
Normalized Text Font Resemblance Method Aimed at

Document Image Page Clustering

Costin-Anton Boiangiu, Andrei-Cristian Spataru, Andrei-Iulian Dvornic, Dan-Cristian Cananau

Computer Science Department

“Politehnica” University of Bucharest

Splaiul Independentei 313, Bucharest

ROMANIA

Costin@cs.pub.ro, Andrei.Spataru@yahoo.com, Andrei.Dvornic@yahoo.co.uk,

Dan_Cananau@yahoo.com

Abstract: This paper describes an approach towards obtaining the normalized measure of text resemblance in

scanned images. The technique, aimed at automatic content conversion, is relying on the detection of standard

character features and uses a sequence of procedures and algorithms applied sequentially on the input document.

The approach makes use solely of the geometrical characteristics of characters, ignoring information regarding

context or the character-recognition.

Key-Words: - automatic content conversion, text characteristics, font size, boldness, italic, texture measurements

1 Introduction
Automatic document content conversion has been

one of the most interesting areas of development in

the last years [10][11], also determined by the rapid

expansion of digital libraries [16]. The OCR

software has been developping and has greatly

improved during this time, but errors still occur in

detection, due to several factors [12][13]. Also new

scanners and image processing methods have

appeared. The next step in this domain is the

detection of the logical structure of the document,

and, in order to accomplish this, there are a number

of measurements that need to be made.

This paper provides several algorithms that

retrieve the relevant information in the document

such as font size or the degree of boldness, and

others, without any actual character recognition.

Several such algorithms already exist, but what is

different in this approach is the fact that it takes into

consideration all the computed characteristics and

combines them in order to present a structural view

of the document. By doing so, scanned images will

be easier to interpret, structural characteristics for

text areas will be available, and the clustering of text

will be possible.

2 The Need for Text Classification
Content conversion on documents strongly relies on

the extraction of character parameters from input

images. The information obtained from these

measurements is then used in the creation of the

logical hierarchy of content, so detection methods

have to be exact and controllable.

As the variety of input images is extensive, a

method must be found to perform the comparison of

text characteristics on a wide array of input scenarios.

Given an input image, the final goal is to obtain a

normalized measure of text resemblance, and decide

if text areas within the image are logically connected,

so they can be categorized and structured

hierarchically (e.g. titles, subtitles, paragraphs,

footnotes and page numbers).

In the following part, the main issues of the task

ahead will be presented and addressed, in order to

obtain a generally applicable method.

The input image has to undergo a preparation

stage, comprising a conversion from any color space

into black & white, an extraction of connected pixels

in the foreground (which will be referred to in

following as “Entities”), and a filtering of Entities as

to separate text (characters) from images or other

components that are irrelevant to this purpose.

2.1 Applying Measurements
In order to obtain relevant results, a number of

measurements that concern various geometrical

aspects of the Entities will be taken into

consideration. In following, these methods will be

enumerated along with a short reasoning to their

usage. All measurements will be thoroughly

explained in the next section.

WSEAS TRANSACTIONS on COMPUTERS

Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1091 Issue 7, Volume 7, July 2008

- Texture: refers to the application of texture-

specific measurements to the Entities, such as Mean,

Variance, Skewness and Kurtosis. The output is a

statistical result of black pixel appearance and has the

advantage of speed of execution over the output

accuracy.

- Font size: a measurement of the high caps (height

of the capital letters) and low caps (height of non-

capital letters).

- Font boldness: also referred to as the “pen

width”, is the thickness of the Entity.

- Font italics: represents the slant angle of the

Entity.

- Line spacing: refers to the distance between two

consecutive text rows.

2.2 Interpreting Results
The final step is the interpretation of the results

obtained from the above measurements. The

importance of the detected text features comes into

question here, as well as the running time of the

algorithms for each feature.

3 The Text Measurements

3.1 Image Preparation Stage
Because the actual black and white conversion of the

input image and the extraction of Entities are beyond

the scope of this paper, further attention will not be

paid in this direction. A suitable algorithm for image

binarization should be used, depending on the quality

of the input image. In this case, color conversion

algorithms from [4] were used.

Fig.1: Conversion from Color or Grayscale to Black

and White

For the extraction of Entities, horizontal run-length

sequences of black pixels (called “segments”) are

found in the input black & white image. The

segments, which have as main characteristics their

“row”, the “start column” and “stop column”, values

that represent the leftmost and rightmost X-axis

coordinates, are then grouped into clusters of

connected black pixels, called “Entities”.

Detailed methods for run-length connected pixels

extraction can be found in [14], while conversion

algorithms are also available in [15].

Fig.2: Entities extracted from an input image,

represented as bounding rectangles

A set of Entities extracted from the converted (black

& white) image will be considered as input.

3.2 Filtering of Entities

As already stated in Section 2, the set of input

Entities contains both significant and insignificant

characters and symbols, so a number of filters have to

be applied in order to ensure the relevance of the

dataset for the measurements.

 Methods for the improvement of OCR input

quality already exist [9], but their complexity makes

them unsuited for the purpose at hand.

 In this approach, three filters are used, and are

applied in the following order:

1. “Inside” filter

2. “Merge” filter

3. “Width” filter

The issues raised by erroneous binarization, also due

to the low quality of some scanned documents and

the presence of noise, are partially or totally rectified

by these filters. Also, a number of image de-noising

algorithms are available in [2].

3.2.1 “Inside” Filter

Fig.3

The “inside” filter algorithm checks whether an entity

is included entirely into another one, by considering

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1092 Issue 7, Volume 7, July 2008

the top-left and bottom-right coordinates of their

bounding boxes. If this condition is fulfilled, the

entity with the smaller bounding box area is added to

the bigger one. The purpose of the procedure is to

unite letters that are fragmented, for example adding

the top right part of the K to the other part of the

letter.

3.2.2 “Merge” Filter

Fig.4

The “merge” filter checks if an entity can be

connected with another one vertically, in order to

rebuild a letter. If one entity has the left or right

bounds inside the left or right bounds of the other (if

they are one above the other) and if the distance

between them is smaller than a chosen threshold, they

are connected.

3.2.3 “Width” Filter

This method first takes the height and width of each

entity’s bounding rectangle and, if the width is

greater or equal than the height, the fill ratio of black

pixels in the bounding rectangle is computed. If this

fill ratio is above 80%, the current entity is

considered noise or punctuation mark, and is

removed from the input array.

3.3 Applying measurements
At this point, the input is a set of filtered Entities, and

the algorithm can be continued with the extraction of

text characteristics, as stated in [3].

3.3.1 Texture measurements
The following formulas were applied, considering the

black pixels as input.

Mean: ∑
=

=

N

iN
m

1

ix
1

 (1)

Variance:
)1(

1

22

−

−

=

∑
=

nn

mxN

s

N

i

i

 (2)

Variance coefficient:
m

s
cv = (3)

Skewness:

∑ 






 −

=
−−

=

N

i s

mxi

NN

N

1

3

)2)(1(
τ

 (4)

Kurtosis: (5)

)3)(2(

3

)3)(2)(1(

)1()1(
2

1

4

−−

−

−−−

+
=

−
∑ 







 −

=
NN

i

NNN

NN
k

N

s

mxN

i

where N represents the number of black pixels, and x

the coordinate on the horizontal axis of the pixel.

The most interesting result was obtained using

the skewness measurement. By applying the

measurement on a regular newspaper page, the titles,

subtitles, and paragraph text returned values with a

difference of 1 order of magnitude between them. For

example the title of the newspaper returned a value in

units, the subtitle and paragraph titles in 10’s and

normal text in 100’s.

3.3.2 Font Size

The main idea of the method is to select the peaks in

the histogram of entity heights. The peaks are the

small caps, big caps and various noise or punctuation

signs that were not eliminated by the filters. If two or

more peaks are found, the highest one is the small

caps, but also the other peaks have to be inside a

predefined range in order to consider them as big

caps and punctuation signs.

If only one peak is found, or the entities are not in

the range, then all letters are considered in high caps,

and the low caps are 0. In order to obtain better

results, a triangle filter is applied to the histogram,

and is presented below.

Fig.5: Histogram before filtering

Fig.6: Histogram after filtering

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1093 Issue 7, Volume 7, July 2008

The filter is a weighted average using a triangular

window of width 10% from the total histogram length

(ex: first element has the weight 0.1, ascends until the

middle element and then descends to the last

element). In this way the highest value in a group will

be emphasized, in order to point out the difference of

the peaks with the other values.

Fig.7: Flowchart of the Font Size Algorithm

3.3.3 Font Boldness

For the extraction of the font boldness characteristic,

two distinct algorithms have been used: “contour

length” and “crosshair”.

Fig.8: The difference between a normal letter (a) and

a bold letter (b) regarding the ratio between the

number of outline pixels and the total number of

pixels.

“Contour length” computes the number of pixels

comprising the contour of the entity and the total

number of pixels of the entity.

The percentage result is the ratio between these

two.

total

outline
ratio = (6)

Consequently, this ratio will have a lower value in

bold letters.

Fig.9: For the pixel at the intersection of V1 and H1,

the dominant will be vertical (V1), as for the pixel at

the intersection of V2 and H2 the dominant will be

horizontal (H2).

The “Crosshair” method calculates the width of

the “pen” that wrote the entity. This is done by

iterating each black pixel in the entity and searching

for the length of the segments of black pixels up,

down, left and right, returning the vertical and

horizontal “crosshair” segments. Only the smaller

segment is considered, called “dominant”,

representing the pen width.

After obtaining dominants (segment lengths) for

all black pixels in the entities, these segments are

added to an array, and a histogram of frequency is

created. The most frequent dominant represents the

value of interest. As an addition to this, the algorithm

checks if 2 peaks are close in size (on certain texts,

the value oscillates by 1 pixel) and returns the

average between the two, making the method more

accurate.

3.3.4 Font Italics

For the extraction of the italic characteristic, again

two distinct algorithms have been used: “width” and

“chain”.

The “Width” method computes the width of the

bounding rectangle of the entity and then applies a

rotation of the black pixels inside.

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1094 Issue 7, Volume 7, July 2008

Fig.10: (a) The bounding rectangle of a normal letter

 (b) The same bounding rectangle over the italic

letter. Observe the difference in width.

The rotation is done by -16 degrees (considered

as a common value for italic characters), and by +16

degrees, in the real space, in order to keep accuracy.

The algorithm then computes the maximum width of

the set of rotated points. The idea is that a rotated

italic character has a smaller width value than it had

initially, while if the character was not italic, after

rotation the width grows. The rotation by +16 degrees

is done as a check in order to eliminate errors coming

from the geometry of the entity, or so-called

“naturally italic” characters like “w”.

 The “Chain” algorithm rotates the entity by -16

and then by +16 degrees and computes the longest

vertical black pixel line in each case. The idea is that

an italic character has a lower value for the longest

vertical line.

Fig.11: (a) the longest vertical line in a normal letter

 (b) the longest vertical line in an italic letter.

 Observe the shorter line in case (b).

After rotation, the pixels tend to align vertically.

The decision is taken according to the rotated -16 and

rotated +16 longest vertical lines. (if after the rotation

by -16 the line increases, the character is italic).

3.3.5 Line Spacing

Line spacing measures the distance between two rows

of characters, or entities in this case. The algorithm

takes into consideration only the letters that are above

each other. It checks if the entities are in consecutive

lines by comparing the distance between them with a

mean measure of their heights, and then checks if the

entities are above each other, or approximately above

each other, by verifying that the x coordinates of an

entity is inside a bound given by the x coordinate of

the other entity. Finally the algorithm returns a

floating-point value, representing the average

distance, in pixels, between the base lines of

characters in the considered text area.

3.4 Interpreting the measurements
Because two alternative algorithms were created for

the boldness and italics measurements, tests were

performed on a large number of input images, to find

the algorithm that yields the best results in both cases.

 For the boldness measurement, the “Crosshair”

method was more exact, because the result is returned

in pixels, while the “Contour Length” method returns

the result in percent. Also, a result in pixels makes

the comparison and thresholding easier to perform.

 For the italics measurement, the “Width”

method was considered more reliable, because the

“Chain” method relies more on the quality of the

input (if the letter is fragmented, the longest vertical

line will no longer be correctly found).

 As was stated in Section 3.2.1, the Skewness

value for the Texture measurements was used in the

tests, where the other text characteristics were found

similar.

The first step is to compare the small caps of the

first text area with the small caps of the second one; if

one of them is zero then that text has only big caps

and the algorithm passes to the next step; Else, a ratio

between the two low caps values is computed.

The same goes for high caps, and so the final ratio

is given by the mean between the small caps ratio and

big caps ratio.

If the ratios are significantly different, there is no

need for boldness or italics computation. Otherwise

the algorithm goes to the next step, computing the

boldness.

First, the higher boldness value between the two

text areas is found. If the difference in boldness is

above 1 pixel / entity, the two texts differ and there is

no need for italics computation. Otherwise, the

italics comparison is made, checking only if the texts

are italic or not.

If none of the above measurements yield a result

that clearly joins or separates the texts, the texture

measurements are applied, but only if the input is

considerable in size.

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1095 Issue 7, Volume 7, July 2008

Fig.12: Flowchart of the Measurements Interpretation

3.5 Experimental Results
In this section, results using the described algorithm

are presented.

 The sample images have been chosen from

scanned newspaper pages as to emphasize various

scenario outcomes.

3.5.1 Significantly Different Text Areas

The first test is performed on two text areas that are

significantly different in content. The first one

(Fig.13) is a newspaper title, and has to be compared

to a paragraph (Fig.14) from the same page. The

results of the algorithm in this case are presented in

Table 1 and Fig.15.

Fig.13: Title

Fig.14: Paragraph

Image Fig.13 Fig.14

High Caps

(pixels)
114 26

Low Caps

(pixels)
82 19

Line Spacing

(pixels)
70 11

Font Size

Match (%)
0

Crosshair

(pixels)
Not applied Not applied

Width (%) Not applied Not applied

Skewness Not applied Not applied

Conclusion The texts differ significantly.

Table 1

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1096 Issue 7, Volume 7, July 2008

Fig.15: Graph showing the results from the algorithm

for significantly different text areas

As it can be observed in Fig.15, the differences found

in the High Caps, Low Caps and Line Spacing

determine the algorithm to stop the following

measurements and return a “no match” between the

text areas.

3.5.2 Normal and Bold Text Areas
The second test is performed on two text areas

containing bold text lines (Fig.16) and normal text

lines (Fig.17). The texts are chosen from the same

paragraph, in order to have the same font size and

line spacing.

Fig.16: Bold text lines

Fig.17: Normal text lines

Image Fig.16 Fig.17

High Caps

(pixels)
28 28

Low Caps

(pixels)
20 20

Line Spacing

(pixels)
19 19

Font Size

Match (%)
100

Crosshair

(pixels)
6.0 3.5

Width (%) Not applied Not applied

Skewness Not applied Not applied

Conclusion

The texts have the same font size,

but they differ in boldness

by 2-3 pixels.

Table 2

Fig.18: Graph showing the results from the algorithm

for text areas that differ in boldness

As expected, the difference of 2.5 pixels in thickness

returned by the Crosshair algorithm causes the

algorithm to return a “no match” result, and stopping

before the Italics measurement.

3.5.3 Normal and Italic Text Areas
The third test is performed on two text areas, one

containing mostly italic characters (Fig.19), and

another containing text in the same font size and line

spacing, but normal characters (Fig.20).

Fig.19: Italic text

Fig.20: Normal text from the same page

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1097 Issue 7, Volume 7, July 2008

Image Fig.19 Fig.20

High Caps

(pixels)
25 26

Low Caps

(pixels)
18 18

Line Spacing

(pixels)
20 19

Font Size

Match (%)
93.65

Crosshair

(pixels)
3.0 3.0

Width (%) 88.1 11.5

Skewness Not applied Not applied

Conclusion

The texts have the same font size,

the same boldness, but the

characters in Fig.19 are italic.

Table 3

Fig.21: Graph showing the results from the algorithm

for text areas that differ in italics

In this test, the percentage of italic characters

returned by the Width method for Fig.19 clearly

separate it from the text area containing normal

characters. The algorithm stops and returns a “no-

match” result.

3.5.4 Similar Text Areas
For the final test, two text areas containing similar

text were used (Fig.22, Fig.23). The input images

were chosen to show the result of the algorithm being

applied on texts that are visually identical in

geometry, and to demonstrate the application of the

skewness texture measurement.

Fig.22

Fig.23

Image Fig.22 Fig.23

High Caps

(pixels)
27 27

Low Caps

(pixels)
18 18

Line Spacing

(pixels)
19 21

Font Size

Match (%)
94.3

Crosshair

(pixels)
3.0 3.5

Width (%) 1 0

Skewness 121 102

Conclusion The texts are similar.

Table 4

Fig.24: Graph showing the results from the algorithm

for similar text areas

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1098 Issue 7, Volume 7, July 2008

The difference in Skewness of the two text areas is

not large enough to be counted as a major

dissimilarity, so the algorithm returns a “match”.

4 Page Segmentation
In order to accomplish the task of page segmentation

and extraction of logically homogeneous elements,

suitable text areas should be input to the algorithm for

comparison. The most important issue when trying to

run the algorithm for separation purposes, on a whole

newspaper page (for example) comes from the step of

the iteration, or the way the comparison operands are

chosen. In this approach, the comparison operands

are chosen to be text lines, extracted using a

geometrical algorithm. Alternative page segmentation

approaches are available in [1].

4.1 The Text Line Detection Algorithm
The Text Line Detection Algorithm comprises a

custom data structure and a routine that iterates

through the input array of Entities and builds them

into geometrically connected text lines.

The custom data structure is designed as follows:

• an index, indicating the first Entity in the

text line

• an array of indexes, containing the rest of the

Entities found to be on the same line, based

on a decision rule.

• coordinates of the bounding box of the text

line (topleft and bottomright)

• the number of Entities the line contains

The text line composition routine iterates through the

input array of Entities and either adds new

components to an existing line (to the array of

indexes) or creates a new line with the current Entity

as first index.

 Based on the decision rule, Entities are on the

same text line if two conditions are fulfilled:

• The bounding rectangles of the Entities are

overlapping on the vertical axis

• The horizontal (x-axis) distance between two

consecutive Entities is smaller than a chosen

threshold value. This threshold value is

chosen so that lines in neighboring text

columns will not be merged.

Fig.25: Detected text lines

Because of the punctuation marks or noise in the

page, the detection of text lines will not always be

exact. In Fig.25, a separate text line was found inside

another and also, in Fig.26, the skewed input page

makes the line detection erroneous.

Fig.26: Skewed page causing an error in text line

detection

To address these issues, a filtering function was

applied, joining text lines that are either one

completely inside another or horizontally adjacent.

Fig.27: Final result of the text line detection

4.2 Application on a whole page
By applying the Text Line Detection algorithm on an

entire page, text rows are extracted to serve as

operands for the Text Characteristics algorithm.

Thus, the text lines of the input page are compared,

and a connection is made between ones with similar

characteristics (when a “match” is returned by the

algorithm). The result (Fig.29) is that headlines,

subtitles and paragraphs are separated and viewed as

homogeneous page elements.

Fig.28: Flowchart of the Page Segmentation

algorithm

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1099 Issue 7, Volume 7, July 2008

Fig.29: Segmentation results obtained on a newspaper

page

5 Conclusion
In this paper, a number of algorithms for extracting

character information were presented, and used in

conjunction, in order to obtain a normalized measure

of text resemblance, between two input text areas.

The comparison was done using the geometry of the

text alone, without knowledge of the font type.

 A practical application for the algorithm was

presented in Section 4. By using the Text

Characteristics extraction algorithm, together with a

Text Line detection algorithm, a regular newspaper

page was successfully segmented.

 As another application, the extracted page

elements can be used to obtain a page hierarchy, by

comparing the general characteristics of every

element to standard values for titles, subtitles and

paragraphs.

References:

[1] G. N. Srinivasan, G. Shobha, “An Overview of

Segmentation Techniques for Target Detection

in Visual Images”, Proceedings of the 9
th

WSEAS International Conference on

Automation and Information (ICAI ’08),

WSEAS Press, June 2008, ISBN 978-960-6766-

77-0, ISSN 1790-5117

[2] P. Bojarczak, S. Osowski, “Denoising of Images

– a Comparison of Different Filtering

Approaches”, WSEAS Transactions on

Computers, Issue 3, Volume 3, July 2004, ISSN

1109-2750

[3] C. A. Boiangiu, A. C. Spataru, D. C. Cananau, A.

I. Dvornic, “Automatic Text Clustering and

Classification Based on Font Geometrical

Characteristics”, Proceedings of the 9
th
 WSEAS

International Conference on Automation and

Information (ICAI ’08), WSEAS Press, June

2008, ISBN 978-960-6766-77-0, ISSN 1790-

5117

[4] C. A. Boiangiu, A. I. Dvornic, “Bitonal Image

Creation for Automatic Content Conversion”,

Proceedings of the 9
th

 WSEAS International

Conference on Automation and Information

(ICAI ’08), WSEAS Press, June 2008, ISBN

978-960-6766-77-0, ISSN 1790-5117

[5] Costin-Anton Boiangiu, ”Multimedia

Techniques”, Macarie 2002.

[6] B. Chen, and L. He, “Fuzzy template matching for

printing character inspection”, WSEAS

Transactions on Circuits and Systems, Issue 3,

Vol. 3, 2004.

[7] L. M. Sheikh, I. Hassan, N. Z. Sheikh, R. A.

Bashir, S. A. Khan, and S. S. Khan, “An

Adaptive Multi-Thresholding Technique for

Binarization of Color Images”, WSEAS

Transactions on Information Science and

Applications, Issue 8, Vol. 2, 2005.

[8] M. I. Rajab., “Feature Extraction of

Epiluminescence Microscopic Images by

Iterative Segmentation Algorithm”, WSEAS

Transactions on Information Science and

Applications, Issue 8, Vol. 2, 2005.

[9] Prateek Sarkar, Henry S. Baird, Xiaohu Zhang,

“Training on Severely Degraded Text-Line

Images”, ICDAR, Volume 1, 2003.

[10] Steve Man, “Intelligent Image Processing”, John

Wiley & Sons, 2002.

[11] William K. Pratt, “Digital Image Processing”,

John Wiley & Sons, 2001.

[12] S. V. Rice, G. Nagy, and T. A. Nartker, “OCR:

An Illustrated Guide to the Frontier”, Kluwer

Academic Publishers, 1999.

[13] S. V. Rice, F. R. Jenkins, and T. A. Nartker,

“The Fifth Annual Test of OCR Accuracy”, ISRI

TR-96-01, Univ. of Nevada, Las Vegas, 1996.

[14] S. Di Zenzo, L. Cinque, S.Levialdi, “Run-,

Based Algorithms for Binary Image Analysis

and Processing”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol.18,

No.1, January 1996.

[15] A. Bovik, “Handbook of Video and Image

Processing”, Academic Press, 2000.

[16] H. S. Baird, “Digital Libraries and Document

Image Analysis”, ICDAR, Volume 1, 2003.

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru,
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1100 Issue 7, Volume 7, July 2008

