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Abstract: - A new on-line clustering fuzzy neural network is proposed. In the algorithm, structure and parameter 
learning are updated at the same time. There is not difference between structure learning and parameter learning. 
It generates groups with a given radius. The center is updated in order to get that the center is near to the 
incoming data in each iteration, in this way, It does not need to generate a new rule in each iteration, i.e., it does 
not generate many rules and it does not need to prune the rules. 
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1   Introduction     
 
Both neural networks and fuzzy logic are universal 
estimators, they can approximate any nonlinear 
function to any prescribed accuracy, provided that 
sufficient hidden neurons or fuzzy rules are available. 
Resent results show that the fusion procedure of these 
two different technologies seems to be very effective 
for nonlinear system identification [2]. In the last few 
years, the application of fuzzy neural networks to 
nonlinear system identification is very active area [9], 
[10]. Fuzzy modeling involves structure and 
parameters identification. The second one is usually 
(and easily) addressed by some gradient descent 
variant, e.g., the least square algorithm and 
backpropagation. 
 
    Structure identification is to select fuzzy rules, it 
often lies on a substantial amount of heuristic 
observation to express proper strategy's knowledge. It 
often tackled by off-line, trial and error approaches, 
like the unbiasedness criterion [11]. Several 
approaches generate fuzzy rules from numerical data. 
One of the most common methods for structure 
initialization is uniform partitioning of each input 
variable into fuzzy sets, resulting to a fuzzy grid. This 
approach is followed in ANFIS [5]. In [1] the TKS 
was used for designing various neurofuzzy 
identifiers. This approach consists of two learning 
phases, structure learning which involves to find the 
main input variables of all the possible, specifying the 
membership functions, the partition of the input space 
and determining the number of fuzzy rules. Parameter 
learning involves the unknown parameters 

determination and the optimization of the ready 
existing ones in the model, using some optimization 
method based on the linguistic information from the 
human expert and form the numeric data obtained 
from the actual system to be modeled. These two 
learning phases are interrelated, and none of them can 
be independent from the other one. Traditionally, 
these phases are done secuencially, the parameter 
updating is employed after the structure is decided. It 
is suitable only for off-line operation. Most of 
structure identification methods are based on data 
clustering, such as fuzzy C-means clustering [14], 
[16], mountain clustering [10], substractive clustering 
[3]. This approach requires that all input output data 
are ready before we start to identify the plant. So the 
structure identification approaches are off-line. 
 
    There are a few on-line methods in the literature. 
In [6] the input space is partitioned according to a 
aligned clustering-based algorithm. After the number 
of rules is decided, the parameters are tuned by 
recursive least square algorithm, it is called SONFIN. 
In [7] it is the recurrent case of the above case, it is 
called RSONFIN. In [15] the input space is 
automatically partitioned into fuzzy subsets by 
adaptive resonance theory mechanism. Fuzzy rules 
that tend to give high output error are split in two, by 
a specific fuzzy rule splitting procedure. In [8] he 
proposes that the radius to make clustering updates. 
In [19] they consider each group as a one rule, and 
each rule is trained by its group data, they give a time 
varying learning rate for backpropagation algorithm 
in order to prove the parameter learning error is 
stable. 
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    In this paper, we propose a new on-line clustering 
fuzzy neural network. Learning structure and 
parameter learning are updated at the same time in 
our algorithm, we do not make difference in structure 
learning and parameter learning. It generate groups 
with a given radius. The center is updated in order to 
get that the center is near to the incoming data in each 
iteration, in this way, It does not need to generate a 
new rule in each iteration, i.e., it does not generate 
many rules and It does not need to prune the rules. 
We give a time varying learning rate for 
backpropagation training in the case of the centers 
and the widths. We use extended Kalman filter to 
train the center of sets in the THEN part.  
 
 
2   Fuzzy systems 
 
Nowadays, fuzzy inference systems (FIS) are one of 
the most famous applications of fuzzy logic and 
fuzzy sets theory [21]. They can be helpful to achieve 
classification tasks, offline process simulation and 
diagnosis, online decision support tools and process 
control. The strength of FIS relies on their twofold 
identity. On the one hand, they are able to handle 
linguistic concepts. On the other hand, they are 
universal approximators able to perform nonlinear 
mappings between inputs and outputs. These two 
characteristics have been used to design two kinds of 
FIS. 
 
The first kind of FIS to appear focused on the ability 
of fuzzy logic to model natural language [22]. These 
FIS contain fuzzy rules built from expert knowledge 
and they are called fuzzy expert systems or fuzzy 
controllers, depending on their final use. Fuzzy logic 
allows gradual rules to be introduced into expert 
knowledge based simulators. It also points out the 
limitations of human knowledge, particularly the 
difficulties in formalizing interactions in complex 
processes. This kind of FIS offers a high semantic 
level and a good generalization capability. 
Unfortunately, the complexity of large systems may 
lead to an insufficient accuracy in the simulation 
results. Expert knowledge only based FIS may show 
poor performances. Even so, the major benefits of 
fuzzy techniques are the convenient method to model 
technical systems and the good interpretability of the 
system description by using linguistic rules. 
However, a fuzzy system implementation could be 
very time consuming because there are no systematic 
methods to determine its parameters (fuzzy sets and 
fuzzy rules). In [23] some methods are described to 

construct fuzzy inference systems from input-output 
data, which do not propose a systematic procedure to 
determine the number of rules of the fuzzy system. 
The gradient descent method for example, fixes the 
number of rules before training, while the table look-
up method and the recursive least squares method fix 
the IF-part fuzzy sets before training, which in turn 
sets a bound for the number of rules. One of the most 
common problems at the time of designing fuzzy 
rule-based systems is how to get the desired fuzzy 
rule base. A set of essential design issues such as the 
number of if-then fuzzy rules, partition of universes, 
and membership functions, must be addressed. In 
many application tasks, fuzzy rules are manually 
gotten from human expert knowledge, and the 
resulted system is then tuned by monitoring its 
performance through trial and error. However, this 
approach is not suitable or even feasible when there is 
no linguistic knowledge available or expert 
knowledge must be tuned to data as well as becomes 
impractical for large dimension problems. To solve 
this problem, several methods have been recently 
proposed to automate the process of generating fuzzy 
rules based on numerical training data [24], [25]. 
 
 
3   Neural networks 
 
The second class of simulation tools is based on 
automatic learning from data. This study is restricted 
to supervised learning and observed outputs are part 
of the training data. Thus, a numerical performance 
index can be defined which is usually based on the 
mean square error. Neural networks have become 
very popular. Their main advantage is the numerical 
accuracy while a major drawback is their black box 
behavior. Indeed, they provide a numerical model, 
whose coefficients have no meaning for experts. 
Sugeno [26] was one of the first to propose self-
learning FIS and to open the way to a second kind of 
FIS; those designed from data. Even if the fuzzy 
rules, which are automatically generated from data, 
are expressed in the same form as expert rules, there 
is generally a loss of semantic. Since Sugeno's early 
work, a lot of researchers have been involved in 
designing fuzzy systems from databases. It proposes 
several approaches to generate fuzzy rules of numeric 
data [27] - [32]. [33] Introduced the main methods for 
designing fuzzy inference systems from data. All 
these methods can be considered as rule generation 
techniques. Rule generation can be decomposed into 
two main steps: 1) rule induction and 2) rule-base 
optimization. Originally, automatic induction 
methods were applied to simple systems with a few 
variables. In these conditions, there is no need for 
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optimizing the rule base. The situation is different for 
large systems. The number of induced rules becomes 
enormous and the rule description is complex because 
of the number of variables. Obviously, the rules will 
be easier to interpret if they are defined by the most 
influential variables and the system behavior will be 
easier to understand as the number of rules is getting 
smaller. Variable selection and rule reduction are, 
thus, two important steps of the rule generation 
process. They are usually referred as structure 
optimization. Apart from structure optimization, a 
FIS has many parameters that can also be optimized, 
i.e., membership functions parameters and rule 
conclusion adjustment. This is called parameter 
optimization. A thorough study has been done by 
various authors [31], their respective advantages and 
drawbacks are well known. 
 
 
4   Clustering 
 
Therefore, the number of rules in the fuzzy system 
can be seen as a design parameter and can be 
determined it based on the input-output pairs, 
proposal that is the base of the design of fuzzy 
systems using clustering [34], [35].In order to obtain 
a set of N fuzzy conditional rules capable of 
representing the system to be studied, clustering 
algorithms are particularly suited, since they permit a 
scatter partitioning of the input–output data space, 
which results in finding only the relevant rules. The 
clustering algorithms have the advantage of avoiding 
the explosion of the rule base, a problem known as 
the “curse of dimensionality.” From a general and 
conceptual point of view, grouping means to 
partitioning a disjoint data collection in groups or 
subgroups; with a specific datum in just one group, 
having several specific properties to distinguish it 
from the others data of the data of other groups. The 
aim of grouping is extracting natural set groups, in 
order to produce a concise representation of the 
system behavior. The clustering algorithms have been 
used extensively to organize, classify and compress 
data and to construct models. The clustering 
algorithms can be divided in two classes: batch and 
on-line. The batch algorithms process data off line, 
therefore, the temporary their structure is ignored. On 
the other hand the on-line algorithms, assume that the 
data are produced by a stationary process, that is why 
they do not move nor vary. In this situation the data 
can be sampled and grouped with a batch algorithm. 
Jang [31] describes four of the more representative 
off line clustering techchniques: K-means clustering, 
fuzzy clustering C-means (FCM), the mountain 
clustering method, and subtractive clustering. 

 
 
5   Combination of fuzzy systems and 
neural networks 
 
Combinations of neural networks, and fuzzy systems 
(or neurofuzzy systems for short) have been 
recognized as a powerful alternative approach to 
develop fuzzy systems. Some neurofuzzy networks 
are capable to learn and to provide if–then fuzzy rules 
in linguistic or explicit form [36], [37], [38]–[41]. 
However, most of the current neurofuzzy approaches 
address parametric identification or learning only. In 
general, the designer chooses membership functions 
shape and the respective parameters are adjusted. In 
many neurofuzzy design techniques, the fuzzy sets 
involved are defined in multidimensional spaces. 
Very often, this turns rule interpretation very 
difficult. In addition, some of them are not consistent 
with fuzzy set and fuzzy reasoning theory. 
 
 
6   Fuzzy neural networks for nonlinear 
identification 
 
Consider following unknown discrete-time nonlinear 
system: 
 

)]1([)1( −=− kXfky    (1) 
 
Where =−−=− )]1(),...,1([)1( 1 kxkxkX N

 1]- m -u(k  .,2) -(k u  1), -n  -y(k  ., …
 

 2), -[y(k …
Nℜ∈

u(k)
, (N=n+m) is the input vector, 

2 ≤ u , y(k)  is the output, uku ≤− 2)1( , 
y(k-1) is the output of the plant, f is a general 
nonlinear smooth function . A generic fuzzy 
model is presented as a collection of fuzzy rules in 
the following form (Mandani fuzzy model [16]) 

f ∈ C∞

 
:jR IF x1 is A1,j  and x2 is A2,j and. . . xN is AN,j   (2) 

    THEN jBisv  
 
We use M (j = 1, 2…M) fuzzy IF-THEN rules and N 
fuzzy sets for each rule to perform a mapping from an 
input linguistic vector  

)]1(),...,1([)1( 1 −−=− kxkxkX N  , 

(N=n+m) to an output linguistic scalar 

Nℜ∈
ℜ∈v . 

A1,j…AN,j and Bj are standard fuzzy sets. Each input 
variable xi has N fuzzy sets. In the case of [14], [16] 
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we know, by using product inference, center-average 
defuzzifier and center fuzzifier, called Sugeno fuzzy 
inference system with weighted average (FIS), the 
output of the fuzzy logic system can be expressed as 
 
ŷ (k - 1) = a(k - 1)/b(k - 1) 

a(k - 1) =  ( ) ( ),11
1

−−∑
=

kzkv j

M

j
j

( ) ( 11
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−=− ∑
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where  are inputs of system (1), (i = 1…N), 
cij(k-1) and  

)1( −kx
)1( −kijσ  are the centers and the 

widths of the membership function of IF, 
respectively, (j = 1…M),  is the center of 
the membership function of THEN. If we define [17] 

)1( −kv j

 
( ) ( ) ( 1/11 −−=− kbkzk jj )φ    (4) 

 
Then (3) can be written as follows 
 

( ) ( ) ( ) ( ) (∑
=

∧

−−Φ=−−=−
M

j

T
jj kVkkukky

1
11111 φ )  (5) 

 
Where 

 T
Mj kvkvkV )]1(),...,1([)1( −−=− Mℜ∈

And  . T
Mj kkk )]1(),...,1([)1( −−=−Φ φφ Mℜ∈

 
Remark 1 The structure is similar to the given in 
[17],[18], but they train it with the gradient in all 
parameters. In this paper since cij(k-1) and  

)1( −kijσ   are nonlinear in parameters we use the 
gradient. Since vj(k-1) is linear in parameters we use 
the extended Kalman filter which is proven in [12] 
and [20] that it is better than the gradient. 
 
 
7   Structure identification 
 
Let xi(k-1) are newly incoming pattern, then we get 
 
( ) ( 1max1

1
−=−

≤≤
kzkp jMj

)  (6) 

 
If , then a new rule is generated (each 
rule correspond to each center) and M= M + 1 where 

r is a selected radius, 

( ) rkp <−1

)1,0(∈r . Once a new rule is 
generated, the next step is to assign initial centers and 
widths of the corresponding membership functions, a 
new density with value 1 is generated for this rule. 
 

( ) ( )kxkc iMi =+1,  ( )1 =+ kM ( )1,0, ∈randiσ  (7) 

( ) ( )kykvM =+1 ,  ( ) 11 =+ k,Mid  
 
If ( ) rkp ≥−1 , then a rule is not generated and in 
the case that ( ) (1 = )1−− kp

( ) ( )

kz j  we have the 
winner rule , the centers and density of this rule 
are updated as 

*j

 

( ) ( ) ( ) (( )11 )
1

1 *2** −−−
−+

+−= kck
kx

kcKc ij
i

ijij 11
1

2
* −+

x
kc i

ij

 (8) 

( ) ( )1*,*, 1+−= kdkd jiji  
 
Remark 2 The structure identification is a little 
similar to the given in [6], [7], but they do not take 
the max of zj(k-1) as (6), this idea is taken from the 
competitive learning of ART recurrent neural 
network [4], [14] in order to get the winner rule (in 
the case of ART is the winner neuron). If the 
algorithm of [6], [7] do not generate a new rule, it 
does nothing, in this paper the center is updated as in 
(8) in order to get that the center is near to the 
incoming data in each iteration, in this way, It does 
not need to generate a new rule in each iteration, i.e., 
it does not generate many rules and It does not need 
to prune the rules. This idea is similar to the updating 
of weights in the Kohonen recurrent neural network 
[4], (in this case they speak of weights and we speak 
about the center of the membership functions). 
 
8   Parameter identification 
 
We need the stability of identification parameters 
because this algorithm works on line. We .rst analyze 
the stability of centers and the widths of the 
membership function of the IF part, later we analyze 
the stability of the centers of the membership 
function of the THEN part. We assume from [16] and 
[19] that fuzzy is a general approximator of nonlinear 
functions, then (1) can be written as 
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where ,  and are unknown 
parameters which may minimize the modeling error 

*
ju

)1

( 1* −kcij ) )( 1* −kijσ

( −kμ . In the case of two independent variables, 
smooth function has Taylor formula as 
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Where ( )1−kζ  is the remainder of the Taylor formula. 
If we let x1 and x2 correspond  and 
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Using chain rule, we get 
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We define the identification error as 
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If we define: 
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In order to assure the stability of identification we use 
the following learning law to updated the weights of 
neural identifier 
 

( ) ( ) ( ) ( ) ( )1111 1 −−−−−= kekDkkckc ijij η  (16) 

( ) ( ) ( ) ( ) ( 1111 2 −−−−−= kekDkkk ijij ησσ ) 
 
where j=1…M, i=1…N and D1(k-1) and D2(k-1) are 
given in (14). Note that Di(k-1) are auxiliary terms to 
minimize the notation, but the right is to substitute 
Di(k-1) from (14) into (16). The dead-zone is applied 
to ( )1−kη  as 
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2
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Remark 3 The normal learning (14),(16) has similar 
form as backpropagation [16], the only difference is 
that we use normalizing learning rate ( )1−kη ; [16] 
use fixed learning rate. The time-varying learning 
rate can assure the identification stable. This 
learning rate is easy to get, no any prior information 
is required, for example we may select 9.0=η . 
 
Now, we prove the stability of the centers of the 
THEN part. From (4) and (5), (9) can be written as 
 
( ) ( ) ( ) ( 11*11ˆ −+−−Φ=− kkVkky T μ )  (18) 

 
Where ( )1* −kV  is the optimal weight which can 
minimize the modeling error ( )1−kμ . 
 
From (5), (12) and (18) we have 
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( ) ( ) ( ) ( )11~11 −+−−Φ=− kkVkke T μ   (19) 
 
Where ( ) )1()1(1~ * −−−=− kVkVkV . We modify 
the extended Kalman filter [12], [20] as dead-zone 
Kalman filter 
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T

kk

,
 ) =1

( ) ( ) ℜ∈〉−Φ−Φ+ − 0,112 212 RkPkR k
T . μ  is the upper 

bound of the uncertainty ( )1−kμ , ( ) μμ <−1k . 

is the covariance matrix, 

 is a diagonal matrix where

MxM
kP ℜ∈−1

MxMIR ℜ∈=α1 0>α is 
small.  
 
9   Algorithm Proposed 
 
The final algorithm is proposed in the next steps: 
 
 0) Select the following parameters: ℜ∈〉= 02 βR , 

, ℜ∈<< 10 r ℜ∈<< 10 η , ℜ∈2ς , ℜ∈2u . 
 
1) For the first data k=1, M=1, v1(1) = y(1), 

d1(1)=1, (i = 1…N), ci1(1) = xi(1), 
( ) )1,0(1 ∈= randijσ , 11 , 11

1
x . 1 100 xP ℜ∈= R ℜ∈=α

2) For the other data 2≥k , evaluate zj(k-1) and 
b(k-1) with (3), evaluate by ( )1ˆ −ky with (4) and 
(5), evaluate p(k-1) with (6), update cij(k-1) and  

)1( −kijσ  with (14) (16) and (17). Note that 
Di(k-1) are auxiliary terms to minimize the 
notation, but the right is to substitute Di(k-1)  
from (14) into (16), update V(k) with (20). 

3) If p(k-1) < r, then a new rule is generated 
(M=M+1) where )1,0(∈r , assign initial values 
to ci,M+1(k), )(1, kMi +σ , vM+1(k) and dM+1(k) with 
(7), )1()1( ++ MxM  and 

)1()1( , go to 2. 
,1,1 + kM

1∈Rα

100∈= kP
+ℜ∈ xM

+ ℜ∈MP

1,1
+= M

,1 ++ MMR
4) If rk , then a rule is not generated and in 

the case that zj(k-1) = p(k-1) we have the winner 

rule *j , the value of )(* kd j  of this rule is 
updated with (8), go to 2. 

P ≥− )1(

 
 
 
 
10   Simulation 
 
In this section, the suggested on-line self 
organized algorithm proposed is applied to 
nonlinear system identification. 
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Figure 1: Comparison in identification for (21). 

 
Example 1 Consider the nonlinear system 
iven in [16] and [19]: 
 
( ) 2121 06.028.01.052.0 xxxxky −++=  (21) 

 
 with ( ) )/10(sin 2

1 kkx = and . The 
parameters of our algorithm

( ) )/10(cos2
2 kkx =

 are 01.0== βα , 
1.0=r . We compare our algorithm called 

Kalmanclusterfuzzy with the version given in [19] 
called clusterfuzzy (in this case use the gradient in all 
cases to train parameters and they do not use (8)) and 
with the version given in [16] called fuzzy (in this 
case they do not cluster and they use gradient with 
constant learning rate), The identification is given in 
Fig.1 and the least mean square for fuzzy is 0.0026, 
for clusterfuzzy is  and for 
Kalmanclusterfuzzy is . In Fig. 2 is given 
the membership functions of the Kalmanclusterfuzzy 
algorithm. The clusterfuzzy algorithm generate 5 
rules and the Kalmanclusterfuzzy algorithm generate 
2 rules, it is because Kalmanclusterfuzzy uses (8). 

4105832.1 −x
510−x1921.1
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Figure 2: Membership functions for Kalmanclusterfuzzy 

algorithm. 
 

Example 2 Consider the nonlinear system: 
 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) 1123

1tanh123
222

222

+−+−+−
++−+−+−

=
kykyky

kukykykyky   (22) 

 
Where 
( ) ( ) ( ) )sin(2.14sin2.03sin6.0 kTskTskTsku πππ ++=

( ) ( ) ( ) ( ) ( ) ( )
, 

( ) ( )kukxkykxkykxkykxTs =−=−=−== 4321 ,3,2,1,01.0

01.0==
. The parameters of the our algorithm are 

βα , . We compare our algorithm 
called Kalmanclusterfuzzy with the version given in 
[19] called clusterfuzzy (in this case use the gradient 
in all cases to train parameters and they do not use 
(8)) and with the version given in [16] called fuzzy 
(in this case they do not cluster and they use gradient 
with constant learning rate), The identi.cation is given 
in Fig.3 and the least mean square for fuzzy is 
0.0013, for clusterfuzzy is 0.0019 and for 
Kalmanclusterfuzzy is 2.2x10-5. In Fig. 4 is given the 
membership functions of the Kalmanclusterfuzzy 
algorithm. The clusterfuzzy algorithm generate 6 
rules and the Kalmanclusterfuzzy algorithm generate 
2 rules, it is because Kalmanclusterfuzzy uses (8). 

6101 −= xr
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Figure 3: Comparison in identification for (22). 
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Figure 4: Membership function for Kalmanclusterfuzzy 

algorithm. 
 

 
11 Conclusions 
  
In this paper we presented a quick and efficient 
approach for system modelling using clustering and 
neuro fuzzy networks. The structure identification 
and parameter learning are done on line. From a 
dynamic system point of view, such training can be 
useful for all neural network applications requiring 
real-time updating of the weights. In the future, we 
will design a pruning algorithm 
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