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Abstract: This paper describes an approach towards obtaining the normalized measure of text resemblance in 

scanned images. The technique, aimed at automatic content conversion,  is relying on the detection of standard 

character features and uses a sequence of procedures and algorithms applied sequentially on the input document. 

The approach makes use solely of  the geometrical characteristics of characters, ignoring information regarding 

context or the character-recognition. 
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1   Introduction 
Automatic document content conversion has been 

one of the most interesting areas of development in 

the last years [10][11], also determined by the rapid 

expansion of digital libraries [16]. The OCR 

software has been developping and has greatly 

improved during this time, but errors still occur in 

detection, due to several factors [12][13]. Also new 

scanners and image processing methods have 

appeared. The next step in this domain is the 

detection of the logical structure of the document, 

and, in order to accomplish this, there are a number 

of measurements that need to be made. 

This paper provides several algorithms that 

retrieve the relevant information in the document 

such as font size or the degree of boldness, and 

others, without any actual character recognition. 

Several such algorithms already exist, but what is 

different in this approach is the fact that it takes into 

consideration all the computed characteristics and 

combines them in order to present a structural view 

of the document. By doing so, scanned images will 

be easier to interpret, structural characteristics for 

text areas will be available, and the clustering of text 

will be possible. 

 

 

2   The Need for Text Classification 
Content conversion on documents strongly relies on 

the extraction of character parameters from input 

images. The information obtained from these 

measurements is then used in the creation of the 

logical hierarchy of content, so detection methods 

have to be exact and controllable. 

As the variety of input images is extensive, a 

method must be found to perform the comparison of 

text characteristics on a wide array of input scenarios. 

Given an input image, the final goal is to obtain a 

normalized measure of text resemblance, and decide 

if text areas within the image are logically connected, 

so they can be categorized and structured 

hierarchically (e.g. titles, subtitles, paragraphs, 

footnotes and page numbers). 

In the following part, the main issues of the task 

ahead will be presented and addressed, in order to 

obtain a generally applicable method. 

The input image has to undergo a preparation 

stage, comprising a conversion from any color space 

into black & white, an extraction of connected pixels 

in the foreground (which will be referred to in 

following as “Entities”), and a filtering of Entities as 

to separate text (characters) from images or other 

components that are irrelevant to this purpose. 

 

 

2.1 Applying Measurements 
In order to obtain relevant results, a number of 

measurements that concern various geometrical 

aspects of the Entities will be taken into 

consideration. In following, these methods will be 

enumerated along with a short reasoning to their 

usage. All measurements will be thoroughly 

explained in the next section. 
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- Texture: refers to the application of texture-

specific measurements to the Entities, such as Mean, 

Variance, Skewness and Kurtosis. The output is a 

statistical result of black pixel appearance and has the 

advantage of speed of execution over the output 

accuracy. 

- Font size: a measurement of the high caps (height 

of the capital letters) and low caps (height of non-

capital letters). 

- Font boldness: also referred to as the “pen 

width”, is the thickness of the Entity. 

- Font italics: represents the slant angle of the 

Entity. 

- Line spacing: refers to the distance between two 

consecutive text rows. 

 

 

2.2 Interpreting Results 
The final step is the interpretation of the results 

obtained from the above measurements. The 

importance of the detected text features comes into 

question here, as well as the running time of the 

algorithms for each feature.  

 

 

3   The Text Measurements 

 

 
3.1 Image Preparation Stage 
Because the actual black and white conversion of the 

input image and the extraction of Entities are beyond 

the scope of this paper, further attention will not be 

paid in this direction. A suitable algorithm for image 

binarization should be used, depending on the quality 

of the input image. In this case, color conversion 

algorithms from [4] were used. 

 

           
Fig.1: Conversion from Color or Grayscale to Black 

and White 

 

For the extraction of Entities, horizontal run-length 

sequences of black pixels (called “segments”) are 

found in the input black & white image. The 

segments, which have as main characteristics their 

“row”, the “start column” and “stop column”, values 

that represent the leftmost and rightmost X-axis 

coordinates, are then grouped into clusters of 

connected black pixels, called “Entities”. 

Detailed methods for run-length connected pixels 

extraction can be found in [14], while conversion 

algorithms are also available in [15]. 

 

 
Fig.2: Entities extracted from an input image, 

represented as bounding rectangles 

 

A set of Entities extracted from the converted (black 

& white) image will be considered as input. 

 

 

3.2 Filtering of Entities 

As already stated in Section 2, the set of input 

Entities contains both significant and insignificant 

characters and symbols, so a number of filters have to 

be applied in order to ensure the relevance of the 

dataset for the measurements. 

 Methods for the improvement of OCR input 

quality already exist [9], but their complexity makes 

them unsuited for the purpose at hand. 

 In this approach, three filters are used, and are 

applied in the following order:  

 

1. “Inside” filter 

2. “Merge” filter 

3. “Width” filter 

 

The issues raised by erroneous binarization, also due 

to the low quality of some scanned documents and 

the presence of noise, are partially or totally rectified 

by these filters. Also, a number of image de-noising 

algorithms are available in [2]. 

 

3.2.1   “Inside” Filter 

 

 
Fig.3 

 

The “inside” filter algorithm checks whether an entity 

is included entirely into another one, by considering 
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the top-left and bottom-right coordinates of their 

bounding boxes. If this condition is fulfilled, the 

entity with the smaller bounding box area is added to 

the bigger one. The purpose of the procedure is to 

unite letters that are fragmented, for example adding 

the top right part of the K to the other part of the 

letter. 

 

3.2.2   “Merge” Filter 

 
Fig.4 

 

The “merge” filter checks if an entity can be 

connected with another one vertically, in order to 

rebuild a letter. If one entity has the left or right 

bounds inside the left or right bounds of the other (if 

they are one above the other) and if the distance 

between them is smaller than a chosen threshold, they 

are connected. 

 

3.2.3   “Width” Filter 

This method first takes the height and width of each 

entity’s bounding rectangle and, if the width is 

greater or equal than the height, the fill ratio of black 

pixels in the bounding rectangle is computed. If this 

fill ratio is above 80%, the current entity is 

considered noise or punctuation mark, and is 

removed from the input array. 

 

 

3.3 Applying measurements 
At this point, the input is a set of filtered Entities, and 

the algorithm can be continued with the extraction of 

text characteristics, as stated in [3]. 

 

3.3.1   Texture measurements 
The following formulas were applied, considering the 

black pixels as input. 
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where N represents the number of black pixels, and x 

the coordinate on the horizontal axis of the pixel. 

The most interesting result was obtained using 

the skewness measurement. By applying the 

measurement on a regular newspaper page, the titles, 

subtitles, and paragraph text returned values with a 

difference of 1 order of magnitude between them. For 

example the title of the newspaper returned a value in 

units, the subtitle and paragraph titles in 10’s and 

normal text in 100’s. 

 

3.3.2 Font Size 

The main idea of the method is to select the peaks in 

the histogram of entity heights. The peaks are the 

small caps, big caps and various noise or punctuation 

signs that were not eliminated by the filters. If two or 

more peaks are found, the highest one is the small 

caps, but also the other peaks have to be inside a 

predefined range in order to consider them as big 

caps and punctuation signs.  

If only one peak is found, or the entities are not in 

the range, then all letters are considered in high caps, 

and the low caps are 0. In order to obtain better 

results, a triangle filter is applied to the histogram, 

and is presented below. 

 
Fig.5: Histogram before filtering 

 
Fig.6: Histogram after filtering 
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The filter is a weighted average using a triangular 

window of width 10% from the total histogram length 

(ex: first element has the weight 0.1, ascends until the 

middle element and then descends to the last 

element). In this way the highest value in a group will 

be emphasized, in order to point out the difference of 

the peaks with the other values. 

 

 
Fig.7: Flowchart of the Font Size Algorithm 

 

3.3.3   Font Boldness 

For the extraction of the font boldness characteristic, 

two distinct algorithms have been used: “contour 

length” and “crosshair”. 

 

 
Fig.8: The difference between a normal letter (a) and 

a bold letter (b) regarding the ratio between the         

number of outline pixels and the total number of 

pixels. 

“Contour length” computes the number of pixels 

comprising the contour of the entity and the total 

number of pixels of the entity. 

 

The percentage result is the ratio between these 

two.  

 

total

outline
ratio =                            (6) 

Consequently, this ratio will have a lower value in 

bold letters. 

 

 
Fig.9: For the pixel at the intersection of V1 and H1, 

the dominant will be vertical (V1), as for the pixel at 

the intersection of V2 and H2 the dominant will be 

horizontal (H2). 

 

The “Crosshair” method calculates the width of 

the “pen” that wrote the entity. This is done by 

iterating each black pixel in the entity and searching 

for the length of the segments of black pixels up, 

down, left and right, returning the vertical and 

horizontal “crosshair” segments. Only the smaller 

segment is considered, called “dominant”, 

representing the pen width. 

After obtaining dominants (segment lengths) for 

all black pixels in the entities, these segments are 

added to an array, and a histogram of frequency is 

created. The most frequent dominant represents the 

value of interest. As an addition to this, the algorithm 

checks if 2 peaks are close in size (on certain texts, 

the value oscillates by 1 pixel) and returns the 

average between the two, making the method more 

accurate. 

 

3.3.4   Font Italics 

For the extraction of the italic characteristic, again 

two distinct algorithms have been used: “width” and 

“chain”. 

The “Width” method computes the width of the 

bounding rectangle of the entity and then applies a 

rotation of the black pixels inside. 
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Fig.10: (a) The bounding rectangle of a normal letter 

        (b) The same bounding rectangle over the italic 

letter. Observe the difference in width. 

 

The rotation is done by -16 degrees (considered 

as a common value for italic characters), and by +16 

degrees, in the real space, in order to keep accuracy. 

The algorithm then computes the maximum width of 

the set of rotated points. The idea is that a rotated 

italic character has a smaller width value than it had 

initially, while if the character was not italic, after 

rotation the width grows. The rotation by +16 degrees 

is done as a check in order to eliminate errors coming 

from the geometry of the entity, or so-called 

“naturally italic” characters like “w”. 

 The “Chain” algorithm rotates the entity by -16 

and then by +16 degrees and computes the longest 

vertical black pixel line in each case. The idea is that 

an italic character has a lower value for the longest 

vertical line. 

 
Fig.11: (a) the longest vertical line in a normal letter  

 (b) the longest vertical line in an italic letter. 

 Observe the shorter line in case (b). 

 

After rotation, the pixels tend to align vertically. 

The decision is taken according to the rotated -16 and 

rotated +16 longest vertical lines. (if after the rotation 

by -16 the line increases, the character is italic). 

 

3.3.5   Line Spacing 

Line spacing measures the distance between two rows 

of characters, or entities in this case. The algorithm 

takes into consideration only the letters that are above 

each other. It checks if the entities are in consecutive 

lines by comparing the distance between them with a 

mean measure of their heights, and then checks if the 

entities are above each other, or approximately above 

each other, by verifying that the x coordinates of an 

entity is inside a bound given by the x coordinate of 

the other entity. Finally the algorithm returns a 

floating-point value, representing the average 

distance, in pixels, between the base lines of 

characters in the considered text area. 

 

 

3.4 Interpreting the measurements 
Because two alternative algorithms were created for 

the boldness and italics measurements, tests were 

performed on a large number of input images, to find 

the algorithm that yields the best results in both cases.  

 For the boldness measurement, the “Crosshair” 

method was more exact, because the result is returned 

in pixels, while the “Contour Length” method returns 

the result in percent. Also, a result in pixels makes 

the comparison and thresholding easier to perform. 

 For the italics measurement, the “Width” 

method was considered more reliable, because the 

“Chain” method relies more on the quality of the 

input (if the letter is fragmented, the longest vertical 

line will no longer be correctly found). 

 As was stated in Section 3.2.1, the Skewness 

value for the Texture measurements was used in the 

tests, where the other text characteristics were found 

similar. 

The first step is to compare the small caps of the 

first text area with the small caps of the second one; if 

one of them is zero then that text has only big caps 

and the algorithm passes to the next step; Else, a ratio 

between the two low caps values is computed. 

The same goes for high caps, and so the final ratio 

is given by the mean between the small caps ratio and 

big caps ratio. 

If the ratios are significantly different, there is no 

need for boldness or italics computation. Otherwise 

the algorithm goes to the next step, computing the 

boldness. 

First, the higher boldness value between the two 

text areas is found. If the difference in boldness is 

above 1 pixel / entity, the two texts differ and there is 

no need for italics computation. Otherwise,  the 

italics comparison is made, checking only if the texts 

are italic or not.  

If none of  the above measurements yield a result 

that clearly joins or separates the texts, the texture 

measurements are applied, but only if the input is 

considerable in size. 
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Fig.12: Flowchart of the Measurements Interpretation 

 

3.5 Experimental Results 
In this section, results using the described algorithm 

are presented. 

 The sample images have been chosen from 

scanned newspaper pages as to emphasize various 

scenario outcomes.  

 

3.5.1   Significantly Different Text Areas 

The first test is performed on two text areas that are 

significantly different in content. The first one 

(Fig.13) is a newspaper title, and has to be compared 

to a paragraph (Fig.14) from the same page. The 

results of the algorithm in this case are presented in 

Table 1 and Fig.15. 

 

 
Fig.13: Title 

 

 
Fig.14: Paragraph 

 

 

Image Fig.13 Fig.14 

High Caps 

(pixels) 
114 26 

Low Caps 

(pixels) 
82 19 

Line Spacing 

(pixels) 
70 11 

Font Size 

Match (%) 
0 

Crosshair 

(pixels) 
Not applied Not applied 

Width (%) Not applied Not applied 

Skewness Not applied Not applied 

Conclusion The texts differ significantly. 

Table 1 
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Fig.15: Graph showing the results from the algorithm 

for significantly different text areas 

 

As it can be observed in Fig.15, the differences found 

in the High Caps, Low Caps and Line Spacing 

determine the algorithm to stop the following 

measurements and return a “no match” between the 

text areas. 

 

3.5.2   Normal and Bold Text Areas 
The second test is performed on two text areas 

containing bold text lines (Fig.16) and normal text 

lines (Fig.17). The texts are chosen from the same 

paragraph, in order to have the same font size and 

line spacing. 

 

 
Fig.16: Bold text lines 

 

 
Fig.17: Normal text lines 

 

Image Fig.16 Fig.17 

High Caps 

(pixels) 
28 28 

Low Caps 

(pixels) 
20 20 

Line Spacing 

(pixels) 
19 19 

Font Size 

Match (%) 
100 

Crosshair 

(pixels) 
6.0 3.5 

Width (%) Not applied Not applied 

Skewness Not applied Not applied 

Conclusion 

The texts have the same font size, 

but they differ in boldness 

by 2-3 pixels. 

Table 2 

 

 

 
Fig.18: Graph showing the results from the algorithm 

for text areas that differ in boldness 

 

As expected, the difference of 2.5 pixels in thickness 

returned by the Crosshair algorithm causes the 

algorithm to return a “no match” result, and stopping 

before the Italics measurement. 

 

3.5.3   Normal and Italic Text Areas 
The third test is performed on two text areas, one 

containing mostly italic characters (Fig.19), and 

another containing text in the same font size and line 

spacing, but normal characters (Fig.20). 

 

 

 
Fig.19: Italic text 

 

 

 
 

Fig.20: Normal text from the same page 

 

 

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru, 
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1097 Issue 7, Volume 7, July 2008



Image Fig.19 Fig.20 

High Caps 

(pixels) 
25 26 

Low Caps 

(pixels) 
18 18 

Line Spacing 

(pixels) 
20 19 

Font Size 

Match (%) 
93.65 

Crosshair 

(pixels) 
3.0 3.0 

Width (%) 88.1 11.5 

Skewness Not applied Not applied 

Conclusion 

The texts have the same font size, 

the same boldness, but the 

characters in Fig.19 are italic. 

Table 3 

 

 
Fig.21: Graph showing the results from the algorithm 

for text areas that differ in italics 

 

In this test, the percentage of italic characters 

returned by the Width method for Fig.19 clearly 

separate it from the text area containing normal 

characters. The algorithm stops and returns a “no-

match” result.  

 

3.5.4   Similar Text Areas 
For the final test, two text areas containing similar 

text were used (Fig.22, Fig.23). The input images 

were chosen to show the result of the algorithm being 

applied on texts that are visually identical in 

geometry, and to demonstrate the application of the 

skewness texture measurement. 

 

 
Fig.22 

 

 
Fig.23 

 

Image Fig.22 Fig.23 

High Caps 

(pixels) 
27 27 

Low Caps 

(pixels) 
18 18 

Line Spacing 

(pixels) 
19 21 

Font Size 

Match (%) 
94.3 

Crosshair 

(pixels) 
3.0 3.5 

Width (%) 1 0 

Skewness 121 102 

Conclusion The texts are similar. 

Table 4 

 

 
 

Fig.24: Graph showing the results from the algorithm 

for similar text areas 
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The difference in Skewness of the two text areas is 

not large enough to be counted as a major 

dissimilarity, so the algorithm returns a “match”. 

 

 

4   Page Segmentation  
In order to accomplish the task of page segmentation 

and extraction of logically homogeneous elements, 

suitable text areas should be input to the algorithm for 

comparison. The most important issue when trying to 

run the algorithm for separation purposes, on a whole 

newspaper page (for example) comes from the step of 

the iteration, or the way the comparison operands are 

chosen. In this approach, the comparison operands 

are chosen to be text lines, extracted using a 

geometrical algorithm. Alternative page segmentation 

approaches are available in [1]. 

 

 

4.1 The Text Line Detection Algorithm 
The Text Line Detection Algorithm comprises a 

custom data structure and a routine that iterates 

through the input array of Entities and builds them 

into geometrically connected text lines. 

The custom data structure is designed as follows: 

• an index, indicating the first Entity in the 

text line 

• an array of indexes, containing the rest of the 

Entities found to be on the same line, based 

on a decision rule. 

• coordinates of the bounding box of the text 

line (topleft and bottomright) 

• the number of Entities the line contains 

The text line composition routine iterates through the 

input array of Entities and either adds new 

components to an existing line (to the array of 

indexes) or creates a new line with the current Entity 

as first index. 

 Based on the decision rule, Entities are on the 

same text line if two conditions are fulfilled:  

• The bounding rectangles of the Entities are 

overlapping on the vertical axis 

• The horizontal (x-axis) distance between two 

consecutive Entities is smaller than a chosen 

threshold value. This threshold value is 

chosen so that lines in neighboring text 

columns will not be merged. 

 

 
Fig.25: Detected text lines 

 

Because of the punctuation marks or noise in the 

page, the detection of text lines will not always be 

exact. In Fig.25, a separate text line was found inside 

another and also, in Fig.26, the skewed input page 

makes the line detection erroneous. 

 

 
Fig.26: Skewed page causing an error in text line 

detection 

 

To address these issues, a filtering function was 

applied, joining text lines that are either one 

completely inside another or horizontally adjacent. 

 

 
Fig.27: Final result of the text line detection  

 

 

4.2 Application on a whole page 
By applying the Text Line Detection algorithm on an 

entire page, text rows are extracted to serve as 

operands for the Text Characteristics algorithm. 

Thus, the text lines of the input page are compared, 

and a connection is made between ones with similar 

characteristics (when a “match” is returned by the 

algorithm). The result (Fig.29) is that headlines, 

subtitles and paragraphs are separated and viewed as 

homogeneous page elements. 

 

 
Fig.28: Flowchart of the Page Segmentation 

algorithm 

WSEAS TRANSACTIONS on COMPUTERS
Costin-Anton Boiangiu, Andrei-Cristian Spataru, 
Andrei-Iulian Dvornic and Dan-Cristian Cananau

ISSN: 1109-2750 1099 Issue 7, Volume 7, July 2008



 
Fig.29: Segmentation results obtained on a newspaper 

page 

 

 

5   Conclusion 
In this paper, a number of algorithms for extracting 

character information were presented, and used in 

conjunction, in order to obtain a normalized measure 

of text resemblance, between two input text areas. 

The comparison was done using the geometry of the 

text alone, without knowledge of the font type. 

 A practical application for the algorithm was 

presented in Section 4. By using the Text 

Characteristics extraction algorithm, together with a 

Text Line detection algorithm, a regular newspaper 

page was successfully segmented.  

 As another application, the extracted page 

elements can be used to obtain a page hierarchy, by 

comparing the general characteristics of every 

element to standard values for titles, subtitles and 

paragraphs.  
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