

 Orthogonal Array application for optimal combination of software
defect detection techniques choices

LJUBOMIR LAZICa, NIKOS MASTORAKISb

aTechnical Faculty, University of Novi Pazar

Vuka Karadžića bb, 36300 Novi Pazar, SERBIA
llazic@np.ac.yu http://www.np.ac.yu

bMilitary Institutions of University Education, Hellenic Naval Academy

Terma Hatzikyriakou, 18539, Piraeu, Greece
 mastor@ieee.org

Abstract: - In this paper, we consider a problem that arises in black box testing: generating small test suites
(i.e., sets of test cases) where the combinations that have to be covered are specified by input-output
parameter relationships of a software system. That is, we only consider combinations of input parameters that
affect an output parameter, and we do not assume that the input parameters have the same number of values.
To solve this problem, we propose interaction testing, particularly an Orthogonal Array Testing Strategy
(OATS) as a systematic, statistical way of testing pair-wise interactions. In software testing process (STP), it
provides a natural mechanism for testing systems to be deployed on a variety of hardware and software
configurations. The combinatorial approach to software testing uses models to generate a minimal number of
test inputs so that selected combinations of input values are covered. The most common coverage criteria are
two-way or pairwise coverage of value combinations, though for higher confidence three-way or higher
coverage may be required. This paper presents some examples of software-system test requirements and
corresponding models for applying the combinatorial approach to those test requirements. The method
bridges contributions from mathematics, design of experiments, software test, and algorithms for application
to usability testing. Also, this study presents a brief overview of the response surface methods (RSM) for
computer experiments available in the literature. The Bayesian approach and orthogonal arrays constructed
for computer experiments (OACE) were briefly discussed. An example, of a novel OACE application, to STP
optimization study was also given. In this case study, an orthogonal array for computer experiments was
utilized to build a second order response surface model. Gradient-based optimization algorithms could not be
utilized in this case study since the design variables were discrete valued. Using OACE novel approach,
optimum combination of software defect detection techniques choices for every software development phase
that maximize all over Defect Detection Effectiveness of STP were determined.

Key-Words: - Software testing, Opzimization, Design of Experiments, Orthogonal array

1 Introduction
Many IT organizations struggle with how to
determine the proper balance of testing in light of
business demands and budgetary limitations. Testing
has historically been difficult to optimize because of
a number of factors. IT has always faced the
constraints of balancing time, quality and cost.
Combine this with the reality that it is often difficult
to measure exactly how effective testing is for a given
application, and you can easily see that many formal
testing processes are far from optimal. Yet many IT
organizations are not sure how to make them better.
So what exactly is optimized testing, and how does it
differ from the quality control and quality assurance

practices that many IT organizations currently have in
place? Simply put, optimized testing is a practical
approach to improving application quality that
balances quality, cost and schedules to prioritize
testing and optimize limited resources. The efficiency
of this practical testing approach ensures that the
finite testing resources at IT management’s disposal
are used to their most productive levels while
eliminating harmful defects and errors during the
testing process. Optimized testing practices, methods
and tools now exist that allow the QA team to better
align testing activities with business requirements by
prioritizing testing activities based on two key
factors: importance to the business and risk to the

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1319 Issue 8, Volume 7, August 2008

http://www.np.ac.yu/

business [25,26]. Business users, development, QA
and other key constituents can now collaborate to
prioritize requirements and identify and prioritize
project risks. And, when required, they can
collaborate to resolve problems during the test
execution. Once priorities have been established, QA
can confidently select the optimum set of tests to
thoroughly test the high-priority areas of an
application and adequately test all other areas [25,26].
This paper presents a novel OACE approach for
software testing process (STP) optimization study
finding optimum combination of software defect
detection techniques (DDT) choices for every
software development phase that maximize all over
Defect Removal Effectiveness (DRE) of STP. The
optimum combination of software defect detection
techniques choices were determined applying
orthogonal arrays constructed for post mortem
designed experiment with collected defect data of a
real project [27]. By integrating this unique approach
to requirements management with test management
and automation tools, tests and test suites can be
automatically created and executed as in our
Integrated and Optimized Software Testing Process
(IOSTP) [25,27].
 Software testing remains an important topic in
software engineering. Testing efficiency and
effectiveness, two goals which are not always in
alignment, are both significantly improved. A recent
report generated for the National Institute of
Standards and Technology (NIST) found that
software defects cost the U.S. economy 59.9 billion
dollars annually [28]. While current technologies
cannot hope to remove all errors from software, the
report goes on to estimate that 22 billion dollars
could be saved through earlier and more effective
defect detection.

Black-box testing is a type of software testing
that ensures a program meets its specification from a
behavioral or functional perspective. The number of
possible black-box test cases for any non-trivial
software application is extremely large. The
challenge in testing is to reduce the number of test
cases to a subset that can be executed with available
resources and can also exercise the software
adequately so that majority of software defects are
exposed. One popular method for performing black-
box testing is the use of combinatorial covering
designs [3-11] based on techniques developed in
designing experiments. These designs correspond to
test suites (i.e., a set of test cases) that cover, or
execute, combinations of input parameters in a
systematic and effective way, and are most applicable
in testing data-driven systems where the manipulation
of data inputs and the relationship between input
parameters is the focus of testing. As pointed out by
Dunietz, et al. [10], a technical challenge that remains

in applying this promising technique in software
testing is the construction of covering designs. There
are two issues that need to be considered: the first and
perhaps more important one is the size of the
covering design since it dictates the number of test
cases, and consequently, the amount of resources
needed to test a software system; the second is the
time and space requirements of the construction
itself.
 A great deal of research work has been devoted
to generating small test suites [2, 3, 7, 12-16, 25].
Most researchers focus on uniform coverage of input
parameters with uniform ranges; i.e., they consider
test suites that cover all t -wise combinations of the
input parameters for some integer t and the input
parameters are assumed to have the same number of
values. While such test suites apply to a large number
of situations, in practice not all t -wise combinations
of input parameters have equal priority in testing [3,
25], nor are all parameter domains of the same size.
Testers often prioritize combinations of input
parameters that influence a system’s output
parameters over those that do not [3, 15, 20].
Determining which set of input parameters influence
a system’s output parameters can be accomplished
using existing analyses [3, 25] or can be discovered
in the process of determining the expected result of a
test case.
 Covering all pairs of tested factor levels has been
extensively studied. Mandl described using
orthogonal arrays in testing of a compiler [16].
Tatsumi, in his paper on Test Case Design Support
System used in Fujitsu Ltd [22], talks about two
standards for creating test arrays: (1) with all
combinations covered exactly the same number of
times (orthogonal arrays) and (2) with all
combinations covered at least once. When making
that crucial distinction, he references an earlier paper
by Shimokawa and Satoh [19]. Over the years,
pairwise testing was shown to be an efficient and
effective strategy of choosing tests [4-6, 10, 13, 25].
However, as shown by Smith et al. [20] and later by
Bach and Shroeder [3] pairwise, like any technique,
needs to be used appropriately and with caution.
Since the probl em of finding a minimal array
covering all pairwise combinations of a given set of
test factors is NP-complete [14], understandably a
considerable amount of research has gone into
efficient creation of such arrays. Several strategies
were proposed in an attempt to minimize number of
tests produced [11]. Authors of these combinatorial
test case generation strategies often describe
additional considerations that must be taken into
account before their solutions become practical. In
many cases, they propose methods of handling these
in context of their generation strategies. Tatsumi [22]
mentions constraints as a way of specifying unwanted

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1320 Issue 8, Volume 7, August 2008

combinations (or more generally, dependencies
among test factors). Sherwood [18] explores adapting
conventional t-wise strategy to invalid testing and the
problem of preventing input masking. Cohen et al. [6]
describe seeds which allow specifying combinations
that need to appear in the output and covering
combinations with mixed-strength arrays as a way of
putting more emphasis on interactions of certain test
factors. Kuhn et al measured the number of defects
identified at different strengths of interaction
coverage in software [13] and also in systems with
embedded software [23]. Several other examples
include application of experimental designs (DOE) to
computer benchmarking, Object Oriented Testing,
network testing, and compiler testing [24]. Indeed
several of these mentioned studies have had an
impact and tools for automatic construction of test
suites have recently appeared. For instance, the
Automated Efficient Test Generator tool (AETG) has
been developed by Telecordia [6]; NASA has funded
the development of the Test Case Generator tool
(TCG) [23]; IBM has funded the Combinatorial Test
Services tool (CTS) [1]; and TestCover.com has also
introduced a web-based tool.

In this study response surface methods for
computer experiments are investigated and some of
the approaches available in the literature are
discussed. The focus is on response surface model
building using orthogonal arrays designed for
computer experiments (OACE). Different Defect
Detection Strategy and Techniques options,
together with critical STP variables performance
characteristics (e.g. DRE, cost, duration), are
studied to optimize design, development, test and
evaluation (DDT&E) cost using orthogonal arrays
for computer experiments [25-27].

This paper is organized as follows. Section 2
presents the Best practices for optimized testing.
Section 3 explain The Orthogonal Array Testing
Strategy. A novel Orthogonal Arrays application
as Design of Experiments Optimization Strategy
are presented in Section 4. Finally, the paper is
concluded in Section 5.

2 The optimized testing approach
2.1 Best practices for optimized testing
 Adopting an optimized testing approach may
sound overwhelming. However, the truth is that IT
organizations can adopt optimized testing practices
incrementally, implementing certain aspects tactically
to achieve strategic advantage. This section offers
some suggested ways to adopt an optimized testing
approach. Optimized testing best practices include
adoption of the application life cycle, requirements
management, risk-based testing and automation [26].

This section highlights some suggested steps for
incorporating these areas of optimized testing into
your existing testing environment.

2.2 Adoption of an application quality life
cycle

The cost of fixing defects increases exponentially
as a defect moves through development into
production. By adopting an application quality life
cycle, quality is built in to the application from the
earliest phases of its life cycle, rather than attempting
to test it in when it’s too late. This requires discipline
in defining and managing requirements,
implementing automated and repeatable best
practices and access to the right information to make
confident decisions. This best practice allows you to
fix defects earlier, when there is more time to
sufficiently address the problems and it is far less
expensive. It lays the groundwork for continuous
process improvement and higher-quality applications
[25,28].

2.2.1 Testing Process Activities Flow
 Once it was clear that Testing was much more
than “Debugging” or “Problem fixing”, it was
apparent that testing was more than just a phase near
the end of the development cycle. Testing has a life
cycle of its own and there is useful and constructive
testing to be done throughout the entire life cycle of
development. This means that testing process begins
with the requirements phase and from there parallels
the entire development process. In other words, for
each phase of the development process there is an
important testing activity. This necessitates the need
to migrate from an immature, ad hoc way of working
to having a full-fledged Testing Process. The
following is the life cycle for the complete Test
Development and Execution Process scheme.

Fig. 1 Test Development and Execution Process
scheme.

The specification defines the program correct
behavior. The incorrect behavior is a software failure.
It can be improper output, abnormal termination, and
unmet time or space constraints. Failures are mostly
caused by faults, which are missing or incorrect code.
Error is a human action that produces a failure. An

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1321 Issue 8, Volume 7, August 2008

abend is an abort termination of a program (like "blue
screen of death" by Microsoft Windows). An
omission is a required capability, which is not present
in an implementation. Surprise is code that does not
support a required capability. It can be surprising at
code reuse. Bug is an error or a fault. The scope of
STP is the collections of artifacts under test (AUT).
Testing activities can be categorized by the scope of
AUT that belongs to corresponding STP or SDL
phase. Test artifact under test can be the software
requirement (SRUT), High level design (HLDUT),
Low Level Design (LLDUT), code being tested is
called implementation under test (CUT), integration
test (IUT) system under test (SUT), or in object-
oriented environment class under test (CLUT), object
under test (OUT), method under test (MUT). A test
case defines the input sequence of data, the
environment and state of AUT, and the expected
result. Expected result is what AUT should generate,

actual result is what was generated by run. An oracle
produces expected results. An oracle can be an
automated tool or human resource. A test is called to
be passing if expected results and actual results are
equal, otherwise it is called to be no pass or fail.
Test cases can be designed for positive testing or
negative testing. Positive testing checks that the
software does what it should. Negative testing checks
that the software does not do what it should not do.
A test suit is a collection of test cases related to each
other. Test run is the execution of a test suit. Test
driver is a tool (can be a unit or utility program) that
applies test cases to AUT. A stub is a partial,
temporary implementation of a component. The
following figure shows the systems engineering view
of testing. Test strategy identifies the levels of
testing, the methods, test detection techniques (DDT)
and tools to be used. Test strategy defines the
algorithm to create test cases.

Fig. 2 The systems engineering view of testing

Test design produces test cases using a test strategy.
Test effectiveness of DDT is the ability of the test
strategy to find the bugs. Test efficiency is the cost of
finding bugs. Strategies for the test design can be
functional (Black-box), structural (White-box),
hybrid (Gray-box) and fault-based. Functional testing
is based on the specification of software, without
knowing something about program code. It uses the
specified or expected behavior. It is also called
specification based, behavioral, and responsibility-
based or black-box testing.

Structural testing relies on the structure of the
source code to develop test cases. It uses the actual
implementation to create test suits. It is also called
implementation based, white box or clear box testing.
Hybrid testing is the blend of functional and
structural testing. It is also called gray-box testing.
Fault-based testing introduces faults into code
(mutation) to see if these faults are revealed by a test
suite. Regression testing is retesting the software with
the same test cases. After a bug is fixed, the product

should be tested at least with the bug revealer test
case.

Coverage is the percentage of elements required
by a test strategy that have been exercised by a test
suite. There are many coverage models. Statement

coverage is the percentage of source code statements
executed at least once by a test suite. Clearly,
statement coverage can be used only by structural or
hybrid testing. Testing should make effort to reach
100% code coverage. This can avoid the user to run
untested code. All these definitions raise a lot of
questions and problems, and all of them cannot be
dealt in this article (see references in [25]), although
the most important ones can be found below. The
testing strategy defines how test design should
produce the test cases, but nothing it can tell us about
how much testing is enough, and how effective the
testing was. Test case effectiveness depends on
numerous factors, and can be evaluated after the end
of testing, which is normally too late. To avoid these
problems, testers should perform in-process

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1322 Issue 8, Volume 7, August 2008

evaluation of proposed and planned STP, according
to established performance metrics and quality
criteria [25,29] as we described below.
 The testers should verify test cases at the end of
test design, check the conformance of test cases to
meet the requirements. It should also check the
specification coverage. Validation is after test
execution. Knowing the result, an effectiveness rate
should count, and if it is under the threshold, the test
suite should be analyzed, and the test process should
be corrected.
A simple metric for effectiveness, which is only test
suite dependent [29]. It is the ratio of bugs found by
test cases (Ntc) to the total number of bugs (Ntot)
reported during the test cycle (by test cases or by side
effect):

TCE= 100 * Ntc / Ntot [%] (1)

This metric can evaluate effectiveness after a test
cycle, which provides in-process feedback about the
actual test suite effectiveness. To this metric a
threshold value should create. This value is suggested
to be about 75%, although it depends on the
application.
 When the TCE value is above the threshold, the
test case can be said effective according to very
useful model for dealing with defects as depicted on
Fig. 3. If it is below, testers should correct the test
plan, focusing on side effect bugs.

Fig. 3 Fault Injection Model Traditional

It basically says that given a software project – you
have defects being “injected” into it (from a variety
of sources) and defects being removed from it (by a
variety of means). This high-level model is good to
use to guide our thinking and reasoning about defects
and defect processes. So, based on this model, the
goal in software development, for delivering the
fewest defects, is to: minimize the number of defects
that go in maximize the number of defects that are
removed.

2.2.2 Defect Removal Efficiency

A key metric for measuring and benchmarking the
IOSTP [25] by measuring the percentage of possible
defects removed from the product at any point in
time. Both a project and process metric – can
measure effectiveness of quality activities or the
quality of a all over project by:

DRE = E/(E+D) (2)
Where E is the number of errors found before
delivery to the end user, and D is the number of
errors found after delivery. The goal is to have DRE
close to 100%. The same approach is applied to every
test phase denoted wit i :

DREi = Ei / (Ei + Ei+1) (3)

Where Ei is the number of errors found in a software
engineering activity i, and Ei+1 is the number of errors
that were traceable to errors that were not discovered
in software engineering activity i. The goal is to have
this DREi approach to 100% as well i.e., errors are
filtered out before they reach the next activity.
Projects that use the same team and the same
development processes can reasonably expect that the
DRE from one project to the next are similar.
 For example, if on the previous project, you
removed 80% of the possible requirements defects
using inspections, then you can expect to remove
~80% on the next project. Or if you know that your
historical data shows that you typically remove 90%
before shipment, and for this project, you’ve used the
same process, met the same kind of release criteria,
and have found 400 defects so far, then there
probably are ~50 defects that you will find after you
release. How to combine DDT to achieve high DRE,
let say >85%, as a threshold for STP required
effectiveness, is explained in section 4. which
describe optimum combination of software defect
detection techniques choices determination applying
orthogonal arrays constructed for post mortem
designed experiment with collected defect data of a
real project [27].

2.3 Risk-based testing
An important area to focus on when optimizing your
testing is identifying all of the business and technical
requirements that exist for an application, and then
prioritizing them based on the impact of failure on
the business. QA teams should ensure they have
access to the application’s business and technical
requirements in order to create effective test
requirements. Involving business managers, test
managers and QA architects will help achieve the
balance of testing that is optimal [25-28]. The
advantage of automated risk-based testing is that it
adds a level of objectivity not available with
traditional testing, where individual testers were left
to determine what should be tested and when.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1323 Issue 8, Volume 7, August 2008

Thoroughly understanding and correctly prioritizing
testing requirements can have the greatest impact on
successful delivery of a high-quality application. By
implementing an optimized testing solution, IT can
ensure quality activities accurately reflect business
priorities, and can make certain they are testing the
right areas of an application within the constraints of
the schedule. Using an optimized testing solution, the
risks are calculated automatically and time estimates
are rolled up per requirements balancing quality,
schedule and cost through risk-based practices. This
allows testers to apply a time factor to existing risk
factors, which enables users to quickly select the
highest-priority test cases and understand how long it
will take to test them [26].

2.4 Software Testing Optimization Model and
IT benefits
 With optimized testing, IT organizations are
able to balance the quality of their applications with
existing testing schedules and the costs associated
with different testing scenarios. Optimized testing
provides a sound and proven approach that allows IT
to align testing activities with business value. The
practices, processes and tools that encompass
optimized testing offer many benefits. The increasing
cost and complexity of software development is
leading software organizations in the industry to
search for new ways through process methodology
and tools for improving the quality of the software
they develop and deliver.

2.4.1 Manage “what-if” scenarios -A Software
Testing Optimization Model
 Such scenarios are invaluable for determining
where testing resources should be spent at the
beginning of software development project. With an
optimized testing solution, you can create what-if
scenarios to help users understand the impact of
changing risks, cycle attributes and requirements as
priorities change. This insight proves invaluable
when a testing organization is trying to determine the
best way to balance quality with cost and schedule.
By understanding the impact of different factors on
testing, IT managers can identify the right balance.
We applied the End-to-End (E2E) Test strategy in
our Integrated and Optimized Software Testing
framework (IOSTP) [25-27]. End-to-End
Architecture Testing is essentially a "gray box"
approach to testing - a combination of the strengths
of white box and black box testing. In determining
the best source of data to support analyses, IOSTP
with embedded RBOSTP considers credibility and
cost of each test scenario i.e. concept. Resources for
simulations and software test events are weighed
against desired confidence levels and the limitations
of both the resources and the analysis methods. The

program manager works with the test engineers to
use IOSTP with embedded RBOSTP [26] to develop
a comprehensive evaluation strategy that uses data
from the most cost-effective sources; this may be a
combination of archived, simulation, and software
test event data, each one contributing to addressing
the issues for which it is best suited.
The central elements of IOSTP with embedded
RBOSTP are: the acquisition of information that is
credible; avoiding duplication throughout the life
cycle; and the reuse of data, tools, and information.
The system/software under test is described by
objectives, parameters i.e. factors (business
requirements - BR are indexed by j) in requirement
specification matrix, where the major capabilities of
subsystems being tested are documented and
represent an independent i.e. input variable to
optimization model. Information is sought under a
number of test conditions or scenarios. Information
may be gathered through feasible series of
experiments (E): software test method, field test,
through simulation, or through a combination, which
represent test scenario indexed by i i.e. sequence of
test events. Objectives or parameters may vary in
importance αj or severity of defect impacts. Each
M&S or test option may have k models/tests called
modes, at different level of credibility or probability
to detect failure βijk and provide a different level of
computed test event information benefit Bijkl of
experimental option for cell (i,j), mode k, and
indexed option l for each feasible experiment
depending on the nature of the method and structure
of the test. Test event benefit Bijkl of feasible
experiment can be simple ROI or design parameter
solution or both etc. The cost Cijkl, of each
experimental option corresponding to (i,j,k,l)
combination must be estimated through standard
cost analysis techniques and models. For every
feasible experiment option, tester should estimate
time duration Tjikl of experiment preparation end
execution. The testers of each event, through
historical experience and statistical calculations
define the Eijkl's (binary variable 0 or 1) that identify
options. The following objective function is
structured to maximize benefits and investment in
the most important test parameters and in the most
credible options. The model maintains a budget,
schedule and meets certain selection requirements
and restrictions to provide feasible answers through
maximization of benefit index - BBenefitIndex:

ijklijkl
l

ijkj
kijlkjindexenefit EBIB ∑∑∑∑= βα

,,,
max (4)

Subject to:
∑∑∑∑ ≤

j
ijklijkl

i k l
BUDGETEC (Budget

constraint);

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1324 Issue 8, Volume 7, August 2008

∑∑∑∑ ≤
j

ijklijkl
i k l

LETIMESCHEDUET (Time-

schedule constraint)
1≤∑

l
ijklE for all i,j,k (at most one option selected

per cell i, j, k mode)
1≥∑∑

k l
ijklE for all i,j (at least one experiment

option per cell i, j)

3 Orthogonal Array Testing Strategy
(OATS) and Techniques
 The Orthogonal Array Testing Strategy
(OATS) is a systematic, statistical way of testing
pair-wise interactions. It provides representative
(uniformly distributed) coverage of all variable pair
combinations. This makes the technique particularly
useful for integration testing of software components
(especially in OO systems where multiple subclasses
can be substituted as the server for a client). It is
also quite useful for testing combinations of
configurable options (such as a web page that lets
the user choose the font style, background color, and
page layout). Dr. Genichi Taguchi was one of the
first proponents of orthogonal arrays in test design.
His techniques, known as Taguchi Methods, have
been a mainstay in experimental design in
manufacturing fields for decades.

Orthogonal arrays are two dimensional arrays
of numbers which possess the interesting quality that
by choosing any two columns in the array you
receive an even distribution of all the pair-wise
combinations of values in the array. The method of
orthogonal arrays is an experimental design
construction technique from the literature of
statistics. In turn, construction of such arrays depends
on the theory of combinatorics. An orthogonal array
is a balanced two-way classification scheme used to
construct balanced experiments when it is not
practical to test all possible combinations. The size
and shape of the array depend on the number of
parameters and values in the experiment. Orthogonal
arrays are related to combinatorial designs. An
orthogonal array is a balanced two-way classification
scheme used to construct balanced experiments when
it is not practical to test all possible combinations.
The size and shape of the array depend on the number
of parameters and values in the experiment.

Definition 1: Orthogonal array O(ρ, k, n, d)
An orthogonal array is denoted by O(ρ, k, n, d),
where:
• ρ is the number of rows in the array. The k-tuple
forming each row represents a single test
configuration, and thus ρ represents the number of
test configurations.

• k is the number of columns, representing the
number of parameters.
• The entries in the array are the values 0, …, n – 1,
where n = f(n0, …, nk-1).
Typically, this means that each parameter would have
(up to) n values.
• d is the strength of the array (see below).
An orthogonal array has strength d if in any ρ × d
sub-matrix (that is, select any d columns), each of the
n*d possible d-tuples (rows) appears the same
number of times (>0). In other words, all d-
interaction elements occur the same number of times.
Here is some terminology for working with
orthogonal arrays followed by an example array in
Fig. 4 [24,25]:
• Runs - ρ: the number of rows in the array. This
directly translates to the number of test cases that
will be generated by the OATS technique.
• Factors - k: the number of columns in an array.
This directly translates to the maximum number of
variables that can be handled by this array.
• Levels - n: the maximum number of values that can
be taken on by any single factor. An orthogonal
array will contain values from 0 to Levels-1.
• Strength - d: the number of columns it takes to see
each of the LevelsStength possibilities equally often.
• Orthogonal arrays are most often named following
the pattern LRuns(LevelsFactors).

 Factors
0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1

R
u
n
s

2 2 1 0

Fig. 4 An L9(34) orthogonal array with 9 runs, 4
factors, 3 levels, and strength of 2.

3.1 Facts and Industry experiences
 Being intelligent about which test cases you
choose can make all the difference between (a)
endlessly executing tests that just aren't likely to find
bugs and don't increase your confidence in the
system and (b) executing a concise, well-defined set
of tests that are likely to uncover most (not all) of

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1325 Issue 8, Volume 7, August 2008

the bugs and that give you a great deal more comfort
in the quality of your software.
Some advantage of the Orthogonal Array Testing
Strategy (OATS) is outlined below:
• Pairwise testing protects against pairwise bugs
while dramatically reducing the number of tests to
perform which is especially cool because pairwise
bugs represent the majority of combinatoric bugs and
such bugs are a lot more likely to happen than the
ones that only happen with more variables.
• Plus, the availability of tools means you no longer
need to create these tests by hand.
• Pairwise testing might find some pairwise bugs
while dramatically reducing the number of tests to
perform, compared to testing all combinations, but
not necessarily compared to testing just the
combinations that matter, which is especially cool
because pairwise bugs represent the majority of
combinatoric bugs, or might not, depending on the
actual dependencies among the variables in the
product, and such bugs are more likely to happen
than ones that only happen with more variables, or
less likely to happen, because user inputs are not
randomly distributed.
• Plus, the availability of tools means you no longer
need to create these tests by hand, except for the work
of analyzing the product, selecting variables and
values, actually configuring and performing the test,
and analyzing the results.
What do all pairs do?
• Input is a set of equivalence classes for each
variable.
• Sometimes the equivalence classes are those used
in Boundary Value testing (min, min+, nominal, max-
, max)
• Output is a set of (partial) test cases that
approximate an orthogonal array, plus some pairing
information.
All pairs assumptions are:
• Variables have clear equivalence classes.
• Variables are independent.
• Failures are the result of the interaction of a pair of
variable values.
OATS provides a means to select a test set that:
• Guarantees testing the pair-wise combinations of
all the selected variables.
• Creates an efficient and concise test set with many
fewer test cases than testing all combinations of all
variables.
• Creates a test set that has an even distribution of all
pair-wise combinations.
• Exercises some of the complex combinations of all
the variables.
• Is simpler to generate and less error prone than test
sets created by hand.

 As an example of the benefit of using the
OATS technique over a test set that exhaustively
tests every combination of all variables, consider a
system that has four options, each of which can have
three values. The exhaustive test set would require
81 test cases (3 x 3 x 3 x 3 or the Cartesian product
of the options). The test set created by OATS (using
the orthogonal array in Fig. 4) has only nine test
cases, yet tests all of the pair-wise combinations.
The OATS test set is only 11% as large at the
exhaustive set and will uncover most of the
interaction bugs. It covers 100% (9 of 9) of the pair-
wise combinations, 33% (9 of 27) of the three-way
combinations, and 11% (9 of 81) of the four-way
combinations. The test set could easily be
augmented if there were particularly suspicious
three- and four-way combinations that should be
tested. Interaction testing can offer significant
savings. Indeed a system with 20 factors and 5 levels
each would require 520 = 95 367 431 640 625 i.e.
almost 1014 exhaustive test configurations. Pair-wise
interaction testing for 520 can be achieved in 45 tests.

3.2 How to use this technique
The OATS technique is simple and straightforward.
The steps are outlined below.
1. Decide how many independent variables will be
tested for interaction. This will map to the Factors
of the array.
2. Decide the maximum number of values that each
independent variable will take on. This will map to
the Levels of the array.
3. Find a suitable orthogonal array with the smallest
number of Runs. A suitable array is one that has at
least as many Factors as needed from Step 1 and has
at least as many levels for each of those factors as
decided in Step 2.
4. Map the Factors and values onto the array.
5. Choose values for any "left over" Levels.
6. Transcribe the Runs into test cases, adding any
particularly suspicious combinations that aren't
generated.

3.3 OART application areas in software
testing
OART can be applied to Black-box testing strategy as
outlined below:
• Unit testing: derive test cases for black-box testing
of single components,
• System testing: derive test cases for black-box
testing of entire systems,
• Known that significant number of failures is caused
by parameter interactions that occur in typical, yet
realistic situations,
• Assume that tests maximizing the interactions
between parameters will find more faults,

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1326 Issue 8, Volume 7, August 2008

• Test at least for all two-way interactions among all
input parameter combinations because exhaustive
testing (i.e. executing test cases for all possible input
parameter combinations) cannot be afforded,
• Assume that the risk of an interaction failure among
three or more input parameters is balanced against the
ability to complete testing within a reasonable
budget,
• Calculate the minimal set of test parameter
combinations that test each pair-wise parameter
combination.

OART can be applied to Configuration Testing as
outlined below:
• Testing of complex systems with multiple
configurations,
• Interoperability testing,
• Web testing,
• Known that faulty interaction between system
components is a common source of system failures,
• Re-use existing suite of (system) test cases,
• Test at least for all two-way interactions among
various system components because exhaustive
testing (i.e. executing a suite of test cases for all
possible configurations) cannot be afforded,
• Assume that the risk of an interaction failure among
three or more components is balanced against the
ability to complete testing within a reasonable
budget,
• Calculate the minimal set of test configurations that
test each pair-wise combination of components.
Which test input data shall be selected and what is
benefit of OATS technique?

• Intelligent test case generation is vital to cut down
costs and improve the quality of testing,
• Dramatically reduced overall number of test cases
compared to exhaustive testing,
• Detects all faults due to a single parameter input
domain,
• Detects all faults due to interaction of two
parameter input domains,
• Detects many faults due to interaction of multiple
parameter input domains.

Case studies [23,25,30] give evidence that the
approach compared to conventional approaches is:
• more than twice as efficient (measured in terms of
detected faults per testing effort) as traditional
testing,
• about 20% more effective (measured in terms of
detected faults per number of test cases) as traditional
testing,
• Approach is applicable:

 to generate detailed test case input data
during unit testing

 to generate high-level test cases during
system testing

 to generate test cases during configuration
testing

 seamlessly with conventional test methods.

For illustration let us analyze this example of
Configuration Testing of communication system
under test that has 4 components, each of which has 3
possible elements as depicted in Fig.5 .

Fig. 5 Example of Configuration Testing of communication system

Those 4 components are: Calling phone (Regular
phone, Mobile phone, Coin phone), Call type (Local
call, Long distance call, Toll free), Access (ISDN,
PBX, Loop), and Called phone (Mobile phone,

Regular phone, Pager), each of which has 3 quoted
possible elements.
Suite of system test cases exists and has to be
executed with overall 81 = 3x3x3x3, number of
possible configurations. But, with applying OART

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1327 Issue 8, Volume 7, August 2008

algorithm according to Fig. 4, requires only 9 test
configurations instead of 81 that are already
sufficient to cover all pair-wise component
interactions.

4 A novel Orthogonal Arrays
application as Optimization Strategy
Experimental optimization can be carried out in
several ways. Most popular is the one-variable-at-a-
time approach. This approach is however extremely
inefficient in locating the true optimum when
interaction effects are present. Multivariable design
of experiments are since many years used to
overcome the problems with interaction effects.
There are two general groups of designs to choose
from: Sequential or simultaneous experiment designs.
The choice depends of the purpose of the study.
Are these both approaches, sequential and
simultaneous design of experiments, competing
alternatives or can they be joined into a
comprehensive and effective optimization and model-
building strategy? Our a novel Orthogonal Arrays
application, may have come up with the answer. In
this approach is first to optimize and then to study
variable effects, significance, etc. (i.e. model-
building).
In the past, optimization usually required answers to
three ordered questions:

1. What variables (in our case, which Defect
Detection Techniques – DDT) are the most
significant?
2. In what way (in our case, find optimum DDT
combination) do they affect the quality (in our case,
effectiveness of software test activities with Defect
Removal Efficiency – DRE) of the product or
process?
3. What is the optimal combination of settings for
these significant variables (in our case, DDT)?

4.1 DDT evalouation or Measurement Choice
like customer satisfaction index
 Before, Orthogonal Arrays application as
Optimization Strategy – OAOS, we did DDT
evaluation like customer satisfaction index to answer
the 1. question above i.e. which Defect Detection
Techniques – DDTs are the most significant. Every
tester in test team assess 5 most frequently used
DDT: DDT1= Inspection – DBR, DDT2= PBR,
DDT3= CEG+BOR+MI, DDT4= M&S, DDT5=
Hybrid (Category Partition, Boundary value
analysis,…., Path testing etc.), as briefly described in
this section, according to nine Performance and
Quality criteria given in Table 1. We have chosen a
unified ordinal scale for the empirical Performance
and Quality criterion from 1 (worst) to 5 (best) of the
tester satisfaction level (TS level). This aspect is at
most indeterminate in our approach.

Table 1. DDT Performance and Quality criteria for tester’s assessment

Criterion

Ck

Name Description

1 Overall Considering all aspects of the experience, how would you rate your overall level
of satisfaction with DDT e.g. Combinatorial Test Services?

2 Capability How satisfied are you that DDT e.g. Combinatorial Test Services has the
functions and features to perform as expected?

3 Usability How satisfied are you with the "ease of use" of DDT e.g. Combinatorial Test
Services?

4 Performance How satisfied are you with the response time or speed with which DDT e.g.
Combinatorial Test Services executes its functions?

5 Reliability How satisfied are you with the frequency, number, and seriousness of errors in
DDT e.g. Combinatorial Test Services?

6 Installation How satisfied were you with the ease of installation, initialization, and migration
of DDT e.g. Combinatorial Test Services?

7 Maintenance How satisfied are you with getting updates from alphaWorks, or patches from
the development team for DDT e.g. Combinatorial Test Services?

8 Information How satisfied are you with the accuracy, completeness, and time it takes to find
information (online help, etc.) for DDT e.g. Combinatorial Test Services?

9 Service How satisfied are you with the effectiveness of the DDT support e.g.
alphaWorks discussion forum for Combinatorial Test Services, and responses to
your e-mails?

The three Static Analysis test techniques are all
based on Behavior Analysis which enables analysts
to convert narrative text into a tabular representation
that are DDT candidates: Defect-based reading –

DBR as DDT1, perspective-based reading-PBR as
DDT2 ,and Simulation and Model Testing of the
Design prior to Implementation – M&S as DDT4. In
its own right, Behavior Analysis helps to find errors

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1328 Issue 8, Volume 7, August 2008

in requirements because it demands the analyst
adopt a systematic approach to extracting functions,
conditions and responses from the requirements text
before synthesizing elementary test cases which can
be validated individually. Even if the three test
techniques are not used, Behavior Analysis is an
effective method for finding errors in requirements
and other software development documents (R&D
D). The technique is easy to learn and implement,
and can be applied to requirements documents of
any size by selecting only critical sections for
analysis.
 Behavior Analysis is a pre-requisite for the
three test methods; inspection, walkthrough and
animation, and each test technique have its own area
of applicability and benefits:
• test by inspection is useful where traditional
inspections would be too difficult, time-consuming
or expensive to implement in the user community
• test by scenario walkthrough is useful where the fit
between proposed system and new or changed
business process is a key consideration
• test by animation is most useful where
requirements are not stable, where the system is
aimed at individual users or where a more controlled
Prototyping technique is required.
 Errors in requirements present a most difficult
challenge. Developers find it almost impossible to
detect errors in requirements without the help of
users. New methodologies involve users much more
intimately, but these techniques are successful in
specific situations where the risk of errors is low and
overall project size is small. Traditional
developments of larger systems still use a staged,
rather than an iterative approach. Users are
intimately involved only in the earliest stages and at
the very end. The risk of requirements errors is
extremely high in such projects, but in most cases
requirements are not adequately tested. Many of
these projects fail in the end, when the cost is
highest, because they could not deliver the required
business benefits. Testing of requirements and other
software development documents (R&D D) is
potentially the most valuable testing we can do,
because errors in requirements are usually the most
expensive to correct later, and present the biggest
threat to the project's success. Behavior Analysis,
testing by inspection, testing by walkthrough and
testing by animation offer some hope that
requirements can be `got right first time'.
 A Cause-Effect Graphing – CEG+BOR+MI
[15] is used as DDT3. The Cause-Effect Graphing
technique was invented by Bill Elmendorf of IBM in
1973. Instead of the test case designer trying to
manually determine the right set of test cases, he/she
models the problem using a cause-effect graph, and
the software that supports the technique [15],

calculates the right set of test cases to cover 100% of
the functionality. The cause-effect graphing
technique uses he same algorithms that are used in
hardware logic circuit testing. Strict test case design
in hardware ensures virtually defect free hardware.
The starting point for the Cause-Effect Graph,
applied to software testing, is the requirements
document. The requirements describe what the
system is intended to do. The requirements and other
software development documents can describe real
time systems, events, data driven systems, state
transition diagrams, object oriented systems,
graphical user interface standards, etc. A
specification based testing strategy, called CEG-BOR
[15], combines the use of cause-effect graphs (CEGs)
as a mechanism for representing specifications and
the use of the Boolean operator (BOR) strategy for
generating tests for a Boolean expression. If all
causes of a CEG are independent from each other, a
test set for the CEG can be constructed such that all
boolean operator faults in the CEG can be detected
and the size of this test set grows linearly with the
number of nodes in the CEG. Four case studies are
conducted to provide empirical data on the
performance of CEG-BOR [15]. Empirical results
indicate that CEGs can be used to model a large class
of software specifications and that CEG-BOR is very
effective in detecting a broad spectrum of faults.
Also, a BOR test set based on a CEG specification
provides better coverage of the implementation code
than test sets based on random testing, functional
testing, and state-based testing. For a CEG that does
not have mutually independent causes, the BOR
strategy does not perform well. To remedy this
problem, a new test generation strategy is presented,
which combines the BOR strategy with the
Meaningful Impact (MI) strategy, a recently
developed test generation strategy for Boolean
expressions. This new strategy, called BOR+MI [15],
decomposes a Boolean expression into mutually
independent components, applies the BOR or MI
strategy to each component for test generation, and
then applies the BOR strategy to combine the test sets
for all components. The size and fault detection
capability of a BOR+MI test set are very good. Both
analytical and empirical results show that the
BOR+MI strategy generates a smaller test set than the
MI strategy and provides comparable fault detection
ability as the MI strategy. This extension, called
BRO+MI, detects incorrect relational operators in
relational expressions and also accounts for user-
defined or implicit restrictions on the causes of a
CEG.
Traditional Test Case Design Techniques, including
Equivalence Class Partitioning, Boundary Value
Analysis and some White-box (statement, branch and
path covering) are combined in Hybrid or Gray-box

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1329 Issue 8, Volume 7, August 2008

DDT that we denoted as DDT5 . These techniques
rely on the test case designer to manually work out
the proper combinations of test cases. Often, the test
case designer does not use a formal test case design
technique and relies on his/her “gut feel” to assess
whether test coverage is sufficient. While these
techniques do generate combinations of test cases,
they often fall short on providing full functional
coverage. Too often the normal flow or “go path”
functionality has overlapping, redundant test cases,
while exceptions and error conditions go untested.
The Full-Lifecycle IOSTP methodology is a
collection of testing techniques to verify and validate
broad types of software products. The IOSTP uses a
wide variety of techniques (described in [25]) that are
available to deploy throughout all aspects of software
development. The list of techniques is not meant to
be complete – instead the goal is to make it explicit
wide range of options available for STP optimization.

4.2 Application of the Borda optimal positional
voting method to DDT ranking
The Borda method is used in the Risk Matrix
software application [31] to rank risks from most-to-
least critical on the basis of multiple evaluation
criteria. We adapted this Borda method, on similar
way, to rank all used Defect Detection Techniques
(DDT) through software development life cycle from
most-to-least performance and quality characteristics
of DDT in revealing software faults (bugs, errors).
This section describes in detail how the Borda
method is applied, using the sample of DDT
Assessment Entries Worksheet that every tester in
test team provided as an illustration.
On the other hand, it is necessary to map the possible
metrics values to the ordinal scale of the empirical
criterion. We have chosen a unified ordinal scale for
the empirical criterion from 1 (worst) to 5 (best) of
the tester satisfaction level (TS level). This aspect is
at most indeterminate in our approach. Hence, its tool
support requires high flexibility for the adjustment or
tuning of the measurement process of the customer
satisfaction determination.
 Borda proposed the following voting method in
1770: Given N - DDT candidates, if points of N -1, N
- 2, . . . , and 0 are assigned to the first-ranked,
second-ranked, . . . , and last-ranked candidate in
each test team voter’s preference order, then the
winning candidate is the one with the greatest total
number of points. Instead of voters, suppose that
there are multiple criteria. If rik is the rank of
alternative i - particular DDT, under criterion k = 1 to
9 (DDT criteria from Table 1), the Borda count for
alternative i is

bi =∑ . (5)
=

−
9

1
)(

k
ikrN

The alternatives are then ordered according to these
counts. The Borda method is an example of a
positional voting method, which assigns Pj points to a
voter’s jth-ranked candidate, j = 1, . . . , N, and then
determines the ranking of the candidates by
evaluating the total number of points assigned to each
of them. Voting theorists [31] have shown that the
Borda method is the optimal positional voting
method with respect to several standards, such as
minimizing the number and kinds of voting
paradoxes. In addition, if ties are not present in the
criteria rankings, it is demonstrated that the Borda
method is equivalent to determining the consensus
rankings that minimize the sum of the squared
deviations from the criteria rankings. The Borda
method has been used to rank alternatives in a variety
of applications, including a cost and operational
effectiveness analysis (COEA) and an aircraft
maintenance study. In the DDT ranking application,
let N be the total number of DDTs, and the index i
denote a particular DDT. Let the DDT criterion of
Overall (from Table 1) assessment be denoted by k =
1, and the DDT criterion of Capability assessment be
denoted by k = 2 etc. The rest of this section
describes how the Borda voting method is
implemented in our DDT rank assessment case.

4.2.1 Evaluate Rank of Each DDT with Respect to
Overall criterion
Let J be the total number of possible Overall
assessments. As discussed above, a DDT can be
assessed by tester, as for the empirical criterion from
1 (worst) to 5 (best) of the tester satisfaction level
(TS level), and so there are J = 5 possible
assessments. Let Qj be the j-th possible Overall
assessment, which is assumed to be ordered in the
following way: Qj has a higher Overall point than
Qj+1. Thus, Q1 = 1 (TS level), Q2 =2 (TS level), etc.
Let Mj be the number of DDTs having Qj as the
Overall rating. Table 2 gives the values of Mj that
correspond to the sample given by testers.

Table 2 Values of Qj, Mj, and Tj for sample given by

testers

j Qj Mj Tj
1 5 (best) 2 1.5
2 4 3 4
3 3 0 N/A
4 2 0 N/A
5 1 (worst) 0 N/A

Let T j be the rank position for all DDTs that are given
the j-th possible impact assessment.
How can we evaluate this rank position? The basic
approach is to evaluate the rank of a tied alternative

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1330 Issue 8, Volume 7, August 2008

as the average of the associated rankings. The
following is a key result: if a is the first term in an
arithmetic progression, t is the final term, and n is the
number of terms, then (n/2)(a + t) is the sum of the n
terms. Because there are M1 DDTs that are tied for
positions 1 through M1 , the sum of these rank
positions is (M1 / 2)(1 + M1) . Thus, the average of
this sum is T1 = (1/ 2)(1 + M1) . Similarly, there are
M2 DDTs that are tied for positions M1 + 1 through
M1 + M2, so that the average of this sum is T2 = (1/ 2)(
2M1+ 1 + M2) . More generally, if M j > 0,
Tj = 1/2(2Cj + 1+ Mj), where

Cj = (6) ∑
−

=

1

1

j

r
rM

for j > 1 and C1 =0 . The values of Tj are given in
Table 2 for the sample given by testers.
Let ri1 be the rank of the i- th DDT with respect to the
impact assessment. If the i-th DDT has the j-th
possible impact assessment, then set ri1= Tj . The
values of ri1 are given in Table 3 for the sample given
by testers.

Table 3 Borda Points and Count for sample given by
testers

DDT
No.

C1
Criterion

C2
Criterion

ri1 ri2 Borda
Count

Borda
Rank

1 5 3 1.5 3.5 5 0

2 4 5 4 1 5 0

3 4 4 4 2 4 3

4 5 3 1.5 3.5 5 0

5 4 2 4 5 1 4

4.2.2 Evaluate Rank of Each DDT with Respect to
Capability criterion
Let H be the total number of possible Capability
assessments. As discussed above, there are five default
Capability ranges and so H = 5. Let Ph be the highest
Capability associated with the h-th possible
assessment, and let these be ordered such that Ph >
Ph+1. Let Nh be the number of DDTs that are
assigned the h-th possible Capability assessment.
Table 4 shows the values of Ph and Nh that are used
for our numerical example, where the values of Nh are
derived from sample given by testers.
Let Sh be the rank position for all DDTs that are
given the h-th possible Capability assessment.
As before, if Nh > 0,

Sh = 1/2(2BBh + 1+ Nh), where

Bh = (7) ∑
−

=

1

1

h

r
rN

for h > 1 and BB1 = 0. The values of Sh are given in
Table 4 for the sample given by testers.

Table 4 Values of Ph, Nh, and Sh for Sample given by

testers

h Ph Nh Sh

1 5 1 1
2 4 1 2
3 3 2 3.5
4 2 1 5
5 1 0 N.A.

Let r12 be the rank of the ith DDT respect to the
Capability of occurrence. If the ith DDT has the h-th
possible assessment, then set r12 = Sh. The values of
r12 are given in Table 3 for the sample given by
testers.

4.2.3 Determine Borda Ranking of Each DDT

Let N be the total number of DDTs, which satisfies

N =∑ (8)
=

H

h
hN

1

The Borda Count for DDT i is computed with formulae:

bi= (N- ri1) + (N- ri2) (9)

The final step is to rank the DDTs with respect to their
Borda Count. In particular, the DDT with the highest
Borda Count is the best DDT according to testers
Performance and Quality multi-criteria assessment, the
DDT with the second highest count is the next DDT
with highest score, and so forth. The Borda Rank for
given DDT is the number of other DDTs that are better
then that DDT. Table 3 provides both the Borda Count
and Borda Rank for the sample given by testers. Defect
Detection Techniques DDT1, DDT2, and DDT4 are
tied with the highest Borda Count, and so their Borda
Rank is 0. DDT3 has a Borda Rank of 3, because there
are three other DDTs that are more critical. DDT5 has
a Borda Rank of 4, because there are four other
DDTs that are better then that DDT5. The foregoing
algorithm has been implemented as part of the software
application. The same procedure is accomplished for
the rest 7 criteria and Borda Rank for the sample given
by testers wasn’t changed i.e. were the same.
As a conclusion after Borda Ranking of DDT
candidates, we did DDT evaluation like testers
satisfaction index to answer the 1. question from
optimization point of view i.e. which Defect
Detection Techniques – DDTs are the most
significant? According to testers assessment of 5
most frequently used DDT in IOSTP [25]: DDT1=
Inspection – DBR, DDT2= PBR, DDT3=
CEG+BOR+MI, DDT4= M&S, DDT5= Hybrid

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1331 Issue 8, Volume 7, August 2008

(Category Partition, Boundary value analysis, Path
testing etc.) three of DDTs have the highest rank 0
i.e. DDT1=DDT2=DDT4=0, then DDT3=
CEG+BOR+MI is next ranked and the last was
DDT5. Because of that we will group those three
DDT with highest rank 0, call them Static Test
Techniques – TT1 and treat all three DDTs as one
factor in optimization experiment applying
Orthogonal Arrays as Optimization Strategy. Next
high Borda ranked DDT4= CEG+BOR+MI we
designate with TT2 and the last ranked DDT5 as
TT3.
In next section we provided the answers to 2. and 3.
optimization question given above i.e. in what way
DDTs combination do affect the quality (in our case,
effectiveness of software test activities with Defect
Removal Efficiency – DRE) of the software testing
process and what is the optimal combination of DDTs
for these significant variables (in our case - TT1,TT2
and TT3)?

4.3 Response Surface Model Building Using
Orthogonal Arrays
Multidisciplinary design optimization (MDO) is an
important step in the conceptual design and
evaluation of STP effectiveness and efficiency
since many factors has a significant impact on
performance and software development lifecycle
(SDL) cost. The objective in MDO is to search the
software design and STP space efficiently to
determine the values of design and process
variables that optimize performance characteristics
subject to system constraints.
An alternative is to utilize response surface
methodology (RSM) to obtain mathematical models
that approximate the functional relationships
between performance characteristics and
design/process variables. A common approach
used in RSM is to utilize central composite designs
(CCD) from the design of experiments literature to
sample the SDL and STP space efficiently [25,27].
With this approach, design analyses (experiments)
are performed at the statistically selected points
specified by a CCD matrix. The resulting data is
used to construct response surface approximation
models using least squares regression analysis.
These response surface equations are then used for
MDO and for rapid sensitivity studies.
However, like most experimental designs, CCD is
designed with the physical experiments in mind
where the dominant issue is the variance of
measurement of the response. In a physical
experiment, there is usually some variability in the
output response with the experiment repeated with
the same inputs. In contrast, the output of

computer (software testing) experiments is (in
almost all cases) deterministic. Generally, there is
no measurement error or no variability in analysis
outputs. Therefore, experimental designs
constructed to minimize variability of
measurements may not be the best choice for
computer experiments [17].
In this study response surface methods for
computer experiments are investigated and some of
the approaches available in the literature are
discussed. The focus is on response surface model
building using orthogonal arrays designed for
computer experiments (OACE).

4.3.1 Response Surface Model Building Using
Central Composite Designs
Response surface methods (RSM) can be utilized
for MDO in cases where computerized design tool
integration is difficult and design effort is costly.
The first step in RSM, is to construct polynomial
approximations to the functional relationships
between design or process variables and
performance characteristics (e.g. DDT, DRE)
[25,27]. In the next step, these parametric models
are used for MDO and to determine variable
sensitivities. A quadratic approximation model in
the form given below (10) is commonly used since
it can account for individual parameter effects,
second-order curvature or non-linearity (square
terms), and for two-parameter interactions (cross
terms).

∑∑ ∑
== ≠

+++=
k

i
iii

k

i

k

ji
jiijii XbXXbXbby

1

2

1 1,
0

(10)
where : - approximation of output variable i.e.
trial response (the performance characteristic to be
optimized), k- number of factors, b

ŷ

0 ,bij – are
estimated least squares regression coefficients,
based on the design and analysis data obtained by
sampling the design/process space (or by
conducting experiments),

x
xx

X ii
i Δ

−
= 0 coded ith

factor values, xi –real ith factor values, xi0 -real factor
value in “NULL" point (point in experimental
center) and Δx- variation interval.
In some cases, however, RSM using CCD may not
result in a good representation of the response
surface as may be evidenced by poor predictions of
the design analysis results. The reasons for this
problem can be mainly due to;
1) The response surface is more complex than can

be represented by a
second order approximation model given by

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1332 Issue 8, Volume 7, August 2008

equation (10),
2) There are other influential design/process

variables and interactions other than
those currently under study,

3) The sample design points (experiments)
specified by a CCD may not be
suitable in terms of selection of these specific
points for experimentation
with computerized design analysis tools.

The third problem is directly related to the choice
of specific experimental design points. In order to
address this problem and to improve response
surface model building using computer
experiments, a study was conducted.

4.3.2 Response Surface Model Building Methods
for Computer Experiments

Bayesian approach to experimental design
appears to be a growing area of research. However,
the application of Bayesian experimantal design
methods in real design analysis and optimization
problems have been limited partly due to the lack
of user friendly software [17]. Further development
appears to be needed before they can be applied to
practical design optimization problems.
The frequentist approach, surveyed by Owen [17]
on the other hand, introduces randomness by
taking function values that are partially
determined by pseudorandom number generators.
Then this randomness is propagated through to
randomness in the estimate. Owen, lists a set of
randomized orthogonal arrays for computer
experiments. The Statlib computer programs
(http://lib.stat.cmu.edu/designs/) to generate
these orthogonal arrays are also listed.
The use of these orthogonal arrays in practice for
response surface model building would be similar
to utilizing central composite designs, with a
potential of improving model accuracy for
computer experiments. In the following section, an
example application to an optimum DDTs
combination selection and optimization study for
an Integrated and Optimized Software Testing
Process IOSTP [25] is presented.

4.3.3 Example Application: optimum DDTs
combination selection and optimization study for
an IOSTP
Traditionally, the objective in a MDO study has
been to search the design space to determine the
values of design variables (such as DDTs) that
optimize a performance characteristic (such as

DRE) subject to software testing process
constraints. However, research shows that up to
82% of the life software testing cycle cost is
committed during the early design phase [25,29].
Therefore, significant cost savings could be realized
if designers and test managers were better able to
evaluate their designs on a cost basis.
This study focuses on rapid multidisciplinary
analysis and evaluation-on-a-DRE maximum-basis
for DDT combination choices selection for each test
phase activities i.e. P1- software requirement
(SRUT), P2- High level design (HLDUT), P3- Low
Level Design (LLDUT), P4- code under test (CUT),
P5- integration test (IUT), P6- system under test
(SUT) and finally P7- Acceptance test, recall section
2.2.1. Different Defect Detection Strategy and
Techniques options, together with critical STP
variables performance characteristics (e.g. DRE,
cost, duration), are studied to optimize design,
development, test and evaluation (DDT&E) cost
using orthogonal arrays for computer experiments
[25-27]. Calculus-based optimizers could not have
been used in this case since material and
technology options selection require the study of
design variables that have discrete values. This
study has the following steps:

1. Identify the design variables to be studied and
alternative levels
In this study, design of maximum DRE percentage
of STP optimization problem solving with best
DDT choice combination in each phase P1 to P7 as
controlled variables values is determined by
designed experiment plan using orthogonal arrays
designed for this computer experiment (OACE).
To simplify the analysis such as decreasing
factor’s values (only three DDT number) applying
Borda Ranking of DDT candidates with highest
rank, several design disciplines were decoupled
from the present analysis.
Seven major test phases P1 to P7 for accounting
maximum DRE percentage all over STP fault
injection and removal model (see Fig. 3) for DDT
candidate selection in each test phase were
determined. These were the Static Test Techniques
– TT1 (consisting of three DDTs as one factor in
optimization experiment applying Orthogonal
Arrays as Optimization Strategy), the TT2 i.e.
DDT4= CEG+BOR+MI and TT3 – Hybrid Detection
Technique= DDT5 (consisting of Category Partition,
Boundary value analysis, Path testing etc.). The
objective of this investigation was then to determine
the best combination of Test Techniques options for

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1333 Issue 8, Volume 7, August 2008

the seven major test phase activities sections
optimized for STD&STP maximum DRE
percentage under cost and time constraints
according to IOSTP benefit index maximization in
(4) [25-27].

2. Design the experiment and select an
appropriate orthogonal array
Owen [17], lists a set of orthogonal arrays for
computer experiments. For this study, an
orthogonal array that enables the study of seven
variables with three levels each was selected
(http://lib.stat.cmu.edu/designs/owen.small). If a
full factorial design where all possible variable/TT
combinations studied would have required 2,187
(37) experiments while in Orthogonal Array design
of experiment plan only 18 experiments are enough
as shown on Table 5. Variable interactions were
assumed to be insignificant for this study.

Table 5 Seven Variable Orthogonal Array with three
levels each [17]

No. of
Exper.

P1 P2 P3 P4 P5 P6 P7

1 1 1 3 2 3 1 1

2 3 2 2 1 1 3 1

3 2 3 1 3 2 2 1
4 1 2 1 1 2 1 2

5 3 3 3 3 3 3 2
6 2 1 2 2 1 2 2

7 1 3 2 1 3 2 3
8 3 1 1 3 1 1 3

9 2 2 3 2 2 3 3

10 1 3 1 2 1 3 1

11 3 1 3 1 2 2 1

12 2 2 2 3 3 1 1
13 1 1 2 3 2 3 2

14 3 2 1 2 3 2 2
15 2 3 3 1 1 1 2

16 1 2 3 3 1 2 3
17 3 3 2 2 2 1 3

18 2 1 1 1 3 3 3

3. Conduct the orthogonal array experiments
The eighteen matrix experiments were conducted
using a DRE estimating relationships in an post-
mortem real project data doing “what-if” analysis
i.e. which DRE percentage of all over IOSTP will
be reached if we combine DDTs in different way

par test phase activities (P1 to P7) according to
Borda ranking result and Orthogonal Array design
of experiment plan in 18 experiments from Table 5
where TT1 is codded as 1, TT2 as 2 and TT3 as 3.
The analysis results of the 18 experiments for
IOSTP DRE percentage and corresponding TT
selection per each test phase are presented in Table
6. For the 18 DDT combinations shown in Table 6,
the highest DRE is 94.44 % (experiment number
seven).

Table 6 The “what-if” analysis results of OACE
experiment

Exp.
No.

P1 P2 P3 P4 P5 P6 P7 DRE
(%)

1
 2
 3

1
3
2

1
2
3

3
2
1

2
1
3

3
1
2

1
3
2

1
1
 1

90.5 1
84.79
87.66

4
5
6

1
 3
 2

2
3
1

1
3
2

1
3
2

2
3
1

1
3
2

2
2
2

91.27
80.34
81.66

7
8
9

1
3
2

3
1
2

2
1
3

1
3
2

3
1
2

2
1
3

3
3
3

94.44
83.14
82.99

10
11
12

1
3
2

3
1
2

1
3
2

2
1
3

1
2
3

3
2
1

1
1
1

87.89
85.05
89.77

13
14
15

1
3
2

1
2
3

2
1
3

3
2
1

2
3
1

3
2
1

2
2
2

83.91
85.19
81.72

16
17
18

1
3
2

2
3
1

3
2
1

 3
 2
1

 1
 2
 3

3
2
1

3
3
3

84.11
82.58
92.94

4. Analyze the data to determine the optimum
levels and verify results
The average DRE (%) for each variable P and for
each of the three levels i.e. TT are calculated and
displayed in the response table given in Table 7.
This response table shows the DRE (%) effects of
the variables at each level. These are separate
effects of each parameter and are commonly called
main effects. The average (%) shown in the
response table are calculated by taking the average
for a variable at a given level, every time it was
used. As an example, the variable P1 was at level 2
in experiments 3,6,9,12,15 and 18. The average of
corresponding DRE (%) is 86.12 (%) which is
shown in the response table (Table 7) under P1 at
level 2. This procedure is repeated and the response
table is completed for all variables at each level.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1334 Issue 8, Volume 7, August 2008

http://lib.stat.cmu.edu/designs/owen.small

T able 7 DRE (%) Response table per phase P

Phase
/

TT

P1 P2 P3 P4 P5 P6 P7

1 88.69 86.20 88.02 88.36 83.91 86.35 84.02

2 86.12 86.35 86.19 85.14 85.58 86.51 87.61

3 83.52 85.77 84.12 84.82 88.72 85.50 86.70

The optimum level (TT) for the design variables
(P) can now be selected by choosing the level with
the highest DRE percentage. For example the
highest DRE percentage is got when variable P1
was at level 1 at 88.69 % as opposed to 83.52 % at
level 3, and 86.12 % at level 2. Similarly, the levels
that optimize total IOSTP defect removal
effectiveness (DRE) were chosen. The optimum
levels are indicated by bold&underlined in Table
7. As the next step, least squares regression
analysis is used to fit the second order
approximation model (Equation 10) to the DRE data
(yi) given in Table 6 in terms of the seven design
variables (Xi). This parametric model accounts for
the response surface curvature (square terms) and
two factor interactions (cross terms) i.e. RSM:

DRE (%) = 111.71 - 2.58 (P1) + 1.22 (P2) -1.95
(P3) - 7.61 (P4) - 0.69 (P5) + 0.94 (P6) -13.04 (P7) -
0.36 (P2)2 + 1.46 (P4)2 + 0.79 (P5)2 - 0.36 (P6)2 +
3.15 (P7)2 (11)

Note that, in this response surface approximation
model, the parameter values are restricted to 1
(TTl), or 2 (TT2), or 3 (TT3).

Table 8 Maximum DRE (%) value and
corresponding Test Techniques choices per test

phase solution

P1 P2 P3 P4 P5 P6 P7 DRE
(%)

TT1 TT2 TT1 TT1 TT3 TT2 TT2 94.03

At these levels, the IOSTP DRE was predicted to be
94.03 % using a second order prediction model
(10). As a next step, a verification analysis was
performed. The DRE (%) of an IOSTP calculated
from these test techniques choices, according to the
post-mortem real project data using optimized DDT
chices from Table 8, we computed DRE (%) to be
93.43 % . Difference is 0.6%=94.03%-93.43% that is
acceptable to validate our prediction model for DRE
(%) in equation (11) for optimal DDT combination

choice given in Table 8.
Optimal combination of DDT choices per phase P
given in Table 8 made increase of about 6 %,
compared to un-optimized DDTs combination per
each test phase we used in our real project in which
we achieved DRE of 87.43 %.

5 Conclusion
Organizations are constantly working to leverage
today’s best practices for testing—within the context
of their existing IT environments. As IT works to
balance the business needs for a certain application
and the testing limitations with regards to resources
and schedules, making the best use of the testing
environment becomes critical. Optimized testing is a
way for organizations to move their testing efforts
forward to reflect changing business environments
and resource constraints. Optimized testing uses test
techniques which has the highest defect detection
yield and combined with the Orthogonal Array
Testing Strategy (OATS) provides:
• Pairwise testing that protects against pairwise bugs
while dramatically reducing the number of tests to
perform which is especially cool because pairwise
bugs represent the majority of combinatoric bugs and
such bugs are a lot more likely to happen than the
ones that only happen with more variables.
• Plus, the availability of tools means you no longer
need to create these tests by hand.
• Pairwise testing might find some pairwise bugs
while dramatically reducing the number of tests to
perform, compared to testing all combinations
because pairwise bugs represent the majority of
combinatoric bugs.
• Plus, the availability of tools means you no longer
need to create these tests by hand, except for the work
of analyzing the product, selecting variables and
values, actually configuring and performing the test,
and analyzing the results which improves application
quality, maximizes development resources and helps
deliver applications on time and within budget.
Using the tools associated with optimized testing,
including DDT assessment, requirements
management and automation, IT managers can make
more informed decisions regarding testing, and have
the data and information to back up those decisions.
This article has highlighted increase of DRE about 6
% compared to un-optimized DDTs combination per
each test phase maximizing DRE percentage of STP
solving optimization problem with best DDT
choices combination in each phase P1 to P7 as
controlled variables values which is determined by
designed experiment plan using orthogonal arrays
designed for this computer experiment (OACE).

References
[1] http://www.pairwise.org/tools.asp.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1335 Issue 8, Volume 7, August 2008

[2] P. E. Ammann and A. J. Offutt. Using formal
methods to derive test frames in category-partition
testing. In Ninth Annual Conference on Computer
Assurance (COMPASS’94), Gaithersburg MD, pages
69–80, 1994.
[3] J. Bach and P. Shroeder. Pairwise testing - a best
practice that isn’t. In Proceedings of the 22nd Pacific
Northwest Software Quality Conference, pages 180–
196, 2004.
[4] K. Burr and W. Young. Combinatorial test
techniques: Table-based automation, test generation,
and test coverage. In Proceedings of the International
Conference on Software Testing, Analysis, and Review
(STAR), San Diego CA, 1998.
[5] K. Burroughs, A. Jain, and R. L. Erickson. Improved
quality of protocol testing through techniques of
experimental design. In Proceedings of the IEEE
International Conference on Communications
(Supercomm/ICC’94), May 1-5, New Orleans,
Louisiana, pages 745–752, 1994.
[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: An approach to testing
based on combinatorial design. IEEE Transactions On
Software Engineering, 23(7), 1997.
[7] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.
Patton. The combinatorial design approach to automatic
test generation. IEEE Software, 13(5):83–87, 1996.
[8] C. J. Colbourn, M. B. Cohen, and R. C. Turban. A
deterministic density algorithm for pairwise interaction
coverage. In Proceedings of the IASTED International
Conference on Software Engineering, 2004.
[9] S. R. Dalal, A. J. N. Karunanithi, J. M. L. Leaton, G.
C. P. Patton, and B. M. Horowitz. Model-based testing
in practice. In Proceedings of the International
Conference on Software Engineering (ICSE 99), New
York, pages 285–294, 1999.
[10] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L.
Mallows, and A. Iannino. Applying design of
experiments to software testing. In Proceedings of the
International Conference on Software Engineering
(ICSE 97), New York, pages 205–215, 1997.
[11] M. Grindal, J. Offutt, and S. F. Andler.
Combination testing strategies - a survey. GMU
Technical Report, 2004.
[12] A. Hartman and L. Raskin. Problems and
algorithms for covering arrays. Discrete Mathematics,
284(1-3):149–56, 2004.
[13] R. Kuhn and M. J. Reilly. An investigation of the
applicability of design of experiments to software
testing. In Proc. of the 27th NASA/IEEE Softw. Engin.g
Workshop, NASA Goddard Space Flight Center, 2002.
[14] Y. Lei and K. C. Tai. In-parameter-order: a test
generation strategy for pairwise testing. In Proceedings
of the Third IEEE International High-Assurance
Systems Engineering Symposium, pages 254–261,
1998.
[15] Paradkar, Amit: “Specifcation Based Testing Using
Cause-Efect Graphs“, Ph.D. dissertation, Graduate
Faculty of North Carolina State University,
COMPUTER SCIENCE, Raleigh, 1996.

[16] R. Mandl. Orthogonal latin squares: an application
of experiment design to compiler testing.
Communications of the ACM, 28(10):1054–1058, 1985.
[17] Owen, A.: "Orthogonal Array Designs for
Computer Experiments," Department of Statistics,
Stanford University, 1994,
http://lib.stat.cmu.edu/designs/owen.small.
[18] G. Sherwood. Effective testing of factor
combinations In Proceedings of the Third International
Conference on Software Testing, Analysis and Review,
Washington, DC, pages 133–166, 1994.
[19] H. Shimokawa and S. Satoh. Method of setting
software test cases using the experimental design
approach. In Proceedings of the Fourth Symposium on
Quality Control in Software Production, Federation of
Japanese Science and Technology, pages 1–8, 1984.
[20] B. Smith, M. S. Feather, and N. Muscettola.
Challenges and methods in testing the remote agent
planner. In Proceedings of AIPS, 2000.
[21] K. C. Tai and Y. Lei. A test generation strategy for
pairwise testing. IEEE Transactions of Software
Engineering, 28(1), 2002.
[22] K. Tatsumi. Test case design support system. In
Proceedings of the International Conference on Quality
Control (ICQC), Tokyo, 1987, pages 615–620, 1987.
[23] D. R. Kuhn, D. R. Wallace, and A. M. Gallo.
Software fault interactions and implications for software
testing. IEEE Trans. Software Engineering, 30(6):418–
421, October 2004.
[24] A. W. Williams. Software components interactions
testing:coverage measurement and generation of
configurations, PhD thesis, Computer Science, Ottawa-
Carleton Institute for Computer Science, School of
Information Technology and Engineering,University of
Ottawa, 2002.
[25] Lj. Lazić, The Integrated and Optimized Software
Testing Process, PhD Thesis, School of Electrical Eng.,
Belgrade, Serbia, 2007.
[26] Lj. Lazić, Mastorakis, N. RBOSTP: Risk-based
optimization of software testing process Part 2”, WSEAS
TRANSACTIONS on INFORMATION SCIENCE and
APPLICATIONS, Issue 7, Volume 2, p 902-916, July
2005.
[27] Lj. Lazić, D. Velasević: “Applying simulation and
design of experiments to the embedded software testing
process”, STVR, Volume 14, Issue 4, p257-282, John
Willey & Sons, Ltd., 2004.
[28] T. Gregory: “The Economic Impacts of Inadequate
Infrastructure for Software Testing”, NIST Final Report,
May 2002.
[29] S. H. Kan. Metrics and Models in Software
Quality Engineering, Second Edition, Addison-
Wesley, 2002.
[30] Brownlie R, Prowse J, and Phadke M.: “ Robust
Testing of AT&T PMX/StarMAIL Using OATS”,
AT&T Technical Journal; 71(3): 41- 47, May/June
1992.
[31] Pamela A. Engert, Zachary F. Lansdowne. Risk
Matrix User’s Guide Version 2.2, © 1999 The MITRE
Corporation, 1999.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastorakis

ISSN: 1109-2750 1336 Issue 8, Volume 7, August 2008

	3 Orthogonal Array Testing Strategy (OATS) and Techniques
	3.2 How to use this technique
	4 A novel Orthogonal Arrays application as Optimization Strategy
	5 Conclusion

