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Abstract: - One of the main problem in robotics is map building. In the article 3D map building based on 3D laser data 
is presented. The data is obtained from a SICK laser mounted on a rotating support what gives a 3D representation of 
the scene. The map is divided into cells and each cell represents a certain area of the scene and keeps a list of objects. 
This is a real-time system, which consumes little computer memory and works properly in indoor environment. 
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1   Introduction 
 

Over the last years robotics applications in the 
industry as well as in everyday life have increased 
rapidly. A robot is to perform a major task assigned 
by a human, like a transportation task, cleaning or 
painting a given area, etc., but in order to complete 
it, in the background, the robot must perform a 
number of other additional tasks. The ability to 
navigate in an unknown environment is the most 
important competence for a mobile robot. The 
navigation system usually consists of the 
following modules[16,17]:  

• map building,  
• localization,  
• path planning,  
• determination of the optimal controls 

(linear and angular velocities).  
Mapping techniques for mobile robots can be 
classified according to different map 
representations. One of the more popular map 
representations is the occupancy grid [20]. In this 
map the environment is described as a set of cells, 
where each cell corresponds to some rectangular 
area of the environment. A value is attached to each 
cell. The value equals 1 if the cell corresponds to 
the area occupied by the obstacles or equals 0 if the 
area is free. In some systems the values show a 

possibility that the area is occupied or not. This kind 
of map allows fast generation of a collision-free 
path for a mobile robot. However, the accuracy of 
the map depends on the grid's resolution. If a very 
precise map of the environment is required, then the 
method is computationally expensive and a huge 
amount of memory is necessary.  
In many navigation systems a geometrical map 
(feature-based map) is used. In this kind of mapping 
techniques all obstacles are described by mathematical 
formulae. 
Geometrical representations[17] are attractive 
because of their compactness and they are also very 
useful during the process of localization, but path-
planning based on this kind of map is time 
consuming. Mobile robots work in a three dimensional 
real world, but usually they use two dimensional maps 
which are error-prone and have several limitations. 3D 
maps enable to move on a hilly surface and to recognize 
obstacles which are on different heights. Additionally, it 
is impossible to search for certain objects in 2D maps. In 
robotics stereovision systems are used [1] but they 
consume a lot of computer resources and need stable 
light conditions. 
In our algorithm we propose to build a 3D map based on 
3D laser data. On account of large numbers of data the 
algorithm must be effective. Aggregation and filtration 
time must be short. Scene representation must be so 
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accurate that a robot must be able to move safely and to 
localize itself. In the literature, there are many ways of 
scene representation [2, 5, 4, 3,14], for example, creating 
3D grid-based maps [6]. In each cell a value from 0 to 1 
is kept and the value represents a probability that there is 
an obstacle in the cell. Another way of scene 
representation is to cover obstacles with a polygon 
network. Usually triangles are used because all vertexes 
lie on a plane. Sometimes other polygons are used, but 
first one must check if all vertexes lie on a plane. A 
scene can also be represented by calculating 
mathematical equations of obstacles. 
All methods shown above consume a lot of computer 
memory and take a lot of time. Their main disadvantage 
is that they cannot be used directly in path planning.  
Sometimes 2.5D representation is used [7,8], but it is not 
sufficient in localization process[9]. 
In the method presented in the article a dual raster-object 
representation is used. A map is represented as a two 
dimensional cells table but it differs from classical 
methods in the way that it keeps references to objects in 
each cell. The main idea of the system is using cellular 
neural networks which allow to do calculations 
parallelly. The idea of the method is shown in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Model of the environment 
 
 
 
2   Cellular Neural Networks 
 
The idea of Cellular Neural Networks (CNN) was 
introduced by Leon O. Chua and L. Young [10] in 1988.  
CNN is a single-layer network defined on regular 
lattices.  
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where xij denotes the state of a cell cij and NxMij∈  , 
where:  
Nij denotes the neighbourhood of a cell cij , 

ij
kla  is an 

interconnection weight between cells akl and aij , 
ij
klb is 

the feedforward template parameter, uij is an input 
signal, and I is bias term, f is a linear saturation function.  
A cell ckl belongs to the neighbourhood of the cell cij if 
the condition if fulfilled: 
 

( ) ,,max rljki ≤−−                     (1) 
 

Where r is a neighbourhood parameter. 
 
Figure 2 presents a scheme of a single neuron in CNN, 
where xij denotes the state of a cell cij and NxMij∈  
and Nij is the neighbourhood of a cell cij. 

ij
kla is the 

interconnection weight between the cells akl and aij and 
bij is the feedforeward template parameter, uij is an input 
signal, I is a bias term, f1 is a linear function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 A single neuron scheme 
 
The neighbourhood of each cell can be defined 
dependently on the distance between the cells. Yellow 
color in figure 3 presents three different kinds of regular 
neighbourhood. 
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(a) r = 1,                 
 
 
 
 
 
 
 
 
               
 
 
 

(b) r = 2, 
 

 
 
 
 

 
 
 
 

               
 

(c) r = 3, 
 
 
Figure 3 Cell regular neighborhood 
 

 
Cell neighbourhood may be defined irregularly. An 
example of such irregularity is presented in figure 4. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Irregular neighbourhood 

 
The dynamics of discrete-time CNN is described by 
equation: 

 
                                                                                     (2) 
 
 
Where Nf  is output activation function. 
Chua extended the definition of CNN in 1997 [11]. It is 
assumed that it consists of cells that interact locally. This 
type of CNN can be viewed as a generalization of 
cellular automata. The neurons can be modelled as 
locally connected finite states machines. This type of 
CNN can be viewed as a generalization of cellular 
automata[15]. CNNs are widely used for image 
processing and patterns recognition[21] but it can be also 
used for path planning[18,19]. 
 
 
2   Hardware 
 
The experiments have been done on a mobile robot 
“Elektron” which has been designed and built at Institute 
of Automatic Control and Robotics of Warsaw 
University of Technology. 
The basic sensor is a head module comprising a 3-
dimentional scanning laser rangefinder used for 
navigation and creating 3-dimensional representations of 
the environment. The module consists of a SICK LMS 
200 scanning laser rangefinder installed on a rotating 
head. The head can rotate the scanner around the 
horizontal axis within the angular range from -15° to 
+90°. 
The scanning laser enables to measure the distance from 
to the obstacle within 180° with resolution of 0.5°. The 
data is subsequently transmitted to the control unit by 
means of an RS 422 bus. 
The module is powered by a DC planetary gear motor. 
The power is then transferred by means of a toothed belt 
transmission. Two rotational encoders measure the 
scanning velocity and angle. The first encoder installed 
on the motor shaft is used for regulating the position 
whereas the other is responsible for measuring the 
rotation angle directly on the rotation axis of the scanner. 
The two measuring systems allow precise steering and 
positioning of the sensor. The unit controlling the head 
enables both continuous as well as step-by-step modes of 
the head. PID control algorithms were used for 
positioning and controlling the drive unit. 
Communication with the main control unit is achieved 
by means of an RS 422 bus. 
The robot is presented in figure 5. 
 
 

)1()1(

)()()1(

+=+

++=+ ∑∑
∈∈

txfty

Itubtyatx

ijNij

kl
Nc

kl
ij

Nc
kl

kl
ijij

ij
rkl

ij
rkl

WSEAS TRANSACTIONS on COMPUTERS Michal Gnatowski, Barbara Siemiatkowska, Rafal Chojecki

ISSN: 1109-2750 1042 Issue 7, Volume 7, July 2008



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 Robot “Elektron” with a 3D 
laser on a rotating support. 

 
The laser scans a scene and gives 2D data. The rotating 
support rotates the laser vertically, which allows to make 
3D scans.  A laser generates data in polar coordinate 
system ),,( iiir θφ , where iθ is vertical angle of rotating 
support, iφ  is a horizontal scan angle and ir is the 
distance to a given obstacle. If we assume a robot moves 
on a flat surface and its position is in the beginning of a 
Cartesian coordinate system along the OX axis, the 
position of an obstacle is as follows: 

iiii
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a)  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
b) 
 
Figure 6 The values of parameters: ϕ and 
Ө 

Figure 7 shows a photo of the environment and the data 
given from 3D laser. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      (b) 

Figure 7 A place where the data was 
taken (a) and the data from the 3D laser 
(b). 
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3   2.5D map 
 
A typical two dimensional map of an environment is a 
grid-based map. In each cell a value 0 or 1 is kept which 
means there is no or there is an obstacle in the cell 
respectively. More complex kind of a map is a 2.5D 
map. The 2.5D map is an example of a simplified three 
dimensional map. The idea behind the method rests on 
keeping in each cell the value of the maximum obstacle 
height. 
 
The algorithm of building 2.5D map of the environment 
consists of the following modules: 

• Initialisation 
A value L is attached to each cell of the map. 
The value L is smaller then the minimum value 
of the height of the obstacles. In an office 
environment L=0. 

• Computing the coordinate of the obstacles 
For the given values of parameters: ),,( iiir θφ , 
The coordinate (xi,yi,zi) are computed using 
formulae 3. 

• Computing the coordinate of the cell 
The coordinate of the cell kl of the grid-based 
map are computed as follows: 

dy
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i

=
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where dx X dy is the grid resolution. 

• Uppdating 
Value zi is the input value to the cell kl. 
The new state of the cell kl is computed as 
follows: 
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 This kind of map consumes a little more computer 
memory than a classical grid-based representation but 
gives much more information about the environment. 
One of the advantages is a possibility to go up or down 
stairs if robots mechanics allows it.  
A typical example of 2.5D maps is presented in figure 8. 
One can see stairs and walls on the figure. If robot is 
available to walk up the stairs this kind of map allows to 
find a proper path. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8 An example of 2.5 D map 

 
 
4   Extended 2.5D 
 
A typical 2.5D map has one main disadvantage. If there 
are more obstacles than one in a cell the map memorizes 
only the highest one. For example, if there is a small 
obstacle on the floor which could be easily passed by the 
robot and above it there is another obstacle, for example, 
a lamp under a ceiling, then the two obstacles are 
remembered as one and for the system the cell in 
occupied. To solve this problem extended 2.5D maps are 
used. In such a map in each cell a list of minimum and a 
maximum height of each obstacle is kept. 
 
Figure 9 presents an example of such 2.5D map. There is 
a corridor and rooms on the pictures. In the corridor 
there are pipes under the ceiling. Due to using an 
extended 2.5D map the cells in corridor under the pipes 
are available. 
 
The algorithm of building extended 2.5D map of the 
environment consists of the following modules 

• Initialisation 
A value n=0  is attached to each cell of the map.  
The value n is the number of objects which have 
been detected in the cell.  

• Computing the coordinate of the obstacles 
For the given values of parameters: ),,( iiir θφ , 
The coordinate (xi,yi,zi) are computed using 
formulae 3. 

• Computing the coordinate of the cell 
The coordinate of the cell kl of the grid based 
map are computed using formulae 4. 
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                         (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       (b) 

Figure 9 a) and b) Examples of an 
extended 2.5D map. 

 
• Updating 

Value zi is the input value to the cell kl. 
If the value n=0 then the new state of the cell kl 
is computed as follows: 

1. new record is created, 
2. record0.min=record0.max= zi 
3. n=1 

If the value of  n>0 then records from 0 to n-
1are checked.  
If for some k<n: 

1.  recordk.min ≤ zi ≤ record0.max then the 
process is stopped 

2. recordk.min > zi and | recordk.min- zi|<ε 
then recordk.min =zi 

3. recordk.max < zi and | recordk.max- zi|<ε 
then recordk.max =zi 

4. in other cases the number n is increased 
by one, a new record is created, 
record0.min=record0.max= zi 

5   System Architecture 
 
A classical multilayer CNN was used, shown in figure 3. 
Neurons are positioned on a regular network. Input value 
uij to a cell cij is the value indicated by the laser properly 
to the horizontal angle ϕΔi  and vertical angle jθ . 

Based on uij, horizontal angle iϕ , and vertical angle jθ  
it is possible to figure out the position (x,y,z) according 
to (3). For every point p=(x,y,z) a normal vector to the 
surface is calculated. In our algorithm the normal vector 
is a product of vectors p1 and p2, where p1 and p2 are 
figured out from neighborhood points to the analyzed 
point. Data obtained from a laser are noised and if the 
distance between points is small (less than a laser 
measurement error) then the vector product error may be 
high. 
In the algorithm p1 and p2 are figured out not from the 
closest points to the explored point p, but from points 

),,( iii zyx , where the following inequality is fulfilled: 

,)()()( 2
222

1 εε ≥−+−+−≥ iii zzyyxx    (6) 

where ,ε and 2ε are fixed thresholds. The normal vectors 
are output signal of one layer and input signals to the 
next one.  
The dimension of layers are the same. An analysis of 
normal vectors neighbourhood allows to do a surface 
classification. The idea behind the method is presented 
in figures 10 and 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Network structure. 
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Figure 11. Normal vectors to different 
surfaces. 

 
 
 

 
If a point belongs to a surface, then the normal vectors of 
the neighbouring cells are parallel. Figure 12 presents 
results of data classification where normal vector is 
figured out based on respectively the closest and 
adaptive neighbourhood. In Figure 12 a different colors 
at the bottom represent negative influence of error in 
taking measurements to classification (here shown as 
different grey scale). This is a good example where the 
closest neighbourhood does not give proper results. Due 
to noised data the closest neighbourhood does not 
provide a possibility to distinguish a flat surface. Taking 
into consideration wider neighbourhood, noised data do 
not influence planes recognition, which is shown on 
Figure 12 b. 
Figure 13 shows a dependency in normal computing for 
different distances between the points. The Y axis 
represents the angle given in degrees. 
 
If a set points Niiii zyx ..1},,{ = lies on a surface: 

01 =+++ znynxn zyx , 

then using the regression method, we are looking for 
such zyx nnn ,, parameters, that the function S has a 
minimum. 

∑
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i
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Equitation (7) may be written as (9). 
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Uncertainty of the surface position defines the equitation 
(10): 
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                         (b) 

Figure 12. Points classification a) 
neighbourhood=1, b) adaptive 
neighbourhood. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 Normal computing error 
disposition 

 
 
5   Experiments  
 
In the experiments data from figure 7 was taken in order 
to detect planes from the data. Figure 14 presents the 
results of the experiment. Colors red, green and blue 
represent different directions: parallel to the viewer, 
perpendicular and horizontal respectively. Figure 14a) 
shows walls marked in different colours, which proves 
that the surface has been classified correctly. Figure 14b) 
shows that three different planes detected as well as 

some steps. One can see that small lift door window was 
not detected at all. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     (b) 
 

Figure 14. Planes detection. a) Points 
classification, b)Detected planes. 

 
Similar to planes detection, other kinds of detection may 
be performed, for example edge detection. Figure 15 
presents the results of the vertical edges detection. The 
same mechanism can be used to detect concave and 
convex surfaces. 
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Figure 15 Vertical edge detection (red 
lines) 

 
 
 
Other experiments were performed in order to fix 
influence noise of data to detected objects accuracy. Fig. 
16 shows the difference of height detected planes to the 
parameter σ. The height of obstacles were 20 cm and 
200cm in fig .16 a) and b) respectively. The accuracy of 
detected objects depends on the number of collected 
points. 
When computations are performed sequentially time of 
analyzing the cloud of 186000 points takes a few 
seconds. The main advantage of the proposed solution is 
a possibility to start the computing before the whole data 
is obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       (a) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       (b) 
 

Figure 16 Parameter σ in different height 
of the obstacle  

 
 
4   Conclusion 
 
In the article a method of using Cellular Neural 
Networks (CNN) in segmentation data from a 3D laser 
was presented. Our research is a base of a bigger 
topological system to describe robots environment. Such 
description will allow a robot to understand human 
commands given in a natural way, e.g. go the door. 
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