
Grid Workflows Specification and Verification

P. KURDEL, J. SEBESTYÉNOVÁ
Institute of Informatics

Slovak Academy of Sciences
Bratislava, Dúbravská cesta 9

SLOVAKIA
{peter.kurdel,sebestyenova}@savba.sk http://www.ui.sav.sk

Abstract: - Grids are being adopted and developed in several scientific disciplines that deal with large-scale
collaboration, massive distributed data, and distributed computing problems. The service orchestration is a problem of
making multiple services coordinate themselves and communicate in an orderly fashion so as to accomplish a task
more complex than the single tasks provided by the individual composing services. Composition is devoted to the aim
of connecting services in a collaborative fashion. A Grid workflow system is a type of application-level Grid
middleware that is supposed to support modelling, redesign and execution of large-scale processes. A grid workflow
can be represented by a grid workflow graph, where nodes correspond to activities and edges correspond to
dependencies between activities, called flows. Verification is usually based on an extension of a kind of formal method.
Grid workflow verification and validation must be conducted so that we can identify any violations of the correctness
in workflow specification and consequently remove them in time.

Key-Words: - Distributed computing, Grid infrastructure, Service orchestration, Workflow management system,
Verification, Web portal

1 Introduction
Service-Oriented Computing [23] utilises services as
fundamental elements for developing distributed
applications. One goal of Service-Oriented Architectures
[8] is to integrate and compose services that are
deployed on heterogeneous middleware paradigms.
Composition is devoted to the aim of connecting
services in a collaborative fashion [15]. Web services
encapsulate information, software or other resources, and
make them available over the network via standard
interfaces and protocols. Aggregating the functionality
provided by simpler ones may create complex web
services. This is referred to as service composition and
the aggregated web service becomes a composite web
service.

Grid systems are composed of computational
elements and disk storage. Next-generation grid
solutions must include support for accessing instruments
and sensors. [13] Remote control of, and data collection
from, instruments and sensors ware parts of the initial
Grid concept.

The service orchestration problem is a problem of
making multiple services coordinate themselves and
communicate in an orderly fashion so as to accomplish a
task more complex than the single tasks provided by the
individual composing services [20]. Web services make
information and software available programmatically via
the Internet and may be used as building blocks for
applications. A composite web service is one that is built
using multiple component web services and is typically

specified using an appropriate language. Once its
specification has been developed, the composite service
may be orchestrated either in a centralized or in a
decentralized fashion. Decentralized orchestration offers
performance improvements in terms of increased
throughput and scalability and lower response time.
However, decentralized orchestration also brings
additional complexity to the system in terms of error
recovery and fault handling. Further, incorrect design of
a decentralized system can lead to potential deadlock or
non-optimal usage of system resources.

The term workflow [3] can be defined as the
orchestration of a set of activities to accomplish a larger
and sophisticated goal. Significant research has been
conducted in recent years to automate these activities
using advanced workflow management tools. Some of
the most popular and sophisticated workflow systems
available in market include Websphere MQ Workflow
[21], Staffware [19] etc. These products offer extensive
functionality and support a variety of workflow patterns.

2 Grid Workflow Systems
In Grid architecture [6], a Grid workflow system is a

type of application-level Grid middleware that is
supposed to support modelling, redesign and execution
of large-scale processes in a variety of complex scientific
and business applications such as climate modelling,
astrophysics, high-energy physics, structural biology and
chemistry, medical surgery, disaster recovery,

WSEAS TRANSACTIONS on COMPUTERS

P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1199 Issue 8, Volume 7, August 2008

Fig. 1 Grid workflow management system

international banking, insurance, international stock
market modelling and control.

Existing workflow systems for web services can
technically be used for composing grid services, as grid
services are a special kind of web services. There are
several problems with current workflow systems for web
services, which make them less suited for the grid
services context. Most workflow languages for web
services do not have a clearly defined semantics.

Another important topic regarding workflow
languages for grid services is a support for specific
requirements that are typically of importance with high-
performance computing: in such an environment, it is
common that large amounts of data need to be
transferred from one step in a workflow to another.
Special attention should be directed to how this happens:
it would, for example, be unacceptable if all these data
were transferred to a central workflow coordinator
before being transferred to a next step. This is current
practice in BPEL4WS [4] workflow systems.

The whole working process of a Grid workflow
system can be divided into three stages: build-time, run-
time instantiation, and run-time execution (see Fig.1).
The build-time functions [24] are concerned with
defining and modelling workflow tasks and their
dependencies, while the run-time functions are
concerned with managing workflow executions and

interactions with Grid resources for processing workflow
applications.

2.1 Workflow Specification
Workflow modelling [11] is similar to process
modelling. In a workflow context, tasks are basic work
units that collectively achieve a certain goal. The
collective nature shows various types of process
dependencies. Therefore, whatever language is used to
specify workflows, it should be sufficiently powerful to
capture those dependencies: sequential order,
parallelism, iteration, choice, synchronisation etc.

Workflow specification contains information [14]
formally describing various aspects of a workflow, for
example, the process aspect, information aspect and
organisation aspect. The process aspect describes the
structure of a workflow using such entities as activities,
subprocesses (a process that is enacted or called from
another process or subprocess), as well as flows (data
and control flows) between them. The information
aspect addresses what are input and output by activities
in a workflow. The organisation aspect defines entities
belonging to an organisation or a virtual organisation as
well as the relationship between them.

Workflow specification should be capable of
expressing at least the following essential workflow
concepts: Properties of tasks (pre and post conditions,

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1200 Issue 8, Volume 7, August 2008

redo-ability - whether a task can be redone etc.),
Information flows between tasks and information of a
more persistent nature (e.g. external databases),
Execution dependencies between tasks (also referred to
as control flow), Capacities of tasks (might refer to
storage, to throughput, or to numbers of active
instances). Generally speaking, workflow specifications
need not pay attention to task functionality as focus is on
the coordination of tasks.

Every workflow language needs to define the basic
activities that it supports (e.g. invoking grid services
synchronously and/or asynchronously, and assigning and
retrieving variables), and how these activities can be
ordered.

To formally check [7] the consistency between
complex e-science and e-business processes and
corresponding grid workflow specifications, firstly, we
must capture and formally represent the complex
processes.

Based on the directed graph concept, a grid
workflow can be represented by a grid workflow graph,
where nodes correspond to activities and edges
correspond to dependencies between activities, called
flows. A novel approach for graphically modelling and
describing Grid workflow applications based on the
Unified Modelling Language (UML) is presented in
[17]. The approach provides a graphic representation of
Grid applications based on UML standard that is more
amenable than pure textual-oriented specifications, such
as XML. UML activity diagrams are special cases of
UML state diagrams, which in turn are graphical
representations of state machines. The state machine
formalism as defined in the UML, is a variant of Harel's
statecharts. State machines are transition systems whose
arcs are labelled by event-condition-action rules. A
credit-request example of workflow-style Statechart is
given in Fig. 2 (nodes represent activities and edges
represent data-flow).

DE … data entry
CW … credit
 worthiness
RA … risk
 assessment
D … decision
INIT … initial state
ERR … error state
A … amount

Fig. 2 Credit request Statechart

2.2 Workflow Patterns
Differences in features supported by various
contemporary commercial workflow management
systems point to different suitability and different levels
of expressive power. There is a need [1] to
systematically address workflow requirements, from
basic to complex. Requirements for workflow languages
are indicated through workflow patterns (see Fig. 3),
which can be divided into seven categories:
- basic control patterns (sequential, parallel, selective

and iterative structures are defined in the workflow
reference model WfMC [22])

- advanced branching and synchronization patterns
- structural patterns (loop, iteration, cycle, implicit

termination)
- patterns involving multiple instances
- state-based patterns
- cancellation patterns (cancel activity).
- data patterns (data visibility, data interaction, data

transfer, data-based routing).
State-based patterns. In real workflows, where

human and material resources are not always available,
activities are more often in a waiting state than in a
processing one [9]. In the following patterns a distinction
is made between the moments when an activity is
enabled and when it starts running:

Deferred choice: One among several branches is
chosen based on an external event, which is not
necessarily available when this point is reached, and the
choice between them is delayed until an external signal
is received (implicit XOR-split).

Interleaved parallel routing: A set of activities need
to be executed in an arbitrary order. Each activity in the
set is executed exactly once. The order between the
activities is decided at run-time. In any case, no two
activities can be active at the same time.

Synchronisation patterns. The discriminator is a
point in a workflow that waits for one of its incoming
branches to complete before activating the subsequent
activity.

The N-out-of-M join is a point in a workflow where
M parallel branches converge into one. The outgoing
branch should be started once N incoming branches have
completed. Completion of all remaining branches should
be ignored (discriminator is a 1-out-of-M join).

Multiple instances requiring synchronization: A
point in a workflow where an activity A is enabled
multiple times. The number of instances of A that need
to be enabled is known only when the point is reached.
After completing all the enabled in-stances of A, an
instance of an activity B has to be executed.

Dynamic invocations. Within an activity diagram,
it is possible to specify that multiple invocations of an
action or subactivity execute concurrently. The dynamic

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1201 Issue 8, Volume 7, August 2008

Fig. 3 Some examples of basic control patterns

multiplicity of a state, is the maximum permitted number
of invocations of its action or subactivity.

Producer-consumer patterns. These patterns are
variants of the producer-consumer pattern found in
distributed systems design. They correspond to situations
where several instances of an activity A (the producer)
are executed sequentially, and the termination of each of
these instances triggers the execution of an instance of
another activity B (the consumer).

Producer-consumer pattern with termination
activity: This pattern involves three activities A, B and
C. The process starts with the execution of an instance of
A. When this execution completes, an instance of B is
enabled. Concurrently, a second instance of A can be
started. When this second instance of A completes, a
second instance of B is enabled and a third instance of A
can be started. When all the instances of A are
completed, the system continues executing instances of
B until the number of completed executions of B is equal
to that of A. Finally, a terminating activity C is executed.

Producer-consumer with bounded queue: pattern is
similar to previous one, except that at any time, the
difference between the number of times that activity A
has been executed, and the number of times that activity
B has been executed, is bounded by an integer called the
size of the queue.

Whereas a consensus has been reached on defining
the set of workflow patterns for business process
modeling languages, no such patterns exists for
workflows applied to scientific computing on the Grid.
The notion of data flow used in scientific workflows is a
natural representation for simple data processing
pipelines. Pure data flow is not expressive enough to
model either branches and merges in the execution path
nor iterative behavior. This is why workflow languages
typically focus on the control flow primitives rather than
on the data flow aspects. [16] identifies a set of
workflow patterns related to parallel and pipelined
execution by looking at different kinds of parallelism.
These patterns can be classified in two broad categories:

Parallel execution patterns include:

- simple parallelism, where tasks lacking control flow
dependencies are executed in parallel

- data parallelism, a form of single instruction
multiple data (SIMD) parallelism with three
variants: static, dynamic and adaptive.
Pipelined execution patterns include:

- best effort pipelines, where intermediate results are
dropped if downstream tasks are not ready to process
them

- blocking pipelines, where a form of flow control is
used to stop tasks that are located upstream from
busy ones

- buffered pipelines, where the workflow accumulates
intermediate results between tasks

- superscalar pipelines, where multiple parallel
instances of slow tasks are started to process
intermediate results

- streaming pipelines where intermediate results are
fed into continuously running tasks.
Another classification of workflow patterns related

to parallel computing identifies three different kinds of
parallelism: inter-workflow, intra-workflow, intra-
program. Intra-program and inter-workflow parallelism
are also mentioned under the terms of fine-grained and
coarse-grained parallelism. Inter-workflow parallelism
refers to the simultaneous execution of multiple
workflow instances (in general) and of multiple
instances of the same workflow (in particular).

Intra-workflow parallelism is defined as the
concurrent execution of more than one program (or task)
within the same workflow. One can further distinguish
tasks without dependencies (parallel execution patterns)
from tasks depending on the previous results of one
another (pipelined execution patterns). Intra-program
parallelism implies the distributed execution of
individual tasks of the workflow.

2.3 Grid Workflow Management Systems
A workflow management system (WfMS) is a system that
completely defines, manages and executes workflows through
the execution of software whose order of execution is driven
by a computer representation of the workflow logic.

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1202 Issue 8, Volume 7, August 2008

Fig. 4 Grid workflow execution

WfMS consists of two main components: a

workflow modelling component and a workflow
enactment component (workflow engine). The first
offers a build-time environment where workflow
specifications can be defined, analysed and managed and
it also supports a persistent storage for workflow
specifications. The second provides a run-time
environment for the creation, execution and management
of workflows.

Some Grid workflow management systems:
Taverna, GridAnt, GridFlow, Gridbus, Askalon,
Karajan, Kepler, and GridNexus.

P-GRADE is a graphical Grid application
development environment that graphically supports the
design, execution, monitoring, and performance
visualisation of workflow grid applications. The
workflow describes both the control-flow and the data-
flow of the application. A job can be started when all the
necessary input files are available and transferred by
GridFTP to the site where the job is allocated for
execution.

Semantic Grid is becoming a key enabler for next
generation Grid and the need for supporting process
description and enactment, by means of composition of
multiple resources, emerged as one of the fundamental
requirements. The aim is to provide architecture with
dynamic behaviour and interoperability. The
Knowledge-based Workflow System for Grid
Applications (K-Wf Grid) [12] addresses the need for a
better infrastructure for the Grid environment. The Grid
as a vast space of partially cooperating, partially
competing Grid services will be a very dynamic and
complex environment. The innovation of the K-Wf Grid
workflow management technology includes a novel
approach of supporting knowledge-based workflow
orchestration by means of an expert system.

The compute resources of a grid resource-service
provider may be distributed over a wide geographical
area. A scheduler should be able to handle a diverse set
of jobs, with arbitrary interdependences among
processes [2]. Schedule of Grid workflow execution on
WfMS, grid site, and on a computational node (CN) is
given in Fig.4.

3 Verification
Formal verification using mathematical methods
examines the state space of the given design and verifies
whether it satisfies the required properties. Specification
and verification of concurrent systems are problematic
because number of states can increase exponentially with
number of parallel parts.

The formal approach uses the modeling language to
system description, the specification language to
description of the required correct system behavior, and
it provides an analysis technique. The model has to
describe not only the designed system but also the
environment in which it will work. [18] The system can
be modeled at different abstraction levels.

Computer-aided verification is a general approach
with applications to hardware verification, software
engineering, multi-agent control systems, etc. It is
appropriate for control-intensive applications with
interesting interaction among components.

Most approaches to verification and synthesis of
discrete systems are based on dividing the set L of all
system behaviors to Lφ and L¬φ (i.e., the subset satisfying
some property φ, and the subset not satisfying it). The
verification verifies whether the subset L¬φ is empty.

To ensure the correctness of grid workflow
specification and execution, grid workflow verification
and validation must be conducted so that we can identify

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1203 Issue 8, Volume 7, August 2008

any violations and consequently take proper action to
remove them in time.

Both grid workflow verification and validation are
important. Validation failure constitutes a breach of
contract between the complex process developer and the
client. Verification failure results in the grid workflow
specification and execution containing faults or flaws.

Grid workflow validation is mainly concerned with
the consistency between complex processes and the grid
workflow specifications. When we model or redesign a
complex e-science or e-business process as a grid
workflow specification based on models and constructs
provided by the selected grid workflow system, we must
ensure that all main complex process requirements are
modelled or redesigned in the grid workflow
specification. Otherwise, the grid workflow specification
is incomplete and is incorrect from the perspective of
user requirements and needs. For example, some grid
workflow systems or architectures cannot support
temporal constraint modelling. For those processes such
as climate modelling processes for weather forecasting
where timing is very important, the corresponding grid
workflow specifications are incomplete or incorrect, as
temporal information will be ignored.

Grid workflow verification is mainly concerned with
the specific correctness of the grid workflow
specification and execution such as no deadlock, no
livelock, no temporal violation or no resource conflict. It
aims at no faults in the grid workflow specification and
execution under the condition where complex process
requirements have been correctly supported in the grid
workflow specification by the selected grid workflow
system.
3.1 User & System Requirements
Quality of Service (QoS) issues have not been addressed
very well in most Grid workflow management systems
[24] due to their focus on the use of system centric
policies in resource allocation. When workflow
management systems are used in commercial or
production environments, supporting QoS at both
specification and execution level becomes increasingly
critical.

At the specification level, workflow languages need
to allow users to express their QoS requirements. At the
execution level, the workflow scheduling must be able to
map the workflow onto Grid resources to meet users’
QoS requirements. Workflow QoS constraints are for
example: time, cost, fidelity, reliability, security etc.
Some basic verification problems are defined in [11]:

The initiation problem for a workflow object x in a
workflow structure W is to determine whether there is a
sequence of events leading to the execution of x.

The termination problem is to determine whether a
workflow structure can reach a terminal state.

A workflow structure is safe if and only if a terminal
state can be reached from every reachable state.

A workflow object w is n-bounded if and only if in
every reachable state w does not occur more than n
times.

Verification is usually based on an extension of a
kind of formal method, e.g., directed graph, Statecharts,
Petri net, process algebra, or temporal logic.

Composition of two workflow modules may cause
deadlocks. Usability means that an environment exists
such that the composition cannot deadlock. Formally, a
module is usable iff there exists an environment, such
that each execution of the module in the environment
terminates correctly, i.e.: each started process finishes,
no tokens (documents, messages) are left over, and each
transition is relevant, i.e. may be fired.

Guaranteed behaviour and outcome of mission-
critical workflows is crucial for workflows in banking,
medical applications, electronic commerce, etc.
Formalization of required properties can be done using
temporal logic e.g. CTL – Computation tree logic, ATL
– Alternate temporal logic, etc.

3.2 Grid Workflows Verification Aspects
A workflow specification is a formal description of
processes in the real world. Its correctness is critical to
the workflow execution.

Structure verification. Structure verification
consists of syntactic structure verification and semantic
structure verification [7]. In a grid workflow
specification, the main syntactic structure
inconsistencies include deadlock, livelock, lack of
synchronisation, misuse of modelling objects and
constructs, active end, dead activity etc.

Current research is more involved in the syntactic
structure verification, but semantic structure verification
is also very important. The result of structural
incorrectness is that either a possible execution exists
that does not reach the end node or there are still
”uncompleted things to do” when the end node is
reached.

Temporal verification. To control the temporal
correctness of the workflow execution, explicit temporal
constraints are set at the build-time stage and verified at
the build-time, run-time instantiation and run-time
execution stages. According to [9] the mutual
dependency between these constraints is affecting the
effectiveness and efficiency of the temporal verification.

Temporal verification aims to check the consistency
of fixed-time constraints. A fixed-time constraint at an
activity is an absolute time value by which the activity
must be completed. Time is expressed in some basic
time units - minutes, hours, or days - the granularity is
selected according to specific workflow applications. At
build-time and run-time instantiation stages we need not

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1204 Issue 8, Volume 7, August 2008

consider where we should conduct temporal verification
as each fixed-time constraint needs only be verified once
statically. At run-time execution, activity completion
durations vary and we may need to verify each fixed-
time constraint many times at different activities. The
activities at which the verification is done are called
checkpoints. After the fixed-time constraints are set, the
temporal verification is conducted at the above three
stages to check whether they are consistent. At the run-
time execution stage, some checkpoints are selected for
conducting the temporal verification because it is
inefficient to do so at all activity points. According to [5]
we can specify for each activity its maximum duration,
mean duration, minimum duration, run-time start time,
run-time end time and run-time completion duration.

Conventionally, a temporal constraint is either
consistent or inconsistent. In the grid workflow systems,
due to the high uncertainty of the activity completion
times, a temporal constraint may have multiple
consistencies.

Performance verification. A grid workflow
specification or execution is normally attached with
some user defined performance parameters [7] such as
average activity completion time, average capacity
utilisation rate, average activity queuing time, average
activity synchronisation delay, average activity set-up
delay or average resource allocation. We need to verify
whether these parameters can be met by the selected grid
workflow system and current system run-time status.

Resource verification. In a grid workflow or
between different ones, different activities may compete
for the same resource [7] such as a machine or a human
being. For example, two activities may compete for the
same machine during the same time interval. It may or
may not result in actual resource conflict, as they may
still be able to get the resource at different times within
the same time interval. Resources are classified as two
types: shared resources or private resources.

The shared resources can be classified as two types:
One type of resources can be accessed simultaneously by
activities no matter what operations are executed on
them. Another type of resources is not allowed to do so.
The latter type of resources can be divided into the
following two subclasses:
- Resources can be accessed simultaneously by

activities depending on their access modes. The
actions can be allowed if these modes are
compatible.

- The resources are assumed to be occupied
exclusively by an activity during its execution and
cannot be accessed by another one until its
completion. In this case, there is a resource
constraint between these activities.

Authorisation verification. A grid workflow
system often needs to deploy heterogeneous and

distributed hardware and software systems to execute a
given grid workflow. This gives rise to decentralised
security policies and mechanisms that need to be
managed. Some authorisation constraints are set for
different participants and roles, which show which kinds
of resources can be accessed by them and how to access
the authorised resources.

Cost verification. We must verify the cost aspect
of the grid workflow specification and execution to
check whether the grid workflow specification and
execution can meet the corresponding budget
requirements.

4 EGEE Project
The general principle of grid computing consists in the
availability of a network that connects geographically
spread computing and storage resources while giving
many user groups access to this network. Each user can
gain access to the totality of the resources (computing
capacity, memory, software, storage, etc.) that have been
added to the network by other members of the network.
Grid computing means in fact a globalisation and
virtualisation of computer infrastructures.

Grid Computing is not yet a standard product on the
ICT market but is gaining in popularity. Many projects
in the research world are showing the power of
computing/data grid infrastructures. Worldwide
production grid infrastructures (like EGEE, Enabling
Grids for EsciencE http://www.eu-egee.org/) do exist
and are looking for cooperation. Computer
manufacturers and software companies have started
cooperation with those large projects.

The EGEE project [10] brings together experts from
over 30 countries with the common aim of building on
recent advances in grid technology and developing a
service grid infrastructure, which is available to
scientists 24 hours a day. The project aims to provide
researchers in academia and industry with access to
major computing resources, independent of their
geographical location. The project primarily concentrates
on three core areas:
1. The first area is to build a consistent, robust and
secure grid network that will attract additional
computing resources.
2. The second area is to continuously improve and
maintain the middleware in order to deliver a reliable
service to users.
3. The third area is to attract new users from industry as
well as science and ensure they receive the high standard
of training and support they need.

The Regional Operations Centres (ROC) are the
heart of the operational support for the grid
infrastructure. They have a key role as sources of expert

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1205 Issue 8, Volume 7, August 2008

Fig. 5 EGEE SK web portal

advice and technical support in the process of building
and operating the infrastructure.

The Slovak EGEE information portal (see Fig. 5) created
in the frame of the EGEE project in Slovakia provides grid
related (especially EGEE grid related) information to users
from all communities (science, education, industry, and
developers).

P-GRADE portal is available as service for the
different grid systems and also in Central European
Virtual Organization (VOCE) of the EGEE grid
infrastructure.

GENIUS is grid portal system giving - alongside
with standard command line environment - the most
simple and used usage mode of EGEE grid infrastructure
services by gLite grid software.

5 Grid computing in Slovakia
Many grid infrastructures were built with different
purpose, amount of resources and security levels. Early
grid infrastructures were often called testbeds as the grid
technologies were under development and grids were
used mainly for testing. As the number of users using
grids for their work and number of sites involved had
increased, testbeds had to transform to production grids.

National grid infrastructures in central Europe aim
to join national and regional grid infrastructures and
create robust and secure grid available to scientist. 180
participating sites from 41 countries with more than
18.000 CPUs are organized to 12 federations. Slovakia
with Poland, Czech Republic, Austria, Hungary,
Slovenia and Croatia form the Central European
federation. Most of the countries in our federation have
national grid initiatives either as projects funded on

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1206 Issue 8, Volume 7, August 2008

Fig. 6 Slovak grid infrastructure SlovakGrid web portal

national level or as centres coordinating national grid
activities.

Unlike other countries in central Europe, Slovakia
has no national funding program for supporting the
development of grid technologies and building national
grid infrastructure. Currently there are five grid sites
included in EU grid infrastructures.

Institute of Informatics SAS provides 54 CPUs in
multiple grid infrastructures. II SAS also provides site
and user support including operation of Slovak
GridCertification Authority issuing digital grid
certificates for users and hosts from Slovakia.

The European Grid Initiative (EGI) Design Study
represents an effort to establish a sustainable grid
infrastructure in Europe. Driven by the needs and
requirements of the research community, it is expected
to enable the next leap in research infrastructures,
thereby supporting collaborative scientific discoveries in
the European Research Area (ERA).

A key component of the EGI vision is the provision
of a large-scale, production Grid infrastructure – built on
National Grids (NGIs) that interoperate seamlessly at
many levels. It is essential that the base functions of
currently funded EU grid projects (such as EGEE) will
seamlessly transit to EGI. Production hardware will be
owned and operated by the NGIs and not by EGI.
Regional Operations Centres (ROCs) will be operated by
the NGIs – clusters of NGIs may establish a common
ROC. The resource allocation will be left to the NGIs.

The main foundations of EGI are the National Grid
Initiatives (NGI), which operate the grid infrastructures
in each country. EGI will link existing NGIs and will
actively support the setup and initiation of new NGIs.

Screenshot of the Slovak grid infrastructure
SlovakGrid web portal http://www.slovakgrid.sk is given
in Fig. 6.

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1207 Issue 8, Volume 7, August 2008

6 Conclusion
EGEE grid project aims to provide researchers in
academia and industry with access to major computing
resources, independent of their geographical location.
The European Grid Initiative (EGI) will link existing
National Grid Initiatives (NGI), which operate the grid
infrastructures in each country. A grid workflow can be
represented by a grid workflow graph, where nodes
correspond to activities and edges correspond to
dependencies between activities, called flows. To ensure
the correctness of grid workflow specification and
execution, grid workflow verification and validation
must be conducted so that we can identify any violations
and consequently take proper action to remove them in
time.

Acknowledgements
This work is supported by projects EGEE-III FP7-
222667, APVV Project LPP-0231-06, APVV project
RPEU-0024-06, VEGA 2/7101/27, and VEGA 2/6103/6.

References:
[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B.

Kiepuszewski, A.P. Barros. “Workflow Patterns”, Journal
Distributed and Parallel Databases, Publisher Springer
Netherlands, Issue Vol. 14, No 1 / July 2003, pp. 5-51.

[2] A. Aggarwal, M. Aggarwal. “An Adaptive Genetic
Algorithm based Scheduler for Grid Applications”,
WSEAS Transactions on Information Science and
Applications, Issue 12, Vol. 2, December 2005, ISSN:
1790-0832, pp. 2123-2130.

[3] K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluzec,
S. Hampton, A. Rossi. “GridAnt: A Client-Controllable
Grid Workflow System”, Proceedings of the 37th Hawaii
International Conference on System Sciences – 2004.

[4] BPEL4WS
http://www-128.ibm.com/developerworks/library/

[5] J. Chen, Y. Yang. “Selecting Necessary and Sufficient
Checkpoints for Dynamic Verification of Fixed-time
Constraints in Grid Workflow Systems”, Business
Process Management, LNCS, Vol. 4102, pp. 445-450,
Springer-Verlag, 2006.

[6] J. Chen, Y. Yang. “Multiple states based temporal
consistency for dynamic verification of fixed-time
constraints in Grid workflow systems”, Concurrency and
Computation: Practice and Experience, 2006,
www.interscience.wiley.com

[7] J. Chen, Y. Yang. “Key Research Issues in Grid
Workflow Verification and Validation”, 4th Australian
Workshop on Grid Computing and e-Research,
Tasmania, Australian. CRPIT, Vol. 54. Rajkumar Buyya
and Tianchi Ma, Ed., pp.97-104, 2006.

[8] D. Dahlem, D. McKitterick, L. Nickel, J. Dowling, B.
Biskupski, R. Meier. “Binding- and Port-Agnostic
Service Composition using a P2P SOA”, Int. Workshop

on Dynamic Web Processes DWP 2005, ICSOC 2005,
Amsterdam, Netherlands, 2005, pp. 61-72.

[9] M. Dumas, A. H. M. ter Hofstede. “UML Activity
Diagrams as a Workflow Specification Language”, In: M.
Gogolla and C. Kobryn, editors, Proceedings of the
UML'2001.

[10] EGEE http://www.eu-egee.org/
[11] A.H.M. ter Hofstede, M. E. Orlowska, J. Rajapakse.

“Verification problems in conceptual workflow
specifications”, In: B. Thalheim, editor, Proc. of the 15th
Int. Conf. on Concep-tual Modeling ER'96, Vol. 1157 of
LNCS, pp. 73-88, Cottbus, Germany, October 1996.
Springer-Verlag.

[12] K-Wf Grid http://www.kwfgrid.net/
[13] F. Lelli, G. Maron, S. Orlando, S. Pinter. “Bringing

instruments into a Grid: an Empiric Approach”, WSEAS
Transactions on Computers, Issue 1, Vol. 6, January
2007, ISSN: 1109-2750, pp. 153-159.

[14] H. Li, Y. Yang, T.Y. Chen. “Resource constraints
analysis of workflow specifications”, The Journal of
Systems and Software 73 (2004) pp. 271–285.

[15] S. Pastore “Investigating frameworks to address issues
involved in sharing service-based software resources
within grid environments”, WSEAS Transactions on
Computers, Issue 1, Vol. 6, January 2007, ISSN: 1109-
2750, pp. 72-79.

[16] C. Pautasso, G. Alonso. “Parallel Computing Patterns for
Grid Workflows”, In: Proc. of the HPDC2006 Workshop
on Workflows in Support of Large-Scale Science
WORKS06, Paris, France, June 2006,
http://www.iks.ethz.ch/publications/jop_grid_workflow_
patterns

[17] S. Pllana, T. Fahringer, J. Testori, S. Benkner, I. Brandic.
“Towards an UML Based Graphical Representation of
Grid Workflow Applications”, The 2nd European Across
Grids Conference, Nicosia, Cyprus, 2004. LNCS,
Springer Verlag.

[18] Sebestyénová J. (2003). Hierarchical Verification of
Reactive Systems with Timing Constraints, In: “WSEAS
Transactions on Computers”, Ed. Mastorakis N., Issue 4,
Vol.2, October 2003, ISSN: 1109-2750, pp. 1174-1179.

[19] Staffware http://www.staffware.ch/
[20] A. Terracina, S. Beco, T. Kirkham, J. Gallop, I. Johnson,

D. Mac Randal, Brian Ritchie. “Orchestration and
Workflow in a mobile Grid environment”, 5th Int. Conf.
on Grid and Cooperative Computing Workshops, 2006,
pp. 251-258.

[21] Websphere MQ Workflow
http://www-306.ibm.com/software/integration/wmqwf/

[22] WfMC http://www.wfmc.org/standards/model.htm
[23] J. Yan, Y. Yang, R. Kowalczyk, X. T. Nguyen. “A

Service Workflow Management Framework Based on
Peer-to-Peer and Agent Technologies”,
www.it.swin.edu.au/personal/yyang/

[24] J. Yu, R. Buyya. “A Taxonomy of Workflow
Management Systems for Grid Computing”,
www.gridbus.org/reports/

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1208 Issue 8, Volume 7, August 2008

