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Abstract: - Grids are being adopted and developed in several scientific disciplines that deal with large-scale 
collaboration, massive distributed data, and distributed computing problems. The service orchestration is a problem of 
making multiple services coordinate themselves and communicate in an orderly fashion so as to accomplish a task 
more complex than the single tasks provided by the individual composing services. Composition is devoted to the aim 
of connecting services in a collaborative fashion. A Grid workflow system is a type of application-level Grid 
middleware that is supposed to support modelling, redesign and execution of large-scale processes. A grid workflow 
can be represented by a grid workflow graph, where nodes correspond to activities and edges correspond to 
dependencies between activities, called flows. Verification is usually based on an extension of a kind of formal method. 
Grid workflow verification and validation must be conducted so that we can identify any violations of the correctness 
in workflow specification and consequently remove them in time. 
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1   Introduction 
Service-Oriented Computing [23] utilises services as 
fundamental elements for developing distributed 
applications. One goal of Service-Oriented Architectures 
[8] is to integrate and compose services that are 
deployed on heterogeneous middleware paradigms. 
Composition is devoted to the aim of connecting 
services in a collaborative fashion [15]. Web services 
encapsulate information, software or other resources, and 
make them available over the network via standard 
interfaces and protocols. Aggregating the functionality 
provided by simpler ones may create complex web 
services. This is referred to as service composition and 
the aggregated web service becomes a composite web 
service. 

Grid systems are composed of computational 
elements and disk storage. Next-generation grid 
solutions must include support for accessing instruments 
and sensors. [13] Remote control of, and data collection 
from, instruments and sensors ware parts of the initial 
Grid concept. 

The service orchestration problem is a problem of 
making multiple services coordinate themselves and 
communicate in an orderly fashion so as to accomplish a 
task more complex than the single tasks provided by the 
individual composing services [20]. Web services make 
information and software available programmatically via 
the Internet and may be used as building blocks for 
applications. A composite web service is one that is built 
using multiple component web services and is typically 

specified using an appropriate language. Once its 
specification has been developed, the composite service 
may be orchestrated either in a centralized or in a 
decentralized fashion. Decentralized orchestration offers 
performance improvements in terms of increased 
throughput and scalability and lower response time. 
However, decentralized orchestration also brings 
additional complexity to the system in terms of error 
recovery and fault handling. Further, incorrect design of 
a decentralized system can lead to potential deadlock or 
non-optimal usage of system resources. 

The term workflow [3] can be defined as the 
orchestration of a set of activities to accomplish a larger 
and sophisticated goal. Significant research has been 
conducted in recent years to automate these activities 
using advanced workflow management tools. Some of 
the most popular and sophisticated workflow systems 
available in market include Websphere MQ Workflow 
[21], Staffware [19] etc. These products offer extensive 
functionality and support a variety of workflow patterns. 

 
 

2   Grid Workflow Systems 
In Grid architecture [6], a Grid workflow system is a 

type of application-level Grid middleware that is 
supposed to support modelling, redesign and execution 
of large-scale processes in a variety of complex scientific 
and business applications such as climate modelling, 
astrophysics, high-energy physics, structural biology and 
chemistry,    medical surgery,    disaster recovery,  
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Fig. 1 Grid workflow management system 

 
international banking, insurance, international stock 
market modelling and control. 

Existing workflow systems for web services can 
technically be used for composing grid services, as grid 
services are a special kind of web services. There are 
several problems with current workflow systems for web 
services, which make them less suited for the grid 
services context. Most workflow languages for web 
services do not have a clearly defined semantics. 

Another important topic regarding workflow 
languages for grid services is a support for specific 
requirements that are typically of importance with high-
performance computing: in such an environment, it is 
common that large amounts of data need to be 
transferred from one step in a workflow to another. 
Special attention should be directed to how this happens: 
it would, for example, be unacceptable if all these data 
were transferred to a central workflow coordinator 
before being transferred to a next step. This is current 
practice in BPEL4WS [4] workflow systems. 

The whole working process of a Grid workflow 
system can be divided into three stages: build-time, run-
time instantiation, and run-time execution (see Fig.1). 
The build-time functions [24] are concerned with 
defining and modelling workflow tasks and their 
dependencies, while the run-time functions are 
concerned with managing workflow executions and 

interactions with Grid resources for processing workflow 
applications. 

 
 

2.1   Workflow Specification 
Workflow modelling [11] is similar to process 
modelling. In a workflow context, tasks are basic work 
units that collectively achieve a certain goal. The 
collective nature shows various types of process 
dependencies. Therefore, whatever language is used to 
specify workflows, it should be sufficiently powerful to 
capture those dependencies: sequential order, 
parallelism, iteration, choice, synchronisation etc. 

Workflow specification contains information [14] 
formally describing various aspects of a workflow, for 
example, the process aspect, information aspect and 
organisation aspect. The process aspect describes the 
structure of a workflow using such entities as activities, 
subprocesses (a process that is enacted or called from 
another process or subprocess), as well as flows (data 
and control flows) between them. The information 
aspect addresses what are input and output by activities 
in a workflow. The organisation aspect defines entities 
belonging to an organisation or a virtual organisation as 
well as the relationship between them. 

Workflow specification should be capable of 
expressing at least the following essential workflow 
concepts: Properties of tasks (pre and post conditions, 
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redo-ability - whether a task can be redone etc.), 
Information flows between tasks and information of a 
more persistent nature (e.g. external databases), 
Execution dependencies between tasks (also referred to 
as control flow), Capacities of tasks (might refer to 
storage, to throughput, or to numbers of active 
instances). Generally speaking, workflow specifications 
need not pay attention to task functionality as focus is on 
the coordination of tasks. 

Every workflow language needs to define the basic 
activities that it supports (e.g. invoking grid services 
synchronously and/or asynchronously, and assigning and 
retrieving variables), and how these activities can be 
ordered. 

To formally check [7] the consistency between 
complex e-science and e-business processes and 
corresponding grid workflow specifications, firstly, we 
must capture and formally represent the complex 
processes. 

Based on the directed graph concept, a grid 
workflow can be represented by a grid workflow graph, 
where nodes correspond to activities and edges 
correspond to dependencies between activities, called 
flows. A novel approach for graphically modelling and 
describing Grid workflow applications based on the 
Unified Modelling Language (UML) is presented in 
[17]. The approach provides a graphic representation of 
Grid applications based on UML standard that is more 
amenable than pure textual-oriented specifications, such 
as XML. UML activity diagrams are special cases of 
UML state diagrams, which in turn are graphical 
representations of state machines. The state machine 
formalism as defined in the UML, is a variant of Harel's 
statecharts. State machines are transition systems whose 
arcs are labelled by event-condition-action rules. A 
credit-request example of workflow-style Statechart is 
given in Fig. 2 (nodes represent activities and edges 
represent data-flow). 

 

 

 
DE …  data entry 
CW …  credit 
             worthiness 
RA …   risk 
             assessment 
D …     decision 
INIT … initial state 
ERR … error state 
A …      amount 

Fig. 2 Credit request Statechart 

 

2.2   Workflow Patterns 
Differences in features supported by various 
contemporary commercial workflow management 
systems point to different suitability and different levels 
of expressive power. There is a need [1] to 
systematically address workflow requirements, from 
basic to complex. Requirements for workflow languages 
are indicated through workflow patterns (see Fig. 3), 
which can be divided into seven categories: 
- basic control patterns (sequential, parallel, selective 

and iterative structures are defined in the workflow 
reference model WfMC [22]) 

- advanced branching and synchronization patterns 
- structural patterns (loop, iteration, cycle, implicit 

termination) 
- patterns involving multiple instances 
- state-based patterns 
- cancellation patterns (cancel activity). 
- data patterns (data visibility, data interaction, data 

transfer, data-based routing). 
State-based patterns. In real workflows, where 

human and material resources are not always available, 
activities are more often in a waiting state than in a 
processing one [9]. In the following patterns a distinction 
is made between the moments when an activity is 
enabled and when it starts running: 

Deferred choice: One among several branches is 
chosen based on an external event, which is not 
necessarily available when this point is reached, and the 
choice between them is delayed until an external signal 
is received (implicit XOR-split). 

Interleaved parallel routing: A set of activities need 
to be executed in an arbitrary order. Each activity in the 
set is executed exactly once. The order between the 
activities is decided at run-time. In any case, no two 
activities can be active at the same time. 

Synchronisation patterns. The discriminator is a 
point in a workflow that waits for one of its incoming 
branches to complete before activating the subsequent 
activity. 

The N-out-of-M join is a point in a workflow where 
M parallel branches converge into one. The outgoing 
branch should be started once N incoming branches have 
completed. Completion of all remaining branches should 
be ignored (discriminator is a 1-out-of-M join). 

Multiple instances requiring synchronization: A 
point in a workflow where an activity A is enabled 
multiple times. The number of instances of A that need 
to be enabled is known only when the point is reached. 
After completing all the enabled in-stances of A, an 
instance of an activity B has to be executed. 

Dynamic invocations. Within an activity diagram, 
it is possible to specify that multiple invocations of an 
action or subactivity execute concurrently. The dynamic  
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Fig. 3 Some examples of basic control patterns 

 
multiplicity of a state, is the maximum permitted number 
of invocations of its action or subactivity. 

Producer-consumer patterns. These patterns are 
variants of the producer-consumer pattern found in 
distributed systems design. They correspond to situations 
where several instances of an activity A (the producer) 
are executed sequentially, and the termination of each of 
these instances triggers the execution of an instance of 
another activity B (the consumer). 

Producer-consumer pattern with termination 
activity: This pattern involves three activities A, B and 
C. The process starts with the execution of an instance of 
A. When this execution completes, an instance of B is 
enabled. Concurrently, a second instance of A can be 
started. When this second instance of A completes, a 
second instance of B is enabled and a third instance of A 
can be started. When all the instances of A are 
completed, the system continues executing instances of 
B until the number of completed executions of B is equal 
to that of A. Finally, a terminating activity C is executed. 

Producer-consumer with bounded queue: pattern is 
similar to previous one, except that at any time, the 
difference between the number of times that activity A 
has been executed, and the number of times that activity 
B has been executed, is bounded by an integer called the 
size of the queue. 

Whereas a consensus has been reached on defining 
the set of workflow patterns for business process 
modeling languages, no such patterns exists for 
workflows applied to scientific computing on the Grid. 
The notion of data flow used in scientific workflows is a 
natural representation for simple data processing 
pipelines. Pure data flow is not expressive enough to 
model either branches and merges in the execution path 
nor iterative behavior. This is why workflow languages 
typically focus on the control flow primitives rather than 
on the data flow aspects. [16] identifies a set of 
workflow patterns related to parallel and pipelined 
execution by looking at different kinds of parallelism.  
These patterns can be classified in two broad categories:  

Parallel execution patterns include: 

- simple parallelism, where tasks lacking control flow 
dependencies are executed in parallel 

- data parallelism, a form of single instruction 
multiple data (SIMD) parallelism with three 
variants: static, dynamic and adaptive. 
Pipelined execution patterns include: 

- best effort pipelines, where intermediate results are 
dropped if downstream tasks are not ready to process 
them 

- blocking pipelines, where a form of flow control is 
used to stop tasks that are located upstream from 
busy ones 

- buffered pipelines, where the workflow accumulates 
intermediate results between tasks 

- superscalar pipelines, where multiple parallel 
instances of slow tasks are started to process 
intermediate results 

- streaming pipelines where intermediate results are 
fed into continuously running tasks. 
Another classification of workflow patterns related 

to parallel computing identifies three different kinds of 
parallelism: inter-workflow, intra-workflow, intra-
program. Intra-program and inter-workflow parallelism 
are also mentioned under the terms of fine-grained and 
coarse-grained parallelism. Inter-workflow parallelism 
refers to the simultaneous execution of multiple 
workflow instances (in general) and of multiple 
instances of the same workflow (in particular). 

Intra-workflow parallelism is defined as the 
concurrent execution of more than one program (or task) 
within the same workflow. One can further distinguish 
tasks without dependencies (parallel execution patterns) 
from tasks depending on the previous results of one 
another (pipelined execution patterns). Intra-program 
parallelism implies the distributed execution of 
individual tasks of the workflow. 

 
2.3   Grid Workflow Management Systems 
A workflow management system (WfMS) is a system that 
completely defines, manages and executes workflows through 
the execution of software whose order of execution is driven 
by a computer representation of the workflow logic. 
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Fig. 4 Grid workflow execution 

 
WfMS consists of two main components: a 

workflow modelling component and a workflow 
enactment component (workflow engine). The first 
offers a build-time environment where workflow 
specifications can be defined, analysed and managed and 
it also supports a persistent storage for workflow 
specifications. The second provides a run-time 
environment for the creation, execution and management 
of workflows. 

Some Grid workflow management systems: 
Taverna, GridAnt, GridFlow, Gridbus, Askalon, 
Karajan, Kepler, and GridNexus. 

P-GRADE is a graphical Grid application 
development environment that graphically supports the 
design, execution, monitoring, and performance 
visualisation of workflow grid applications. The 
workflow describes both the control-flow and the data-
flow of the application. A job can be started when all the 
necessary input files are available and transferred by 
GridFTP to the site where the job is allocated for 
execution. 

Semantic Grid is becoming a key enabler for next 
generation Grid and the need for supporting process 
description and enactment, by means of composition of 
multiple resources, emerged as one of the fundamental 
requirements. The aim is to provide architecture with 
dynamic behaviour and interoperability. The 
Knowledge-based Workflow System for Grid 
Applications (K-Wf Grid) [12] addresses the need for a 
better infrastructure for the Grid environment. The Grid 
as a vast space of partially cooperating, partially 
competing Grid services will be a very dynamic and 
complex environment. The innovation of the K-Wf Grid 
workflow management technology includes a novel 
approach of supporting knowledge-based workflow 
orchestration by means of an expert system. 

The compute resources of a grid resource-service 
provider may be distributed over a wide geographical 
area. A scheduler should be able to handle a diverse set 
of jobs, with arbitrary interdependences among 
processes [2]. Schedule of Grid workflow execution on 
WfMS, grid site, and on a computational node (CN) is 
given in Fig.4. 

 
 

3   Verification 
Formal verification using mathematical methods 
examines the state space of the given design and verifies 
whether it satisfies the required properties. Specification 
and verification of concurrent systems are problematic 
because number of states can increase exponentially with 
number of parallel parts. 

The formal approach uses the modeling language to 
system description, the specification language to 
description of the required correct system behavior, and 
it provides an analysis technique. The model has to 
describe not only the designed system but also the 
environment in which it will work. [18] The system can 
be modeled at different abstraction levels. 

Computer-aided verification is a general approach 
with applications to hardware verification, software 
engineering, multi-agent control systems, etc. It is 
appropriate for control-intensive applications with 
interesting interaction among components. 

Most approaches to verification and synthesis of 
discrete systems are based on dividing the set L of all 
system behaviors to Lφ and L¬φ (i.e., the subset satisfying 
some property φ, and the subset not satisfying it). The 
verification verifies whether the subset L¬φ is empty. 

To ensure the correctness of grid workflow 
specification and execution, grid workflow verification 
and validation must be conducted so that we can identify 
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any violations and consequently take proper action to 
remove them in time. 

Both grid workflow verification and validation are 
important. Validation failure constitutes a breach of 
contract between the complex process developer and the 
client. Verification failure results in the grid workflow 
specification and execution containing faults or flaws. 

Grid workflow validation is mainly concerned with 
the consistency between complex processes and the grid 
workflow specifications. When we model or redesign a 
complex e-science or e-business process as a grid 
workflow specification based on models and constructs 
provided by the selected grid workflow system, we must 
ensure that all main complex process requirements are 
modelled or redesigned in the grid workflow 
specification. Otherwise, the grid workflow specification 
is incomplete and is incorrect from the perspective of 
user requirements and needs. For example, some grid 
workflow systems or architectures cannot support 
temporal constraint modelling. For those processes such 
as climate modelling processes for weather forecasting 
where timing is very important, the corresponding grid 
workflow specifications are incomplete or incorrect, as 
temporal information will be ignored. 

Grid workflow verification is mainly concerned with 
the specific correctness of the grid workflow 
specification and execution such as no deadlock, no 
livelock, no temporal violation or no resource conflict. It 
aims at no faults in the grid workflow specification and 
execution under the condition where complex process 
requirements have been correctly supported in the grid 
workflow specification by the selected grid workflow 
system. 
3.1   User & System Requirements 
Quality of Service (QoS) issues have not been addressed 
very well in most Grid workflow management systems 
[24] due to their focus on the use of system centric 
policies in resource allocation. When workflow 
management systems are used in commercial or 
production environments, supporting QoS at both 
specification and execution level becomes increasingly 
critical. 

At the specification level, workflow languages need 
to allow users to express their QoS requirements. At the 
execution level, the workflow scheduling must be able to 
map the workflow onto Grid resources to meet users’ 
QoS requirements. Workflow QoS constraints are for 
example: time, cost, fidelity, reliability, security etc. 
Some basic verification problems are defined in [11]: 

The initiation problem for a workflow object x in a 
workflow structure W is to determine whether there is a 
sequence of events leading to the execution of x. 

The termination problem is to determine whether a 
workflow structure can reach a terminal state. 

A workflow structure is safe if and only if a terminal 
state can be reached from every reachable state. 

A workflow object w is n-bounded if and only if in 
every reachable state w does not occur more than n 
times. 

Verification is usually based on an extension of a 
kind of formal method, e.g., directed graph, Statecharts, 
Petri net, process algebra, or temporal logic. 

Composition of two workflow modules may cause 
deadlocks. Usability means that an environment exists 
such that the composition cannot deadlock. Formally, a 
module is usable iff there exists an environment, such 
that each execution of the module in the environment 
terminates correctly, i.e.: each started process finishes, 
no tokens (documents, messages) are left over, and each 
transition is relevant, i.e. may be fired. 

Guaranteed behaviour and outcome of mission-
critical workflows is crucial for workflows in banking, 
medical applications, electronic commerce, etc. 
Formalization of required properties can be done using 
temporal logic e.g. CTL – Computation tree logic, ATL 
– Alternate temporal logic, etc. 

 
3.2   Grid Workflows Verification Aspects 
A workflow specification is a formal description of 
processes in the real world. Its correctness is critical to 
the workflow execution. 

Structure verification. Structure verification 
consists of syntactic structure verification and semantic 
structure verification [7]. In a grid workflow 
specification, the main syntactic structure 
inconsistencies include deadlock, livelock, lack of 
synchronisation, misuse of modelling objects and 
constructs, active end, dead activity etc. 

Current research is more involved in the syntactic 
structure verification, but semantic structure verification 
is also very important. The result of structural 
incorrectness is that either a possible execution exists 
that does not reach the end node or there are still 
”uncompleted things to do” when the end node is 
reached. 

Temporal verification. To control the temporal 
correctness of the workflow execution, explicit temporal 
constraints are set at the build-time stage and verified at 
the build-time, run-time instantiation and run-time 
execution stages. According to [9] the mutual 
dependency between these constraints is affecting the 
effectiveness and efficiency of the temporal verification. 

Temporal verification aims to check the consistency 
of fixed-time constraints.  A fixed-time constraint at an 
activity is an absolute time value by which the activity 
must be completed. Time is expressed in some basic 
time units - minutes, hours, or days - the granularity is 
selected according to specific workflow applications. At 
build-time and run-time instantiation stages we need not 

WSEAS TRANSACTIONS on COMPUTERS P. Kurdel, J. Sebestyenova

ISSN: 1109-2750 1204 Issue 8, Volume 7, August 2008



consider where we should conduct temporal verification 
as each fixed-time constraint needs only be verified once 
statically. At run-time execution, activity completion 
durations vary and we may need to verify each fixed-
time constraint many times at different activities. The 
activities at which the verification is done are called 
checkpoints. After the fixed-time constraints are set, the 
temporal verification is conducted at the above three 
stages to check whether they are consistent. At the run-
time execution stage, some checkpoints are selected for 
conducting the temporal verification because it is 
inefficient to do so at all activity points. According to [5] 
we can specify for each activity its maximum duration, 
mean duration, minimum duration, run-time start time, 
run-time end time and run-time completion duration. 

Conventionally, a temporal constraint is either 
consistent or inconsistent. In the grid workflow systems, 
due to the high uncertainty of the activity completion 
times, a temporal constraint may have multiple 
consistencies. 

Performance verification. A grid workflow 
specification or execution is normally attached with 
some user defined performance parameters [7] such as 
average activity completion time, average capacity 
utilisation rate, average activity queuing time, average 
activity synchronisation delay, average activity set-up 
delay or average resource allocation. We need to verify 
whether these parameters can be met by the selected grid 
workflow system and current system run-time status. 

Resource verification. In a grid workflow or 
between different ones, different activities may compete 
for the same resource [7] such as a machine or a human 
being. For example, two activities may compete for the 
same machine during the same time interval. It may or 
may not result in actual resource conflict, as they may 
still be able to get the resource at different times within 
the same time interval. Resources are classified as two 
types: shared resources or private resources. 

The shared resources can be classified as two types: 
One type of resources can be accessed simultaneously by 
activities no matter what operations are executed on 
them. Another type of resources is not allowed to do so. 
The latter type of resources can be divided into the 
following two subclasses: 
- Resources can be accessed simultaneously by 

activities depending on their access modes. The 
actions can be allowed if these modes are 
compatible. 

- The resources are assumed to be occupied 
exclusively by an activity during its execution and 
cannot be accessed by another one until its 
completion. In this case, there is a resource 
constraint between these activities. 

Authorisation verification. A grid workflow 
system often needs to deploy heterogeneous and 

distributed hardware and software systems to execute a 
given grid workflow. This gives rise to decentralised 
security policies and mechanisms that need to be 
managed. Some authorisation constraints are set for 
different participants and roles, which show which kinds 
of resources can be accessed by them and how to access 
the authorised resources. 

Cost verification. We must verify the cost aspect  
of the grid workflow specification and execution to 
check whether the grid workflow specification and 
execution can meet the corresponding budget 
requirements. 

 
 

4   EGEE Project 
The general principle of grid computing consists in the 
availability of a network that connects geographically 
spread computing and storage resources while giving 
many user groups access to this network. Each user can 
gain access to the totality of the resources (computing 
capacity, memory, software, storage, etc.) that have been 
added to the network by other members of the network. 
Grid computing means in fact a globalisation and 
virtualisation of computer infrastructures. 

Grid Computing is not yet a standard product on the 
ICT market but is gaining in popularity. Many projects 
in the research world are showing the power of 
computing/data grid infrastructures. Worldwide 
production grid infrastructures (like EGEE, Enabling 
Grids for EsciencE http://www.eu-egee.org/) do exist 
and are looking for cooperation. Computer 
manufacturers and software companies have started 
cooperation with those large projects. 

The EGEE project [10] brings together experts from 
over 30 countries with the common aim of building on 
recent advances in grid technology and developing a 
service grid infrastructure, which is available to 
scientists 24 hours a day. The project aims to provide 
researchers in academia and industry with access to 
major computing resources, independent of their 
geographical location. The project primarily concentrates 
on three core areas: 
1. The first area is to build a consistent, robust and 
secure grid network that will attract additional 
computing resources.  
2. The second area is to continuously improve and 
maintain the middleware in order to deliver a reliable 
service to users.  
3. The third area is to attract new users from industry as 
well as science and ensure they receive the high standard 
of training and support they need. 

The Regional Operations Centres (ROC) are the 
heart of the operational support for the grid 
infrastructure.   They have a key role as sources of expert  
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Fig. 5 EGEE SK web portal 

 
advice and technical support in the process of building 
and operating the infrastructure. 

The Slovak EGEE information portal (see Fig. 5) created 
in the frame of the EGEE project in Slovakia provides grid 
related (especially EGEE grid related) information to users 
from all communities (science, education, industry, and 
developers). 

P-GRADE portal is available as service for the 
different grid systems and also in Central European 
Virtual Organization (VOCE) of the EGEE grid 
infrastructure. 

GENIUS is grid portal system giving - alongside 
with standard command line environment - the most 
simple and used usage mode of EGEE grid infrastructure 
services by gLite grid software. 

 
 

5   Grid computing in Slovakia 
Many grid infrastructures were built with different 
purpose, amount of resources and security levels. Early 
grid infrastructures were often called testbeds as the grid 
technologies were under development and grids were 
used mainly for testing. As the number of users using 
grids for their work and number of sites involved had 
increased, testbeds had to transform to production grids. 

National grid infrastructures in central Europe aim 
to join national and regional grid infrastructures and 
create robust and secure grid available to scientist. 180 
participating sites from 41 countries with more than 
18.000 CPUs are organized to 12 federations. Slovakia 
with Poland, Czech Republic, Austria, Hungary, 
Slovenia and Croatia form the Central European 
federation. Most of the countries in our federation have 
national grid initiatives either as projects funded on  
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Fig. 6 Slovak grid infrastructure SlovakGrid web portal 

 
national level or as centres coordinating national grid 
activities. 

Unlike other countries in central Europe, Slovakia 
has no national  funding program  for supporting  the 
development of grid technologies and building national 
grid infrastructure. Currently there are five grid sites 
included in EU grid infrastructures. 

Institute of Informatics SAS provides 54 CPUs in 
multiple grid infrastructures. II SAS also provides site 
and user support including operation of Slovak 
GridCertification Authority issuing digital grid 
certificates for users and hosts from Slovakia. 

The European Grid Initiative (EGI) Design Study 
represents an effort to establish a sustainable grid 
infrastructure in Europe. Driven by the needs and 
requirements of the research community, it is expected 
to enable the next leap in research infrastructures, 
thereby supporting collaborative scientific discoveries in 
the European Research Area (ERA).  

A key component of the EGI vision is the provision 
of a large-scale, production Grid infrastructure – built on 
National Grids (NGIs) that interoperate seamlessly at 
many levels. It is essential that the base functions of 
currently funded EU grid projects (such as EGEE) will 
seamlessly transit to EGI. Production hardware will be 
owned and operated by the NGIs and not by EGI. 
Regional Operations Centres (ROCs) will be operated by 
the NGIs – clusters of NGIs may establish a common 
ROC. The resource allocation will be left to the NGIs. 

The main foundations of EGI are the National Grid 
Initiatives (NGI), which operate the grid infrastructures 
in each country. EGI will link existing NGIs and will 
actively support the setup and initiation of new NGIs. 

Screenshot of the Slovak grid infrastructure 
SlovakGrid web portal http://www.slovakgrid.sk is given 
in Fig. 6. 
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6   Conclusion 
EGEE grid project aims to provide researchers in 
academia and industry with access to major computing 
resources, independent of their geographical location. 
The European Grid Initiative (EGI) will link existing 
National Grid Initiatives (NGI), which operate the grid 
infrastructures in each country. A grid workflow can be 
represented by a grid workflow graph, where nodes 
correspond to activities and edges correspond to 
dependencies between activities, called flows. To ensure 
the correctness of grid workflow specification and 
execution, grid workflow verification and validation 
must be conducted so that we can identify any violations 
and consequently take proper action to remove them in 
time. 
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