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Abstract: - In this paper, we consider a problem that arises in black box testing: generating small test suites 
(i.e., sets of test cases) where the combinations that have to be covered are specified by input-output 
parameter relationships of a software system.  That is, we only consider combinations of input parameters that 
affect an output parameter, and we do not assume that the input parameters have the same number of values. 
To solve this problem, we propose interaction testing, particularly an Orthogonal Array Testing Strategy 
(OATS) as a systematic, statistical way of testing pair-wise interactions. In software testing process (STP), it 
provides a natural mechanism for testing systems to be deployed on a variety of hardware and software 
configurations. The combinatorial approach to software testing uses models to generate a minimal number of 
test inputs so that selected combinations of input values are covered. The most common coverage criteria are 
two-way or pairwise coverage of value combinations, though for higher confidence three-way or higher 
coverage may be required. This paper presents some examples of software-system test requirements and 
corresponding models for applying the combinatorial approach to those test requirements. The method 
bridges contributions from mathematics, design of experiments, software test, and algorithms for application 
to usability testing. Also, this study presents a brief overview of the response surface methods (RSM) for 
computer experiments available in the literature. The Bayesian approach and orthogonal arrays constructed 
for computer experiments (OACE) were briefly discussed. An example, of a novel OACE application, to STP 
optimization study was also given. In this case study, an orthogonal array for computer experiments was 
utilized to build a second order response surface model. Gradient-based optimization algorithms could not be 
utilized in this case study since the design variables were discrete valued. Using OACE novel approach, 
optimum combination of software defect detection techniques choices for every software development phase 
that maximize all over  Defect Detection Effectiveness of STP were determined.  
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1 Introduction 
Many IT organizations struggle with how to 
determine the proper balance of testing in light of 
business demands and budgetary limitations. Testing 
has historically been difficult to optimize because of 
a number of factors. IT has always faced the 
constraints of balancing time, quality and cost. 
Combine this with the reality that it is often difficult 
to measure exactly how effective testing is for a given 
application, and you can easily see that many formal 
testing processes are far from optimal. Yet many IT 
organizations are not sure how to make them better. 
So what exactly is optimized testing, and how does it 
differ from the quality control and quality assurance 

practices that many IT organizations currently have in 
place? Simply put, optimized testing is a practical 
approach to improving application quality that 
balances quality, cost and schedules to prioritize 
testing and optimize limited resources. The efficiency 
of this practical testing approach ensures that the 
finite testing resources at IT management’s disposal 
are used to their most productive levels while 
eliminating harmful defects and errors during the 
testing process. Optimized testing practices, methods 
and tools now exist that allow the QA team to better 
align testing activities with business requirements by 
prioritizing testing activities based on two key 
factors: importance to the business and risk to the 
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business [25,26]. Business users, development, QA 
and other key constituents can now collaborate to 
prioritize requirements and identify and prioritize 
project risks. And, when required, they can 
collaborate to resolve problems during the test 
execution. Once priorities have been established, QA 
can confidently select the optimum set of tests to 
thoroughly test the high-priority areas of an 
application and adequately test all other areas [25,26]. 
This paper presents a novel OACE approach for 
software testing process (STP) optimization study 
finding optimum combination of software defect 
detection techniques (DDT) choices for every 
software development phase that maximize all over  
Defect Removal Effectiveness (DRE) of STP. The 
optimum combination of software defect detection 
techniques choices were determined applying 
orthogonal arrays constructed for post mortem 
designed experiment with collected defect data of a 
real project [27]. By integrating this unique approach 
to requirements management with test management 
and automation tools, tests and test suites can be 
automatically created and executed as in our 
Integrated and Optimized Software Testing Process 
(IOSTP) [25,27]. 
 Software testing remains an important topic in 
software engineering. Testing efficiency and 
effectiveness, two goals which are not always in 
alignment, are both significantly improved. A recent 
report generated for the National Institute of 
Standards and Technology (NIST) found that 
software defects cost the U.S. economy 59.9 billion 
dollars annually [28]. While current technologies 
cannot hope to remove all errors from software, the 
report goes on to estimate that 22 billion dollars 
could be saved through earlier and more effective 
defect detection. 

Black-box testing is a type of software testing 
that ensures a program meets its specification from a 
behavioral or functional perspective. The number of 
possible black-box test cases for any non-trivial 
software application is extremely large. The 
challenge in testing is to reduce the number of test 
cases to a subset that can be executed with available 
resources and can also exercise the software 
adequately so that majority of software defects are 
exposed. One popular method for performing black-
box testing is the use of combinatorial covering 
designs [3-11] based on techniques developed in 
designing experiments. These designs correspond to 
test suites (i.e., a set of test cases) that cover, or 
execute, combinations of input parameters in a 
systematic and effective way, and are most applicable 
in testing data-driven systems where the manipulation 
of data inputs and the relationship between input 
parameters is the focus of testing. As pointed out by 
Dunietz, et al. [10], a technical challenge that remains 

in applying this promising technique in software 
testing is the construction of covering designs. There 
are two issues that need to be considered: the first and 
perhaps more important one is the size of the 
covering design since it dictates the number of test 
cases, and consequently, the amount of resources 
needed to test a software system; the second is the 
time and space requirements of the construction 
itself. 
 A great deal of research work has been devoted 
to generating small test suites [2, 3, 7, 12-16, 25]. 
Most researchers focus on uniform coverage of input 
parameters with uniform ranges; i.e., they consider 
test suites that cover all t -wise combinations of the 
input parameters for some integer t and the input 
parameters are assumed to have the same number of 
values. While such test suites apply to a large number 
of situations, in practice not all t -wise combinations 
of input parameters have equal priority in testing [3, 
25], nor are all parameter domains of the same size. 
Testers often prioritize combinations of input 
parameters that influence a system’s output 
parameters over those that do not [3, 15, 20]. 
Determining which set of input parameters influence 
a system’s output parameters can be accomplished 
using existing analyses [3, 25] or can be discovered 
in the process of determining the expected result of a 
test case.  
 Covering all pairs of tested factor levels has been 
extensively studied. Mandl described using 
orthogonal arrays in testing of a compiler [16]. 
Tatsumi, in his paper on Test Case Design Support 
System used in Fujitsu Ltd [22], talks about two 
standards for creating test arrays: (1) with all 
combinations covered exactly the same number of 
times (orthogonal arrays) and (2) with all 
combinations covered at least once. When making 
that crucial distinction, he references an earlier paper 
by Shimokawa and Satoh [19]. Over the years, 
pairwise testing was shown to be an efficient and 
effective strategy of choosing tests [4-6, 10, 13, 25]. 
However, as shown by Smith et al. [20] and later by 
Bach and Shroeder [3] pairwise, like any technique, 
needs to be used appropriately and with caution. 
Since the probl em of finding a minimal array 
covering all pairwise combinations of a given set of 
test factors is NP-complete [14], understandably a 
considerable amount of research has gone into 
efficient creation of such arrays. Several strategies 
were proposed in an attempt to minimize number of 
tests produced [11]. Authors of these combinatorial 
test case generation strategies often describe 
additional considerations that must be taken into 
account before their solutions become practical. In 
many cases, they propose methods of handling these 
in context of their generation strategies. Tatsumi [22] 
mentions constraints as a way of specifying unwanted 
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combinations (or more generally, dependencies 
among test factors). Sherwood [18] explores adapting 
conventional t-wise strategy to invalid testing and the 
problem of preventing input masking. Cohen et al. [6] 
describe seeds which allow specifying combinations 
that need to appear in the output and covering 
combinations with mixed-strength arrays as a way of 
putting more emphasis on interactions of certain test 
factors. Kuhn et al measured the number of defects 
identified at different strengths of interaction 
coverage in software [13] and also in systems with 
embedded software [23]. Several other examples 
include application of experimental designs (DOE) to 
computer benchmarking, Object Oriented Testing, 
network testing, and compiler testing [24]. Indeed 
several of these mentioned studies have had an 
impact and tools for automatic construction of test 
suites have recently appeared. For instance, the 
Automated Efficient Test Generator tool (AETG) has 
been developed by Telecordia [6]; NASA has funded 
the development of the Test Case Generator tool 
(TCG) [23]; IBM has funded the Combinatorial Test 
Services tool (CTS) [1]; and TestCover.com  has also 
introduced a web-based tool. 

In this study response surface methods for 
computer experiments are investigated and some of 
the approaches available in the literature are 
discussed. The focus is on response surface model 
building using orthogonal arrays designed for 
computer experiments (OACE). Different Defect 
Detection Strategy and Techniques options, 
together with critical STP variables performance 
characteristics (e.g. DRE, cost, duration), are 
studied to optimize design, development, test and 
evaluation (DDT&E) cost using orthogonal arrays 
for computer experiments [25-27]. 

This paper is organized as follows. Section 2 
presents the Best practices for optimized testing. 
Section 3 explain The Orthogonal Array Testing 
Strategy. A novel Orthogonal Arrays application 
as Design of Experiments Optimization Strategy 
are presented in Section 4. Finally, the paper is 
concluded in Section 5. 
 
2  The optimized testing approach  
2.1 Best practices for optimized testing  
 Adopting an optimized testing approach may 
sound overwhelming. However, the truth is that IT 
organizations can adopt optimized testing practices 
incrementally, implementing certain aspects tactically 
to achieve strategic advantage. This section offers 
some suggested ways to adopt an optimized testing 
approach. Optimized testing best practices include 
adoption of the application life cycle, requirements 
management, risk-based testing and automation [26]. 

This section highlights some suggested steps for 
incorporating these areas of optimized testing into 
your existing testing environment. 
 
2.2 Adoption of an application quality life 
cycle 

The cost of fixing defects increases exponentially 
as a defect moves through development into 
production. By adopting an application quality life 
cycle, quality is built in to the application from the 
earliest phases of its life cycle, rather than attempting 
to test it in when it’s too late. This requires discipline 
in defining and managing requirements, 
implementing automated and repeatable best 
practices and access to the right information to make 
confident decisions. This best practice allows you to 
fix defects earlier, when there is more time to 
sufficiently address the problems and it is far less 
expensive. It lays the groundwork for continuous 
process improvement and higher-quality applications 
[25,28]. 
 
2.2.1 Testing Process Activities Flow 
 Once it was clear that Testing was much more 
than “Debugging” or “Problem fixing”, it was 
apparent that testing was more than just a phase near 
the end of the development cycle. Testing has a life 
cycle of its own and there is useful and constructive 
testing to be done throughout the entire life cycle of 
development. This means that testing process begins 
with the requirements phase and from there parallels 
the entire development process. In other words, for 
each phase of the development process there is an 
important testing activity. This necessitates the need 
to migrate from an immature, ad hoc way of working 
to having a full-fledged Testing Process. The 
following is the life cycle for the complete Test 
Development and Execution Process scheme.  

 
Fig. 1 Test Development and Execution Process 
scheme. 
 
The specification defines the program correct 
behavior. The incorrect behavior is a software failure. 
It can be improper output, abnormal termination, and 
unmet time or space constraints. Failures are mostly 
caused by faults, which are missing or incorrect code. 
Error is a human action that produces a failure. An 
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abend is an abort termination of a program (like "blue 
screen of death" by Microsoft Windows). An 
omission is a required capability, which is not present 
in an implementation. Surprise is code that does not 
support a required capability. It can be surprising at 
code reuse. Bug is an error or a fault. The scope of 
STP is the collections of artifacts under test (AUT). 
Testing activities can be categorized by the scope of 
AUT that belongs to corresponding STP or SDL 
phase. Test artifact under test can be the software 
requirement (SRUT), High level design (HLDUT), 
Low Level Design (LLDUT), code being tested is 
called implementation under test (CUT), integration 
test  (IUT) system under test (SUT), or in object-
oriented environment class under test (CLUT), object 
under test (OUT), method under test (MUT).  A test 
case defines the input sequence of data, the 
environment and state of AUT, and the expected 
result. Expected result is what AUT should generate, 

actual result is what was generated by run. An oracle 
produces expected results. An oracle can be an 
automated tool or human resource. A test is called to 
be passing if expected results and actual results are 
equal, otherwise it is called to be no pass or fail.  
Test cases can be designed for positive testing or 
negative testing. Positive testing checks that the 
software does what it should. Negative testing checks 
that the software does not do what it should not do.
A test suit is a collection of test cases related to each 
other. Test run is the execution of a test suit. Test 
driver is a tool (can be a unit or utility program) that 
applies test cases to AUT. A stub is a partial, 
temporary implementation of a component. The 
following figure shows the systems engineering view 
of testing. Test strategy identifies the levels of 
testing, the methods, test detection techniques (DDT) 
and tools to be used. Test strategy defines the 
algorithm to create test cases.  

Fig. 2 The systems engineering view of testing

Test design produces test cases using a test strategy.
Test effectiveness of  DDT is the ability of the test 
strategy to find the bugs. Test efficiency is the cost of 
finding bugs. Strategies for the test design can be 
functional (Black-box), structural (White-box),
hybrid (Gray-box) and fault-based. Functional testing 
is based on the specification of software, without 
knowing something about program code. It uses the 
specified or expected behavior. It is also called
specification based, behavioral, and responsibility-
based or black-box testing.

Structural testing relies on the structure of the
source code to develop test cases. It uses the actual
implementation to create test suits. It is also called
implementation based, white box or clear box testing. 
Hybrid testing is the blend of functional and
structural testing. It is also called gray-box testing.
Fault-based testing introduces faults into code
(mutation) to see if these faults are revealed by a test 
suite. Regression testing is retesting the software with
the same test cases. After a bug is fixed, the product

should be tested at least with the bug revealer test 
case.

Coverage is the percentage of elements required
by a test strategy that have been exercised by a test 
suite. There are many coverage models. Statement

coverage is the percentage of source code statements
executed at least once by a test suite. Clearly,
statement coverage can be used only by structural or 
hybrid testing. Testing should make effort to reach
100% code coverage. This can avoid the user to run
untested code. All these definitions raise a lot of 
questions and problems, and all of them cannot be 
dealt in this article (see references in [25]), although 
the most important ones can be found below. The
testing strategy defines how test design should
produce the test cases, but nothing it can tell us about 
how much testing is enough, and how effective the
testing was. Test case effectiveness depends on 
numerous factors, and can be evaluated after the end 
of testing, which is normally too late. To avoid these 
problems, testers should perform in-process 
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evaluation of proposed and planned STP, according 
to established performance metrics and quality 
criteria [25,29] as we described below.  
 The testers should verify test cases at the end of 
test design, check the conformance of test cases to 
meet the requirements. It should also check the 
specification coverage. Validation is after test 
execution. Knowing the result, an effectiveness rate 
should count, and if it is under the threshold, the test 
suite should be analyzed, and the test process should 
be corrected.  
A simple metric for effectiveness, which is only test 
suite dependent [29]. It is the ratio of bugs found by 
test cases (Ntc) to the total number of bugs (Ntot) 
reported during the test cycle (by test cases or by side 
effect):  
 

TCE= 100 * Ntc / Ntot [%]     (1) 
  

This metric can evaluate effectiveness after a test 
cycle, which provides in-process feedback about the 
actual test suite effectiveness. To this metric a 
threshold value should create. This value is suggested 
to be about 75%, although it depends on the 
application.  
 When the TCE value is above the threshold, the 
test case can be said effective according to very 
useful model for dealing with defects as depicted on 
Fig. 3. If it is below, testers should correct the test 
plan, focusing on side effect bugs.  

 
Fig. 3 Fault Injection Model Traditional 
 
It basically says that given a software project – you 
have defects being “injected” into it (from a variety 
of sources) and defects being removed from it (by a 
variety of means). This high-level model is good to 
use to guide our thinking and reasoning about defects 
and defect processes. So, based on this model, the 
goal in software development, for delivering the 
fewest defects, is to: minimize the  number of defects 
that go in maximize the number of defects that are 
removed. 
 
2.2.2 Defect Removal Efficiency 

A key metric for measuring and benchmarking  the 
IOSTP [25] by measuring  the percentage of possible 
defects removed from the product at any point in 
time. Both a project and process metric – can 
measure effectiveness of quality activities or the 
quality of a all over project by: 
 
DRE = E/(E+D)        (2) 
Where E is the number of errors found before 
delivery to the end user, and D is the number of 
errors found after delivery. The goal is to have DRE 
close to 100%. The same approach is applied to every 
test phase denoted wit i : 
 

DREi = Ei / (Ei + Ei+1)        (3) 
 

Where Ei is the number of errors found in a software 
engineering activity i, and Ei+1 is the number of errors 
that were traceable to errors that were not discovered 
in software engineering activity i. The goal is to have 
this DREi approach to 100% as well i.e., errors are 
filtered out before they reach the next activity. 
Projects that use the same team and the same 
development processes can reasonably expect that the 
DRE from one project to the next are similar.  
 For example, if on the previous project, you 
removed 80% of the possible requirements defects 
using inspections, then you can expect to remove 
~80% on the next project. Or if you know that your 
historical data shows that you typically remove 90% 
before shipment, and for this project, you’ve used the 
same process, met the same kind of release criteria,  
and have found 400 defects so far, then there 
probably are ~50 defects that you will find after you 
release. How to combine DDT to achieve high DRE, 
let say >85%, as a threshold for STP required 
effectiveness, is explained in section 4. which 
describe optimum combination of software defect 
detection techniques choices determination applying 
orthogonal arrays constructed for post mortem 
designed experiment with collected defect data of a 
real project [27]. 
 
2.3 Risk-based testing 
An important area to focus on when optimizing your 
testing is identifying all of the business and technical 
requirements that exist for an application, and then 
prioritizing them based on the impact of failure on 
the business. QA teams should ensure they have 
access to the application’s business and technical 
requirements in order to create effective test 
requirements. Involving business managers, test 
managers and QA architects will help achieve the 
balance of testing that is optimal [25-28]. The 
advantage of automated risk-based testing is that it 
adds a level of objectivity not available with 
traditional testing, where individual testers were left 
to determine what should be tested and when. 
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Thoroughly understanding and correctly prioritizing 
testing requirements can have the greatest impact on 
successful delivery of a high-quality application. By 
implementing an optimized testing solution, IT can 
ensure quality activities accurately reflect business 
priorities, and can make certain they are testing the 
right areas of an application within the constraints of 
the schedule. Using an optimized testing solution, the 
risks are calculated automatically and time estimates 
are rolled up per requirements balancing quality, 
schedule and cost through risk-based practices. This 
allows testers to apply a time factor to existing risk 
factors, which enables users to quickly select the 
highest-priority test cases and understand how long it 
will take to test them [26]. 
 
2.4 Software Testing Optimization Model and 
IT benefits 
 With optimized testing, IT organizations are 
able to balance the quality of their applications with 
existing testing schedules and the costs associated 
with different testing scenarios. Optimized testing 
provides a sound and proven approach that allows IT 
to align testing activities with business value. The 
practices, processes and tools that encompass 
optimized testing offer many benefits. The increasing 
cost and complexity of software development is 
leading software organizations in the industry to 
search for new ways through process methodology 
and tools for improving the quality of the software 
they develop and deliver.  
 
2.4.1 Manage “what-if” scenarios -A Software 
Testing Optimization Model 
 Such scenarios are invaluable for determining 
where testing resources should be spent at the 
beginning of software development project. With an 
optimized testing solution, you can create what-if 
scenarios to help users understand the impact of 
changing risks, cycle attributes and requirements as 
priorities change. This insight proves invaluable 
when a testing organization is trying to determine the 
best way to balance quality with cost and schedule. 
By understanding the impact of different factors on 
testing, IT managers can identify the right balance. 
We applied the End-to-End (E2E) Test strategy in 
our Integrated and Optimized Software Testing 
framework (IOSTP) [25-27]. End-to-End 
Architecture Testing is essentially a "gray box" 
approach to testing - a combination of the strengths 
of white box and black box testing. In determining 
the best source of data to support analyses, IOSTP 
with embedded RBOSTP considers credibility and 
cost of each test scenario i.e. concept. Resources for 
simulations and software test events are weighed 
against desired confidence levels and the limitations 
of both the resources and the analysis methods. The 

program manager works with the test engineers to 
use IOSTP with embedded RBOSTP [26] to develop 
a comprehensive evaluation strategy that uses data 
from the most cost-effective sources; this may be a 
combination of archived, simulation, and software 
test event data, each one contributing to addressing 
the issues for which it is best suited. 
The central elements of IOSTP with embedded 
RBOSTP are: the acquisition of information that is 
credible; avoiding duplication throughout the life 
cycle; and the reuse of data, tools, and information. 
The system/software under test is described by 
objectives, parameters i.e. factors (business 
requirements - BR are indexed by j) in requirement 
specification matrix, where the major capabilities of 
subsystems being tested are documented and 
represent an independent i.e. input variable to 
optimization model. Information is sought under a 
number of test conditions or scenarios. Information 
may be gathered through feasible series of 
experiments (E): software test method, field test, 
through simulation, or through a combination, which 
represent test scenario indexed by i i.e. sequence of 
test events. Objectives or parameters may vary in 
importance αj or severity of defect impacts. Each 
M&S or test option may have k models/tests called 
modes, at different level of credibility or probability 
to detect failure βijk and provide a different level of 
computed test event information benefit Bijkl of 
experimental option for cell (i,j), mode k, and 
indexed option l for each feasible experiment 
depending on the nature of the method and structure 
of the test. Test event benefit Bijkl of feasible 
experiment can be simple ROI or design parameter 
solution or both etc. The cost Cijkl, of each 
experimental option corresponding to (i,j,k,l) 
combination must be estimated through standard 
cost analysis techniques and models. For every 
feasible experiment option, tester should estimate 
time duration Tjikl of experiment preparation end 
execution. The testers of each event, through 
historical experience and statistical calculations 
define the Eijkl's (binary variable 0 or 1) that identify 
options. The following objective function is 
structured to maximize benefits and investment in 
the most important test parameters and in the most 
credible options. The model maintains a budget, 
schedule and meets certain selection requirements 
and restrictions to provide feasible answers through 
maximization of benefit index - BBenefitIndex: 

ijklijkl
l

ijkj
kijlkjindexenefit EBIB ∑∑∑∑= βα

,,,
max  (4) 

Subject to: 
∑∑∑∑ ≤

j
ijklijkl

i k l
BUDGETEC   (Budget 

constraint); 
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∑∑∑∑ ≤
j

ijklijkl
i k l

LETIMESCHEDUET   (Time-

schedule constraint) 
1≤∑

l
ijklE   for all i,j,k (at most one option selected 

per cell i, j, k mode) 
1≥∑∑

k l
ijklE  for all i,j  (at least one experiment 

option per cell i, j) 

3 Orthogonal Array Testing Strategy 
(OATS) and Techniques  
 The Orthogonal Array Testing Strategy 
(OATS) is a systematic, statistical way of testing 
pair-wise interactions.  It provides representative 
(uniformly distributed) coverage of all variable pair 
combinations.  This makes the technique particularly 
useful for integration testing of software components 
(especially in OO systems where multiple subclasses 
can be substituted as the server for a client).  It is 
also quite useful for testing combinations of 
configurable options (such as a web page that lets 
the user choose the font style, background color, and 
page layout).  Dr. Genichi Taguchi was one of the 
first proponents of orthogonal arrays in test design.  
His techniques, known as Taguchi Methods, have 
been a mainstay in experimental design in 
manufacturing fields for decades.  

Orthogonal arrays are two dimensional arrays 
of numbers which possess the interesting quality that 
by choosing any two columns in the array you 
receive an even distribution of all the pair-wise 
combinations of values in the array. The method of 
orthogonal arrays is an experimental design 
construction technique from the literature of 
statistics. In turn, construction of such arrays depends 
on the theory of combinatorics. An orthogonal array 
is a balanced two-way classification scheme used to 
construct balanced experiments when it is not 
practical to test all possible combinations. The size 
and shape of the array depend on the number of 
parameters and values in the experiment. Orthogonal 
arrays are related to combinatorial designs. An 
orthogonal array is a balanced two-way classification 
scheme used to construct balanced experiments when 
it is not practical to test all possible combinations. 
The size and shape of the array depend on the number 
of parameters and values in the experiment. 
 

Definition 1: Orthogonal array O(ρ, k, n, d) 
An orthogonal array is denoted by O(ρ, k, n, d), 
where: 
•  ρ is the number of rows in the array. The k-tuple 
forming each row represents a single test 
configuration, and thus ρ represents the number of 
test configurations. 

•  k is the number of columns, representing the 
number of parameters. 
•  The entries in the array are the values 0, …, n – 1, 
where n = f(n0, …, nk-1). 
Typically, this means that each parameter would have 
(up to) n values. 
•  d is the strength of the array (see below). 
An orthogonal array has strength d if in any ρ × d 
sub-matrix (that is, select any d columns), each of the 
n*d possible d-tuples (rows) appears the same 
number of times (>0). In other words, all d-
interaction elements occur the same number of times. 
Here is some terminology for working with 
orthogonal arrays followed by an example array in 
Fig. 4 [24,25]:  
• Runs - ρ: the number of rows in the array.  This 
directly translates to the number of test cases that 
will be generated by the OATS technique.  
• Factors -  k: the number of columns in an array.  
This directly translates to the maximum number of 
variables that can be handled by this array.  
• Levels - n: the maximum number of values that can 
be taken on by any single factor.  An orthogonal 
array will contain values from 0 to Levels-1.  
• Strength - d: the number of columns it takes to see 
each of the LevelsStength possibilities equally often.  
• Orthogonal arrays are most often named following 
the pattern LRuns(LevelsFactors).  

  Factors 
0 0 0 0 
0 1 1 2 
0 2 2 1 
1 0 1 1 
1 1 2 0 
1 2 0 2 
2 0 2 2 
2 1 0 1 

R 
u 
n 
s 

2 2 1 0 
 
Fig. 4 An L9(34) orthogonal array with 9 runs, 4 
factors, 3 levels, and strength of 2. 
 
3.1 Facts  and Industry experiences 
 Being intelligent about which test cases you 
choose can make all the difference between (a) 
endlessly executing tests that just aren't likely to find 
bugs and don't increase your confidence in the 
system and (b) executing a concise, well-defined set 
of tests that are likely to uncover most (not all) of 
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the bugs and that give you a great deal more comfort 
in the quality of your software.  
Some advantage of the Orthogonal Array Testing 
Strategy (OATS) is outlined below: 
• Pairwise testing protects against pairwise bugs 
while dramatically reducing the number of tests to 
perform which is especially cool because pairwise 
bugs represent the majority of combinatoric bugs and 
such bugs are a lot more likely to happen than the 
ones that only happen with more variables. 
• Plus, the availability of tools means you no longer 
need to create these tests by hand. 
• Pairwise testing might find some pairwise bugs 
while dramatically reducing the number of tests to 
perform, compared to testing all combinations, but 
not necessarily compared to testing just the 
combinations that matter, which is especially cool 
because pairwise bugs represent the majority of 
combinatoric bugs, or might not, depending on the 
actual dependencies among the variables in the 
product, and such bugs are more likely to happen 
than ones that only happen with more variables, or 
less likely to happen, because user inputs are not 
randomly distributed. 
• Plus, the availability of tools means you no longer 
need to create these tests by hand, except for the work 
of analyzing the product, selecting variables and 
values, actually configuring and performing the test, 
and analyzing the results. 
What do all pairs do? 
• Input is a set of equivalence classes for each 
variable. 
• Sometimes the equivalence classes are those used 
in Boundary Value testing (min, min+, nominal, max-
, max) 
• Output is a set of (partial) test cases that 
approximate an orthogonal array, plus some pairing 
information. 
All pairs assumptions are: 
• Variables have clear equivalence classes. 
• Variables are independent. 
• Failures are the result of the interaction of a pair of 
variable values. 
OATS provides a means to select a test set that: 
• Guarantees testing the pair-wise combinations of 
all the selected variables.  
• Creates an efficient and concise test set with many 
fewer test cases than testing all combinations of all 
variables.  
• Creates a test set that has an even distribution of all 
pair-wise combinations.  
• Exercises some of the complex combinations of all 
the variables.  
• Is simpler to generate and less error prone than test 
sets created by hand.  

 As an example of the benefit of using the 
OATS technique over a test set that exhaustively 
tests every combination of all variables, consider a 
system that has four options, each of which can have 
three values.  The exhaustive test set would require 
81 test cases (3 x 3 x 3 x 3 or the Cartesian product 
of the options).  The test set created by OATS (using 
the orthogonal array in Fig. 4) has only nine test 
cases, yet tests all of the pair-wise combinations.  
The OATS test set is only 11% as large at the 
exhaustive set and will uncover most of the 
interaction bugs.  It covers 100% (9 of 9) of the pair-
wise combinations, 33% (9 of 27) of the three-way 
combinations, and 11% (9 of 81) of the four-way 
combinations.  The test set could easily be 
augmented if there were particularly suspicious 
three- and four-way combinations that should be 
tested. Interaction testing can offer significant 
savings. Indeed a system with 20 factors and 5 levels 
each would require 520 = 95 367 431 640 625 i.e. 
almost 1014 exhaustive test configurations. Pair-wise 
interaction testing for 520 can be achieved in 45 tests. 
 
3.2 How to use this technique  
The OATS technique is simple and straightforward.  
The steps are outlined below.  
1. Decide how many independent variables will be 
tested for interaction.  This will map to the Factors 
of the array.  
2. Decide the maximum number of values that each 
independent variable will take on.  This will map to 
the Levels of the array.  
3. Find a suitable orthogonal array with the smallest 
number of Runs. A suitable array is one that has at 
least as many Factors as needed from Step 1 and has 
at least as many levels for each of those factors as 
decided in Step 2.  
4. Map the Factors and values onto the array.  
5. Choose values for any "left over" Levels.  
6. Transcribe the Runs into test cases, adding any 
particularly suspicious combinations that aren't 
generated.  
 
3.3 OART application areas in software 
testing 
OART can be applied to Black-box testing strategy as 
outlined below: 
• Unit testing: derive test cases for black-box testing 
of single components, 
• System testing: derive test cases for black-box 
testing of entire systems, 
• Known that significant number of failures is caused 
by parameter interactions that occur in typical, yet 
realistic situations, 
• Assume that tests maximizing the interactions 
between parameters will find more faults, 
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• Test at least for all two-way interactions among all 
input parameter combinations because exhaustive 
testing (i.e. executing test cases for all possible input 
parameter combinations) cannot be afforded, 
• Assume that the risk of an interaction failure among 
three or more input parameters is balanced against the 
ability to complete testing within a reasonable 
budget, 
• Calculate the minimal set of test parameter 
combinations that test each pair-wise parameter 
combination. 
 
OART can be applied to Configuration Testing as 
outlined below: 
• Testing of complex systems with multiple 
configurations, 
•  Interoperability testing, 
• Web testing, 
• Known that faulty interaction between system 
components is a common source of system failures,  
• Re-use existing suite of (system) test cases, 
• Test at least for all two-way interactions among 
various system components because exhaustive 
testing (i.e. executing a suite of test cases for all 
possible configurations) cannot be afforded, 
• Assume that the risk of an interaction failure among 
three or more components is balanced against the 
ability to complete testing within a reasonable 
budget, 
• Calculate the minimal set of test configurations that 
test each pair-wise combination of components. 
Which test input data shall be selected and what is 
benefit of OATS technique? 

• Intelligent test case generation is vital to cut down 
costs and improve the quality of testing, 
• Dramatically reduced overall number of test cases 
compared to exhaustive testing, 
• Detects all faults due to a single parameter input 
domain, 
• Detects all faults due to interaction of two 
parameter input domains, 
• Detects many faults due to interaction of multiple 
parameter input domains. 
 
Case studies [23,25,30] give evidence that the 
approach compared to conventional approaches is:  
• more than twice as efficient (measured in terms of 
detected faults per testing effort) as traditional 
testing, 
• about 20% more effective (measured in terms of 
detected faults per number of test cases) as traditional 
testing, 
• Approach is applicable: 

 to generate detailed test case input data 
during unit testing 

 to generate high-level test cases during 
system testing 

 to generate test cases during configuration 
testing 

 seamlessly with conventional test methods. 
 
For illustration let us analyze this example of 
Configuration Testing of communication system 
under test that has 4 components, each of which has 3 
possible elements as depicted in Fig.5 .

 

 
 

Fig. 5 Example of Configuration Testing of communication system 
 

Those 4 components are: Calling phone ( Regular 
phone, Mobile phone, Coin phone), Call type ( Local 
call, Long distance call, Toll free), Access (ISDN, 
PBX, Loop), and Called phone (Mobile phone, 

Regular phone, Pager), each of which has 3 quoted 
possible elements. 
Suite of system test cases exists and has to be 
executed with overall 81 = 3x3x3x3, number of 
possible configurations. But, with applying OART 
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algorithm according to Fig. 4, requires only 9 test 
configurations instead of 81 that are already 
sufficient to cover all pair-wise component 
interactions. 
 
4 A novel Orthogonal Arrays 
application as Optimization Strategy 
Experimental optimization can be carried out in 
several ways. Most popular is the one-variable-at-a-
time approach. This approach is however extremely 
inefficient in locating the true optimum when 
interaction effects are present. Multivariable design 
of experiments are since many years used to 
overcome the problems with interaction effects. 
There are two general groups of designs to choose 
from: Sequential or simultaneous experiment designs. 
The choice depends of the purpose of the study.  
Are these both approaches, sequential and 
simultaneous design of experiments, competing 
alternatives or can they be joined into a 
comprehensive and effective optimization and model-
building strategy? Our a novel Orthogonal Arrays 
application, may have come up with the answer. In 
this approach is first to optimize and then to study 
variable effects, significance, etc. (i.e. model-
building).  
In the past, optimization usually required answers to 
three ordered questions:  

1. What variables (in our case, which Defect 
Detection Techniques – DDT) are the most 
significant?  
2. In what way (in our case, find optimum DDT 
combination) do they affect the quality (in our case, 
effectiveness of software test activities with Defect 
Removal Efficiency – DRE) of the product or 
process?  
3. What is the optimal combination of settings for 
these significant variables (in our case, DDT)?  
 
4.1 DDT evalouation or Measurement Choice 
like customer satisfaction index
 Before, Orthogonal Arrays application as 
Optimization Strategy – OAOS, we did DDT 
evaluation like customer satisfaction index to answer 
the 1. question above i.e. which Defect Detection 
Techniques – DDTs are the most significant. Every 
tester in test team assess 5 most frequently used 
DDT: DDT1= Inspection – DBR, DDT2= PBR, 
DDT3= CEG+BOR+MI, DDT4= M&S, DDT5= 
Hybrid (Category Partition, Boundary value 
analysis,…., Path testing etc.), as briefly described in 
this section, according to nine Performance and 
Quality criteria given in Table 1. We have chosen a 
unified ordinal scale for the empirical Performance 
and Quality criterion from 1 (worst) to 5 (best) of the 
tester satisfaction level (TS level). This aspect is at 
most indeterminate in our approach. 

  
Table 1. DDT Performance and Quality criteria for tester’s assessment 

 
Criterion 

Ck

Name Description 

1 Overall Considering all aspects of the experience, how would you rate your overall level 
of satisfaction with DDT e.g. Combinatorial Test Services? 

2 Capability How satisfied are you that DDT e.g. Combinatorial Test Services has the 
functions and features to perform as expected? 

3 Usability How satisfied are you with the "ease of use" of DDT e.g. Combinatorial Test 
Services? 

4 Performance How satisfied are you with the response time or speed with which DDT e.g. 
Combinatorial Test Services executes its functions? 

5 Reliability How satisfied are you with the frequency, number, and seriousness of errors in
DDT e.g. Combinatorial Test Services? 

6 Installation How satisfied were you with the ease of installation, initialization, and migration 
of DDT e.g. Combinatorial Test Services? 

7 Maintenance How satisfied are you with getting updates from alphaWorks, or patches from 
the development team for DDT e.g. Combinatorial Test Services?   

8 Information How satisfied are you with the accuracy, completeness, and time it takes to find 
information (online help, etc.) for DDT e.g. Combinatorial Test Services? 

9 Service How satisfied are you with the effectiveness of the DDT support e.g. 
alphaWorks discussion forum for Combinatorial Test Services, and responses to 
your e-mails? 

 
The three Static Analysis test techniques are all 
based on Behavior Analysis which enables analysts 
to convert narrative text into a tabular representation 
that are DDT candidates: Defect-based reading – 

DBR as DDT1, perspective-based reading-PBR as 
DDT2 ,and Simulation and Model Testing of the 
Design prior to Implementation – M&S as DDT4. In 
its own right, Behavior Analysis helps to find errors 
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in requirements because it demands the analyst 
adopt a systematic approach to extracting functions, 
conditions and responses from the requirements text 
before synthesizing elementary test cases which can 
be validated individually. Even if the three test 
techniques are not used, Behavior Analysis is an 
effective method for finding errors in requirements 
and other software development documents (R&D 
D). The technique is easy to learn and implement, 
and can be applied to requirements documents of 
any size by selecting only critical sections for 
analysis. 
 Behavior Analysis is a pre-requisite for the 
three test methods; inspection, walkthrough and 
animation, and each test technique have its own area 
of applicability and benefits:  
• test by inspection is useful where traditional 
inspections would be too difficult, time-consuming 
or expensive to implement in the user community  
• test by scenario walkthrough is useful where the fit 
between proposed system and new or changed 
business process is a key consideration  
• test by animation is most useful where 
requirements are not stable, where the system is 
aimed at individual users or where a more controlled 
Prototyping technique is required.  
 Errors in requirements present a most difficult 
challenge. Developers find it almost impossible to 
detect errors in requirements without the help of 
users. New methodologies involve users much more 
intimately, but these techniques are successful in 
specific situations where the risk of errors is low and 
overall project size is small. Traditional 
developments of larger systems still use a staged, 
rather than an iterative approach. Users are 
intimately involved only in the earliest stages and at 
the very end. The risk of requirements errors is 
extremely high in such projects, but in most cases 
requirements are not adequately tested. Many of 
these projects fail in the end, when the cost is 
highest, because they could not deliver the required 
business benefits. Testing of requirements and other 
software development documents (R&D D) is 
potentially the most valuable testing we can do, 
because errors in requirements are usually the most 
expensive to correct later, and present the biggest 
threat to the project's success. Behavior Analysis, 
testing by inspection, testing by walkthrough and 
testing by animation offer some hope that 
requirements can be `got right first time'. 
 A Cause-Effect Graphing – CEG+BOR+MI 
[15] is used as DDT3. The Cause-Effect Graphing 
technique was invented by Bill Elmendorf of IBM in 
1973. Instead of the test case designer trying to 
manually determine the right set of test cases, he/she 
models the problem using a cause-effect graph, and 
the software that supports the technique [15], 

calculates the right set of test cases to cover 100% of 
the functionality. The cause-effect graphing 
technique uses  he same algorithms that are used in 
hardware logic circuit testing. Strict test case design 
in hardware ensures virtually defect free hardware. 
The starting point for the Cause-Effect Graph, 
applied to software testing, is the requirements 
document. The requirements describe what the  
system is intended to do. The requirements and other 
software development documents can describe real 
time systems, events, data driven systems, state 
transition diagrams, object oriented systems, 
graphical user interface standards, etc. A 
specification based testing strategy, called CEG-BOR 
[15], combines the use of cause-effect graphs (CEGs) 
as a mechanism for representing specifications and 
the use of the Boolean operator (BOR) strategy for 
generating tests for a Boolean expression. If all 
causes of a CEG are independent from each other, a 
test set for the CEG can be constructed such that all 
boolean operator faults in the CEG can be detected 
and the size of this test set grows linearly with the 
number of nodes in the CEG. Four case studies are 
conducted to provide empirical data on the 
performance of CEG-BOR [15]. Empirical results 
indicate that CEGs can be used to model a large class 
of software specifications and that CEG-BOR is very 
effective in detecting a broad spectrum of faults. 
Also, a BOR test set based on a CEG specification 
provides better coverage of the implementation code 
than test sets based on random testing, functional 
testing, and state-based testing. For a CEG that does 
not have mutually independent causes, the BOR 
strategy does not perform well. To remedy this 
problem, a new test generation strategy is presented, 
which combines the BOR strategy with the 
Meaningful Impact (MI) strategy, a recently 
developed test generation strategy for Boolean 
expressions. This new strategy, called BOR+MI [15], 
decomposes a Boolean expression into mutually 
independent components, applies the BOR or MI 
strategy to each component for test generation, and 
then applies the BOR strategy to combine the test sets 
for all components. The size and fault detection 
capability of a BOR+MI test set are very good. Both 
analytical and empirical results show that the 
BOR+MI strategy generates a smaller test set than the 
MI strategy and provides comparable fault detection 
ability as the MI strategy. This extension, called 
BRO+MI, detects incorrect relational operators in 
relational expressions and also accounts for user-
defined or implicit restrictions on the causes of a 
CEG. 
Traditional Test Case Design Techniques, including 
Equivalence Class Partitioning, Boundary Value 
Analysis and some White-box (statement, branch and 
path covering) are combined in Hybrid or Gray-box 
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DDT that we denoted as DDT5 . These techniques 
rely on the test case designer to manually work out 
the proper combinations of test cases. Often, the test 
case designer does not use a formal test case design 
technique and relies on his/her “gut feel” to assess 
whether test coverage is sufficient. While these 
techniques do generate combinations of test cases, 
they often fall short on providing full functional 
coverage. Too often the normal flow or “go path” 
functionality has overlapping, redundant test cases, 
while exceptions and error conditions go untested. 
The Full-Lifecycle IOSTP methodology is a 
collection of testing techniques to verify and validate 
broad types of software products. The IOSTP  uses a 
wide variety of techniques (described in [25]) that are 
available to deploy throughout all aspects of software 
development.   The list of techniques is not meant to 
be complete – instead the goal is to make it explicit 
wide range of options available for STP optimization. 
 
4.2 Application of the Borda optimal positional 
voting method to DDT ranking  
The Borda method is used in the Risk Matrix 
software application [31] to rank risks from most-to-
least critical on the basis of multiple evaluation 
criteria. We adapted this Borda method, on similar 
way, to rank all used Defect Detection Techniques 
(DDT) through software development life cycle from 
most-to-least performance and quality characteristics 
of DDT in revealing software faults (bugs, errors). 
This section describes in detail how the Borda 
method is applied, using the sample of DDT 
Assessment Entries Worksheet that every tester in 
test team provided as an illustration. 
On the other hand, it is necessary to map the possible 
metrics values to the ordinal scale of the empirical 
criterion. We have chosen a unified ordinal scale for 
the empirical criterion from 1 (worst) to 5 (best) of 
the tester satisfaction level (TS level). This aspect is 
at most indeterminate in our approach. Hence, its tool 
support requires high flexibility for the adjustment or 
tuning of the measurement process of the customer 
satisfaction determination. 
 Borda proposed the following voting method in 
1770: Given N  - DDT candidates, if points of N -1, N 
- 2, . . . , and 0 are assigned to the first-ranked, 
second-ranked, . . . , and last-ranked candidate in 
each test team voter’s preference order, then the 
winning candidate is the one with the greatest total 
number of points. Instead of voters, suppose that 
there are multiple criteria. If rik is the rank of 
alternative i - particular DDT, under criterion k = 1 to 
9 ( DDT  criteria from Table 1), the Borda count for 
alternative i is 

bi =∑ .      (5) 
=

−
9

1
)(

k
ikrN

The alternatives are then ordered according to these 
counts. The Borda method is an example of a 
positional voting method, which assigns Pj points to a 
voter’s jth-ranked candidate, j = 1, . . . , N, and then 
determines the ranking of the candidates by 
evaluating the total number of points assigned to each 
of them. Voting theorists [31] have shown that the 
Borda method is the optimal positional voting 
method with respect to several standards, such as 
minimizing the number and kinds of voting 
paradoxes. In addition, if ties are not present in the 
criteria rankings, it is demonstrated that the Borda 
method is equivalent to determining the consensus 
rankings that minimize the sum of the squared 
deviations from the criteria rankings. The Borda 
method has been used to rank alternatives in a variety 
of applications, including a cost and operational 
effectiveness analysis (COEA) and an aircraft 
maintenance study. In the  DDT ranking application, 
let N be the total number of DDTs, and the index i 
denote a particular DDT. Let the  DDT criterion of  
Overall (from Table 1) assessment be denoted by k = 
1, and the DDT criterion of Capability assessment be 
denoted by k = 2 etc. The rest of this section 
describes how the Borda voting method is 
implemented in our DDT rank assessment case. 
 
4.2.1 Evaluate Rank of Each DDT with Respect to 
Overall criterion 
Let J  be the total number of possible Overall 
assessments. As discussed above, a DDT can be 
assessed by tester, as for the empirical criterion from 
1 (worst) to 5 (best) of the tester satisfaction level 
(TS level), and so there are J = 5 possible 
assessments. Let Qj be the j-th possible Overall 
assessment, which is assumed to be ordered in the 
following way: Qj  has a higher Overall point than 
Qj+1. Thus, Q1 = 1 (TS level), Q2 =2 (TS level), etc. 
Let Mj be the number of DDTs having Qj as the 
Overall rating. Table 2 gives the values of Mj that 
correspond to the sample given by testers. 
 
Table 2 Values of Qj, Mj, and Tj for sample given by 

testers 
 

j Qj Mj Tj 
1 5 (best) 2 1.5 
2 4 3 4 
3 3 0 N/A 
4 2 0 N/A 
5      1 (worst) 0 N/A 

 
Let T j be the rank position for all DDTs that are given 
the j-th possible impact assessment. 
How can we evaluate this rank position? The basic 
approach is to evaluate the rank of a tied alternative 
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as the average of the associated rankings. The 
following is a key result: if a is the first term in an 
arithmetic progression, t is the final term, and n is the 
number of terms, then (n/2)(a + t) is the sum of the n 
terms. Because there are M1 DDTs that are tied for 
positions 1 through M1 , the sum of these rank 
positions is (M1  / 2)(1 + M1) . Thus, the average of 
this sum is T1  = (1/ 2)(1  + M1)  . Similarly, there are 
M2  DDTs that are tied for positions M1 + 1 through 
M1 + M2, so that the average of this sum is T2 = (1/ 2)( 
2M1+ 1 + M2) . More generally, if M j > 0, 
Tj = 1/2(2Cj + 1+ Mj), where 
 

Cj =         (6) ∑
−

=

1

1

j

r
rM

 
for j > 1 and  C1 =0 . The values of  Tj are given in 
Table 2 for the sample given by testers. 
Let ri1 be the rank of the i- th DDT with respect to the 
impact assessment. If the i-th DDT has the j-th 
possible impact assessment, then set ri1= Tj . The 
values of ri1 are given in Table 3 for the sample given 
by testers. 
 

Table 3 Borda Points and Count for sample given by 
testers 

 

DDT 
No. 

C1 
Criterion 

 

C2 
Criterion 

 

ri1 ri2 Borda 
Count 

Borda 
Rank 

1 5 3 1.5 3.5 5 0 

2 4 5 4 1 5 0 

3 4 4 4 2 4 3 

4 5 3 1.5 3.5 5 0 

5 4 2 4 5 1 4 

 
4.2.2 Evaluate Rank of Each DDT with Respect to 
Capability criterion 
Let H be the total number of possible Capability 
assessments. As discussed above, there are five default 
Capability ranges and so H = 5. Let Ph be the highest 
Capability associated with the h-th possible 
assessment, and let these be ordered such that Ph > 
Ph+1.   Let Nh be the number of DDTs that are 
assigned the h-th possible Capability assessment. 
Table 4 shows the values of Ph and Nh that are used 
for our numerical example, where the values of Nh are 
derived from sample given by testers. 
Let Sh  be the rank position for all DDTs that are 
given the h-th possible Capability assessment. 
As before, if Nh > 0, 
 

Sh = 1/2(2BBh + 1+ Nh), where 

Bh =       (7) ∑
−

=

1

1

h

r
rN

for h > 1 and BB1 = 0. The values of Sh are given in 
Table 4 for the sample given by testers. 
 
Table 4 Values of Ph, Nh, and Sh for Sample given by 

testers 
 

h Ph Nh Sh

1 5 1 1 
2 4 1 2 
3 3 2 3.5 
4 2 1 5 
5 1 0 N.A. 

 
Let r12 be the rank of the ith DDT respect to the 
Capability of occurrence. If the ith DDT has the h-th 
possible assessment, then set r12 = Sh. The values of 
r12 are given in Table 3 for the sample given by 
testers. 
 
4.2.3 Determine Borda Ranking of Each DDT 

Let N  be the total number of DDTs, which satisfies 

N =∑      (8) 
=

H

h
hN

1

The Borda Count for DDT i is computed with formulae: 
 

bi= (N- ri1) + (N- ri2)    (9) 
 

The final step is to rank the DDTs with respect to their 
Borda Count. In particular, the DDT with the highest 
Borda Count is the best DDT according to testers 
Performance and Quality multi-criteria assessment, the 
DDT with the second highest count is the next  DDT 
with highest score, and so forth. The Borda Rank for 
given DDT is the number of other DDTs that are better 
then that DDT. Table 3 provides both the Borda Count 
and Borda Rank for the sample given by testers. Defect 
Detection Techniques  DDT1, DDT2, and DDT4 are 
tied with the highest Borda Count, and so their Borda 
Rank is 0. DDT3 has a Borda Rank of  3, because there 
are three other DDTs that are more critical. DDT5  has 
a Borda Rank of  4, because there are four other 
DDTs that are better then that DDT5. The foregoing 
algorithm has been implemented as part of the software 
application. The same procedure is accomplished for 
the rest 7 criteria and Borda Rank for the sample given 
by testers wasn’t changed i.e. were the same.  
As a conclusion after Borda Ranking of DDT 
candidates, we did DDT evaluation like testers 
satisfaction index to answer the 1. question from 
optimization point of view i.e. which Defect 
Detection Techniques – DDTs are the most 
significant? According to testers assessment of 5 
most frequently used DDT in IOSTP [25]: DDT1= 
Inspection – DBR, DDT2= PBR, DDT3= 
CEG+BOR+MI, DDT4= M&S, DDT5= Hybrid 
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(Category Partition, Boundary value analysis, Path 
testing etc.) three of DDTs have the highest rank 0 
i.e. DDT1=DDT2=DDT4=0, then DDT3= 
CEG+BOR+MI is next ranked and the last was 
DDT5. Because of that we will group those three 
DDT with highest rank 0, call them Static Test 
Techniques – TT1 and treat all three DDTs as one 
factor in optimization experiment applying 
Orthogonal Arrays as Optimization Strategy.  Next 
high Borda ranked DDT4= CEG+BOR+MI we 
designate with TT2 and the last ranked DDT5 as 
TT3.  
In next section we provided the answers to 2. and 3. 
optimization question given above i.e. in what way 
DDTs combination do affect the quality (in our case, 
effectiveness of software test activities with Defect 
Removal Efficiency – DRE) of the software testing 
process and what is the optimal combination of DDTs 
for these significant variables (in our case - TT1,TT2 
and TT3)? 
 
4.3 Response Surface Model Building Using 
Orthogonal Arrays 
Multidisciplinary design optimization (MDO) is an 
important step in the conceptual design and 
evaluation of STP effectiveness and efficiency 
since many factors has a significant impact on 
performance and software development lifecycle 
(SDL) cost. The objective in MDO is to search the 
software design and STP space efficiently to 
determine the values of design and process 
variables that optimize performance characteristics 
subject to system constraints. 
An alternative is to utilize response surface 
methodology (RSM) to obtain mathematical models 
that approximate the functional relationships 
between performance characteristics and 
design/process variables. A common approach 
used in RSM is to utilize central composite designs 
(CCD) from the design of experiments literature to 
sample the SDL and STP space efficiently [25,27]. 
With this approach, design analyses (experiments) 
are performed at the statistically selected points 
specified by a CCD matrix. The resulting data is 
used to construct response surface approximation 
models using least squares regression analysis. 
These response surface equations are then used for 
MDO and for rapid sensitivity studies. 
However, like most experimental designs, CCD is 
designed with the physical experiments in mind 
where the dominant issue is the variance of 
measurement of the response. In a physical 
experiment, there is usually some variability in the 
output response with the experiment repeated with 
the same inputs. In contrast, the output of 

computer (software testing) experiments is (in 
almost all cases) deterministic. Generally, there is 
no measurement error or no variability in analysis 
outputs. Therefore, experimental designs 
constructed to minimize variability of 
measurements may not be the best choice for 
computer experiments [17]. 
In this study response surface methods for 
computer experiments are investigated and some of 
the approaches available in the literature are 
discussed. The focus is on response surface model 
building using orthogonal arrays designed for 
computer experiments (OACE).  
 
4.3.1 Response Surface Model Building Using 
Central Composite Designs 
Response surface methods (RSM) can be utilized 
for MDO in cases where computerized design tool 
integration is difficult and design effort is costly. 
The first step in RSM, is to construct polynomial 
approximations to the functional relationships 
between design or process variables and 
performance characteristics (e.g. DDT, DRE) 
[25,27]. In the next step, these parametric models 
are used for MDO and to determine variable 
sensitivities. A quadratic approximation model in 
the form given below (10) is commonly used since 
it can account for individual parameter effects, 
second-order curvature or non-linearity (square 
terms), and for two-parameter interactions (cross 
terms). 
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where : - approximation of output variable i.e. 
trial response (the performance characteristic to be 
optimized), k- number of factors, b

ŷ

0 ,bij – are 
estimated least squares regression coefficients, 
based on the design and analysis data obtained by 
sampling the design/process space (or by 
conducting experiments), 

x
xx

X ii
i Δ

−
= 0  coded ith 

factor values, xi –real ith factor values, xi0  -real factor 
value in “NULL" point (point in experimental 
center) and Δx- variation interval. 
In some cases, however, RSM using CCD may not 
result in a good representation of the response 
surface as may be evidenced by poor predictions of 
the design analysis results. The reasons for this 
problem can be mainly due to; 
1) The response surface is more complex than can 

be represented by a 
second order approximation model given by 
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equation (10), 
2) There are other influential design/process 

variables and interactions other than 
those currently under study, 

3) The sample design points (experiments) 
specified by a CCD may not be 
suitable in terms of selection of these specific 
points for experimentation 
with computerized design analysis tools. 

The third problem is directly related to the choice 
of specific experimental design points. In order to 
address this problem and to improve response 
surface model building using computer 
experiments, a study was conducted.  
 
4.3.2 Response Surface Model Building Methods 
for Computer Experiments 

Bayesian approach to experimental design 
appears to be a growing area of research. However, 
the application of Bayesian experimantal design 
methods in real design analysis and optimization 
problems have been limited partly due to the lack 
of user friendly software [17]. Further development 
appears to be needed before they can be applied to 
practical design optimization problems. 
The frequentist approach, surveyed by Owen [17] 
on the other hand, introduces randomness by 
taking function values that are partially 
determined by pseudorandom number generators. 
Then this randomness is propagated through to 
randomness in the estimate. Owen, lists a set of 
randomized orthogonal arrays for computer 
experiments. The Statlib computer programs 
(http://lib.stat.cmu.edu/designs/) to generate 
these orthogonal arrays are also listed. 
The use of these orthogonal arrays in practice for 
response surface model building would be similar 
to utilizing central composite designs, with a 
potential of improving model accuracy for 
computer experiments. In the following section, an 
example application to an optimum DDTs 
combination selection and optimization study for 
an Integrated and Optimized Software Testing 
Process IOSTP [25] is presented. 
 
4.3.3 Example Application: optimum DDTs 
combination selection and optimization study for 
an IOSTP 
Traditionally, the objective in a MDO study has 
been to search the design space to determine the 
values of design variables (such as DDTs) that 
optimize a performance characteristic (such as 

DRE) subject to software testing process 
constraints. However, research shows that up to 
82% of the life software testing cycle cost is 
committed during the early design phase [25,29]. 
Therefore, significant cost savings could be realized 
if designers and test managers were better able to 
evaluate their designs on a cost basis. 
This study focuses on rapid multidisciplinary 
analysis and evaluation-on-a-DRE maximum-basis 
for DDT combination choices selection for each test 
phase activities i.e. P1- software requirement 
(SRUT), P2- High level design (HLDUT), P3- Low 
Level Design (LLDUT), P4- code under test (CUT), 
P5- integration test  (IUT), P6- system under test 
(SUT) and finally P7- Acceptance test, recall section 
2.2.1. Different Defect Detection Strategy and 
Techniques options, together with critical STP 
variables performance characteristics (e.g. DRE, 
cost, duration), are studied to optimize design, 
development, test and evaluation (DDT&E) cost 
using orthogonal arrays for computer experiments 
[25-27]. Calculus-based optimizers could not have 
been used in this case since material and 
technology options selection require the study of 
design variables that have discrete values. This 
study has the following steps: 
 
1. Identify the design variables to be studied and 
alternative levels
In this study, design of maximum DRE percentage 
of STP optimization problem solving with best 
DDT choice combination in each phase P1 to P7 as 
controlled variables values is determined by 
designed experiment plan using orthogonal arrays 
designed for this computer experiment (OACE). 
To simplify the analysis such as decreasing 
factor’s values (only three DDT number) applying 
Borda Ranking of DDT candidates with highest 
rank, several design disciplines were decoupled 
from the present analysis.  
Seven major test phases P1 to P7 for accounting 
maximum DRE percentage all over STP fault 
injection and removal model (see Fig. 3) for DDT 
candidate selection in each test phase were 
determined. These were the Static Test Techniques 
– TT1 (consisting of three DDTs as one factor in 
optimization experiment applying Orthogonal 
Arrays as Optimization Strategy), the  TT2 i.e. 
DDT4= CEG+BOR+MI and TT3 – Hybrid Detection 
Technique= DDT5 (consisting of Category Partition, 
Boundary value analysis, Path testing etc.). The 
objective of this investigation was then to determine 
the best combination of Test Techniques options for 
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the seven major test phase activities sections 
optimized for STD&STP maximum DRE 
percentage under cost and time constraints 
according to IOSTP benefit index maximization in 
(4) [25-27]. 
 
2. Design the experiment and select an 
appropriate orthogonal array 
Owen [17], lists a set of orthogonal arrays for 
computer experiments. For this study, an 
orthogonal array that enables the study of seven 
variables with three levels each was selected 
(http://lib.stat.cmu.edu/designs/owen.small). If a 
full factorial design where all possible variable/TT 
combinations studied would have required 2,187 
(37) experiments while in Orthogonal Array design 
of experiment plan only 18 experiments are enough 
as shown on Table 5. Variable interactions were 
assumed to be insignificant for this study. 
 

Table 5 Seven Variable Orthogonal Array with three 
levels each [17]  

No. of 
Exper. 

P1 P2 P3 P4 P5 P6 P7

1 1 1 3 2 3 1 1 

2 3 2 2 1 1 3 1 

3 2 3 1 3 2 2 1 
4 1 2 1 1 2 1 2 

5 3 3 3 3 3 3 2 
6 2 1 2 2 1 2 2 

7 1 3 2 1 3 2 3 
8 3 1 1 3 1 1 3 

9 2 2 3 2 2 3 3 

10 1 3 1 2 1 3 1 

11 3 1 3 1 2 2 1 

12 2 2 2 3 3 1 1 
13 1 1 2 3 2 3 2 

14 3 2 1 2 3 2 2 
15 2 3 3 1 1 1 2 

16 1 2 3 3 1 2 3 
17 3 3 2 2 2 1 3 

18 2 1 1 1 3 3 3 

3. Conduct the orthogonal array experiments
The eighteen matrix experiments were conducted 
using a DRE estimating relationships in an post-
mortem real project data doing “what-if” analysis 
i.e. which DRE percentage of all over IOSTP will 
be reached if we combine DDTs in different way 

par test phase activities (P1 to P7) according to 
Borda ranking result and Orthogonal Array design 
of experiment plan in 18 experiments from Table 5 
where TT1 is codded as 1, TT2 as 2 and TT3 as 3. 
The analysis results of the 18 experiments for 
IOSTP DRE percentage and corresponding TT 
selection per each test phase are presented in Table 
6. For the 18 DDT  combinations shown in Table 6, 
the highest DRE is 94.44 % (experiment number 
seven).  
 

Table 6  The “what-if” analysis results of OACE 
experiment 

 
 

Exp. 
No.

P1 P2 P3 P4 P5 P6 P7 DRE 
(%) 

1 
    2 
    3 

1 
3 
2 

1 
2 
3 

3 
2  
1 

2 
1 
3 

3 
1 
2 

1  
3  
2 

1 
1 
 1 

90.5 1 
84.79 
87.66 

4 
5 
6 

1 
  3 
  2 

2 
3 
1 

1  
3  
2 

1  
3  
2 

2  
3  
1 

1  
3  
2 

2 
2 
2 

91.27 
80.34 
81.66 

7 
8 
9 

1 
3 
2 

3 
1 
2 

2  
1  
3 

1  
3  
2 

3  
1  
2 

2  
1  
3 

3 
3 
3 

94.44 
83.14 
82.99 

10 
11 
12 

1 
3 
2 

3 
1 
2 

1  
3  
2 

2  
1  
3 

1  
2  
3 

3  
2  
1 

1 
1 
1 

87.89 
85.05 
89.77 

13 
14 
15 

1 
3 
2 

1 
2 
3 

2 
1  
3 

3  
2 
1 

2  
3 
1 

3  
2 
1 

2 
2 
2 

83.91 
85.19 
81.72 

16 
17 
18 

1 
3 
2 

2 
3 
1 

3 
2 
1 

 3 
 2 
1 

  1 
  2 
  3 

3  
2 
1 

3 
3 
3 

84.11 
82.58 
92.94 

 
4. Analyze the data to determine the optimum 
levels and verify results
The average DRE (%) for each variable P and for 
each of the three levels i.e. TT are calculated and 
displayed in the response table given in Table 7. 
This response table shows the DRE (%) effects of 
the variables at each level. These are separate 
effects of each parameter and are commonly called 
main effects. The average (%) shown in the 
response table are calculated by taking the average 
for a variable at a given level, every time it was 
used. As an example, the variable P1 was at level 2 
in experiments 3,6,9,12,15 and 18. The average of 
corresponding DRE (%)  is 86.12 (%) which is 
shown in the response table (Table 7) under P1 at 
level 2. This procedure is repeated and the response 
table is completed for all variables at each level. 
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T able 7 DRE (%) Response table per phase P 

Phase
/ 

TT 

P1 P2 P3 P4 P5 P6 P7 

1 88.69 86.20 88.02 88.36 83.91 86.35 84.02

2 86.12 86.35 86.19 85.14 85.58 86.51 87.61

3 83.52 85.77 84.12 84.82 88.72 85.50 86.70

 

The optimum level (TT) for the design variables 
(P) can now be selected by choosing the level with 
the highest DRE percentage. For example the 
highest DRE percentage is got when variable P1 
was at level 1 at 88.69 % as opposed to 83.52 % at 
level 3, and 86.12 % at level 2. Similarly, the levels 
that optimize total IOSTP defect removal 
effectiveness (DRE) were chosen. The optimum 
levels are indicated by bold&underlined in Table 
7. As the next step, least squares regression 
analysis is used to fit the second order 
approximation model (Equation 10) to the DRE data 
(yi) given in Table 6 in terms of the seven design 
variables (Xi). This parametric model accounts for 
the response surface curvature (square terms) and 
two factor interactions (cross terms) i.e. RSM: 

DRE (%)    = 111.71 - 2.58 (P1) + 1.22 (P2) -1.95 
(P3) - 7.61 (P4) - 0.69 (P5) + 0.94 (P6) -13.04 (P7) - 
0.36 (P2)2 + 1.46 (P4)2 + 0.79 (P5)2 - 0.36 (P6)2 + 
3.15 (P7)2   (11) 

Note that, in this response surface approximation 
model, the parameter values are restricted to 1 
(TTl), or 2 (TT2), or 3 (TT3). 
 

Table 8 Maximum DRE (%) value and 
corresponding Test Techniques choices per test 

phase solution 
 

P1 P2 P3 P4 P5 P6 P7 DRE 
(%) 

TT1 TT2 TT1 TT1 TT3 TT2 TT2 94.03 
 

 

At these levels, the IOSTP DRE was predicted to be 
94.03  % using a second order prediction model 
(10). As a next step, a verification analysis was  
performed. The DRE (%) of an IOSTP calculated 
from these test techniques choices, according to the 
post-mortem real project data using optimized DDT 
chices from Table 8, we computed DRE (%) to be 
93.43 % . Difference is 0.6%=94.03%-93.43% that is 
acceptable to validate our prediction model for DRE 
(%) in equation (11) for optimal DDT combination 

choice given in Table 8.  
Optimal combination of DDT choices per phase P 
given in Table 8 made increase of about 6 %, 
compared to un-optimized DDTs combination per 
each test phase we used in our real project in which 
we achieved DRE of 87.43 %. 
 
5 Conclusion 
Organizations are constantly working to leverage 
today’s best practices for testing—within the context 
of their existing IT environments. As IT works to 
balance the business needs for a certain application 
and the testing limitations with regards to resources 
and schedules, making the best use of the testing 
environment becomes critical. Optimized testing is a 
way for organizations to move their testing efforts 
forward to reflect changing business environments 
and resource constraints. Optimized testing uses test 
techniques which has the highest defect detection 
yield and combined with the Orthogonal Array 
Testing Strategy (OATS) provides: 
• Pairwise testing that protects against pairwise bugs 
while dramatically reducing the number of tests to 
perform which is especially cool because pairwise 
bugs represent the majority of combinatoric bugs and 
such bugs are a lot more likely to happen than the 
ones that only happen with more variables. 
• Plus, the availability of tools means you no longer 
need to create these tests by hand. 
• Pairwise testing might find some pairwise bugs 
while dramatically reducing the number of tests to 
perform, compared to testing all combinations 
because pairwise bugs represent the majority of 
combinatoric bugs. 
• Plus, the availability of tools means you no longer 
need to create these tests by hand, except for the work 
of analyzing the product, selecting variables and 
values, actually configuring and performing the test, 
and analyzing the results which improves application 
quality, maximizes development resources and helps 
deliver applications on time and within budget.  
Using the tools associated with optimized testing, 
including DDT assessment, requirements 
management and automation, IT managers can make 
more informed decisions regarding testing, and have 
the data and information to back up those decisions.  
This article has highlighted increase of DRE about 6 
% compared to un-optimized DDTs combination per 
each test phase maximizing DRE percentage of STP 
solving optimization problem with best DDT 
choices combination in each phase P1 to P7 as 
controlled variables values which is determined by 
designed experiment plan using orthogonal arrays 
designed for this computer experiment (OACE). 
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