDC reduces rapidly 
when the number of faults existing in the same unit 
increases. This phenomenon has been discovered in 
paper [21] as well. It is clear that the various 
self-checking techniques have significant difference 
in hardware overhead, performance and EDC in this 
specific study. Consequently, we need to carefully 
choose the self-checking mechanisms to gain a good 
trade-off among the interesting design metrics. 
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Table 3: Statistical data for various fault injection campaigns. 

Campaign 

Pi (%) 
1 2 3 4 5 

P1 96.1 ~ 96.77 76.17 ~ 76.88 55.12 ~ 55.46 37.04 ~ 37.8 22.1 ~ 22.43 

P2 3.02 ~ 3.31 19.39 ~ 20.08 32.19 ~ 33.27 37 ~ 37.57 34.23 ~ 36.4 

P3 0.21 ~ 0.59 2.85 ~ 3.75 9.95 ~ 10.63 19.08 ~ 19.79 28.01 ~ 28.13

P4  0.15 ~ 0.31 1.42 ~ 1.77 4.88 ~ 5.43 10.93 ~ 12.44

P5  0.02 ~ 0.07 0.13 ~ 0.19 0.68 ~ 0.72 2.18 ~ 2.77 

P6    0.03 ~ 0.08 0.22 ~ 0.32 

P7     0.02 ~ 0.06 

Table 4: Ce-det and Pf-uns for Schemes 1, 2 and 3 under various injection campaigns. 

1 2 3 4 5 Campaign 

 
Scheme Ce-det Pf-uns Ce-det Pf-uns Ce-det Pf-uns Ce-det Pf-uns Ce-det Pf-uns

1 0.9931 0.0069 0.9923 0.0077 0.987 0.013 0.9866 0.0134 0.9751 0.0249

2 0.998 0.002 0.9942 0.0058 0.9938 0.0062 0.9925 0.0075 0.992 0.008

3 0.9949 0.0051 0.9925 0.0075 0.9884 0.0116 0.9872 0.0128 0.9805 0.0195

Table 5: Comparison of various self-checking techniques, where the data shown in the columns of 
Single/Double/Triple are the EDC for single/double/triple faults injected into an array multiplier. 

Technique Area(μm2) Overhead Performance Single Double Triple

Plain Multiplier 759876 0% 9.8 ns 0% 0% 0% 

Mod-3 863678 13% 11.56 ns 100% 82% 75%

Mod-7 882406 16% 12.32 ns 100% 97% 93%

Berger [30] 1487615 95% 12.97 ns 100% 95% 90%

Bose-Lin [31] 1297667 70% 11.60 ns 100% 91% 82%

Parity [32] 915250 20% 11.83 ns 100% 65% 57%
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4.3 Comparisons 
As we know, the effectiveness of fault-tolerant 
schemes for high-performance microprocessors 
can be measured by: 1. hardware overhead, 2. 
performance degradation, 3. program space 
overhead, 4. error-detection coverage, 5. 
error-detection latency, and 6. error-recovery 
efficiency. Therefore, the design is to find a 
good trade-off among those six properties. In 
other words, each method may focus the 
attention on some design attributes and 
meanwhile degrade others. For instance, the 
compiler-based software redundancy schemes 
[15], [16] are able to perform the error detection 
without hardware modification and overhead, 
but have worse performance degradation and 
program space overhead than our method. In 
addition, the software redundancy schemes 
increase the compiler complexity as well. 
Further, most of the methods in the literature 
only address the issue of error detection and do 
not provide enough data, such as hardware 
overhead and error coverage, to allow us to 
compare the various schemes fairly. Besides that, 
the comparisons should also be based on the 
same or at least similar conditions, like which 
fault model considered. Consequently, we adopt 
the qualitative approach to compare our scheme 
with others.  

The comparisons are summarized as 
follows: 1. our method is more complete in that 
it offers an effective error-handling process 
comprising the error detection and error 
recovery. In the design of fault-tolerant systems, 
the adopted error-detection scheme determines 
the error-detection latency and the length of 
latency could affect the implementation 
complexity and time efficiency of the 
error-recovery process. Our error-detection 
mechanism enjoys no detection latency such that 
we can utilize a very simple instruction-retry 
method to recover the errors in real-time manner. 
Other schemes with variable error-detection 
latency would pay a higher hardware cost to 
implement the error-recovery process and more 
execution time to correct the errors. For example, 
the error-detection scheme presented in [18] 
holds 692 cycles of detection latency on average, 
and 36183 cycles for the worst case. Such a 

lengthy latency requires more time for the error 
recovery. That will degrade the performance 
significantly once the errors occur. However, the 
scheme in [18] provides the detection coverage 
of the transient faults for the entire pipeline, 
whereas our scheme only covers the data paths, 
but can conquer the transient and permanent 
faults. 2. This work offers the more complete 
and solid results including hardware overhead, 
performance degradation, and fault-tolerant 
design metrics. Based on such results, our 
method can be thoroughly validated with 
confidence. Those data are valuable and 
important for us to justify whether the scheme is 
workable or not. Apart from that, we introduce a 
concept of fault scenario to imitate various 
degrees of fault’s severity. Therefore, we can 
examine how strong our scheme can achieve in 
different fault scenarios. Through this 
investigation, we can gain an insight into the 
impact of the fault environment on the capability 
of our scheme. 

5 Conclusions 
This paper presents a new, hybrid error-detection 
approach with no detection latency for 
high-performance microprocessors. No detection 
latency is essential to real-time error recovery, which 
is important to the highly dependable real-time 
computing applications. A general error-detection 
framework based on our hybrid approach with a more 
rigid fault model is developed and then three 
representative schemes generated from the 
framework are used to demonstrate the spirit of our 
hybrid concept. A thorough evaluation of design 
metrics for those three demonstrated schemes was 
performed to characterize the effect of various 
complexities of hybrid designs on the hardware 
overhead, performance degradation and 
error-detection capability. The results presented 
exhibit several design options that our error-detection 
framework could furnish. Therefore, the framework 
provides an opportunity for the designers to choose 
an efficient design solution to best meet the design 
requirements from the possible design options 
offered by the framework. We should point out that a 
huge amount of fault injection campaigns were 
conducted to estimate the EDC of the schemes under 
a variety of fault scenarios so as to investigate the 
capability of our hybrid approach in different fault 
scenarios. Such experiments can give us more 
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realistic and comprehensive simulation results. The 
effectiveness of our mechanism even in a very severe 
fault scenario is justified from the experimental 
results. The concept of hybrid approach can be 
further extended by including the self-checking 
design using various error detecting codes, such as 
residue, Berger and parity codes. The choice of 
self-checking techniques has an impact on the 
hardware overhead, performance degradation and 
EDC. 
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