
Measuring with ultra-low power Wi-Fi sensor tags in LabVIEW 
 

TOM SAVU 

POLITEHNICA University of Bucharest 

313 Spl. Independentei, 060042 sector 6, Bucharest 

ROMANIA 

tom@tomsavu.net    http://www.tomsavu.net 

 

MARIUS GHERCIOIU 

National Instruments Corp. 

11500 N. Mopac Expressway, Austin, TX 78759 

U.S.A. 

marius.ghercioiu@ni.com    http://www.ni.com 
 

 

Abstract: - G2 Microsystems of Campbell, California, USA, released in 2007 the first ever ultra-low power Wi-

Fi System on a Chip (SoC) named G2C501. This SoC includes a 32-bit CPU, crypto accelerator, real-time 

clock and a versatile sensor interface that can serve as a standalone host subsystem. The G2C501 goes beyond 

today’s basic radio frequency identification (RFID) technology to offer intelligent tracking and sensor 

capabilities that leverage IEEE 802.11 (Wi-Fi) networks. Due to its support for multiple location technologies, 

small form factor and ultra-low power consumption, the G2C502 SoC can be integrated into Wi-Fi sensor tags 

that lower cost of ownership and meet the needs of a variety of industries including consumer electronics, 

pharmaceuticals, chemical manufacturing, cold chain and more. 

A battery powered, small size ultra low-power Wi-Fi wireless measurement node name IP Sensor has been 

built using the G2C501 SoC. Sensors for measurement of temperature, humidity, light, and vibration or motion 

are currently mounted on the IP Sensor board. The node is able to read a sensor and send data to the network by 

using an IP-based application protocol such as UDP. 

This paper describes the new IP Sensor device and gives a programming methodology using LabVIEW. 
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1   The IP Sensor 
The IP Sensor is a Wi-Fi sensor tag that is battery 

powered and it has been designed around the G2C501 

ultra-low power 802.11b 32-bit SoC. The G2C501 

SoC was designed for the mobile asset tracking 

market that is in need of active tags with a battery life 

time of 1 to 5 years. 

The G2C501 SoC (system on a chip) enables the 

development of ultra low power small form factor 

tags for asset location, sensing, and tracking. 

Designed in low cost 0.13um CMOS, it incorporates a 

full 802.11b PHY and MAC, the LWIP TCP/IP 

protocol stack, a 32-bit CPU and a hardware 

encryption engine. Complex power management is 

fully integrated to achieve maximum lifetime from a 

wide variety of high-energy density and low cost 

battery chemistries. Feature rich analog and digital 

interfaces allow for straightforward connection of 

sensors and external control. The G2C501 has been 

designed to be the first truly global integrated solution 

for MRM (mobile resource management) 

applications. The ultra low-power SoC solution 

significantly reduces the TCO (total cost of 

ownership) by leveraging the ubiquitous IEEE 

802.11b/g Wi-Fi installed base. The G2C501 allows 

for the development of ultra low-power field 

programmable tags. The high level of integrated 

functionality on this single-chip solution eliminates 

the need for almost all external circuitry, resulting in 

PCBs (printed circuit board) with small footprints and 

low total BOM (bill of material) cost. 

The work leveraged the integrated functionality of the 

G2C501 to build sensors. IP Sensors (Figure 1) are 

Wi-Fi tags that also contain sensors. IP Sensors send 

measurement data to Access Points or Wi-Fi enabled 

computers.  

 

 
Fig. 1: IP sensors 
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Access Points will collate measurement data from 

multiple IP Sensor tags located in their neighborhood 

(Figure 2) and will rout the information to a data 

client PC. IP Sensor measurements take place mostly 

indoors, in places like a warehouse, factory floor, or a 

building facility that is connected to the Internet and 

hence will be covered by Access Points. Deployment 

of standard Access Points for local network 

communication to PC also works in places that are 

not Internet connected. 

 

 
Fig. 2: IP Sensor tags next to a LinkSys Access Point 

 

In a supply chain asset tracking application it is very 

useful to be able to monitor temperature to avoid 

overheating, especially for foodstuffs, security seals 

for containers, shock and acceleration for fragile 

goods, humidity for food, etc. The SoC used in tags 

that serve this market has to implement signal 

conditioning and digitizer elements in order to be 

capable of performing all these measurements. The IP 

Sensor is using and extending tag SoC functionality 

to create a multitude of measurement devices that 

monitor light, radiation, pressure, movement, 

humidity, vibrations and other physical or chemical 

processes. The IP Sensor is an asset tracking tag with 

a sensor attachment which is interfaced to the SoC 

using signal lines like SPI, analog-to-digital inputs, 

DIO and current I/O.  

Wi-Fi solutions for sensing and communication are 

not new. Wi-Fi had been used in computers, PDAs 

and cellular phones for a long time. These devices 

though are very power hungry, use rechargeable 

batteries with a requirement to last for maybe eight 

hours between consecutive recharge cycles. In 

contrast with existing Wi-Fi solutions, the IP Sensor’s 

novelty is its ultra low power Wi-Fi capability which 

makes it suitable for sensing applications where 

battery power management is critical. Further on this 

line of thoughts it has to be acknowledged the 

existence of competitive technologies in very low 

power sensors using the 802.15.14 (ZigBee) 

specification, or even Bluetooth.  The difference 

between Wi-Fi IP Sensors and ZigBee sensors is that 

the IP Sensor application model does not need 

specially designed Access Points to bring 

measurement data into the network. ZigBee sensors 

send data to other sensors and eventually to some 

network Node that is capable of converting ZigBee 

into TCP/IP such that finally the data can be delivered 

to computers via the Internet. IP Sensors talk TCP/IP 

or UDP and therefore can use off-the-shelf Access 

Points by that lowering the cost of application. Same 

is true when compared to Bluetooth sensors, which 

also use more power. 

 

 

2   IP Sensor hardware description 

The IP Sensor device architecture is designed around 

an 802.11 32-bit SoC used by asset tracking tags for 

ultra low power consumption. The device is built on 

one side and it has two distinct parts, the Core and the 

Sensor Area. The design contribution is Size and 

Modularity. It was built the smallest possible PCB 

size of 42.5 mm x 23.5 mm as seen in the attached 

component placement picture (Figure 3). 

 

 
Fig. 3: IP Sensor tag Core and Sensor(s) Attachment 

 

Also, it has been built a modular architecture to 

accommodate a Core Area that is fixed, and a Sensor 

Area that what will change depending on type of 

sensor(s) used in different applications (Figure 4). 

Modularity allows for reutilization of the same Core 

Area (and related Firmware) in different applications 

by simply changing the Sensor Area and by adding 

sensor drivers into the existing firmware. 

The Core Area contains the SoC, a 44.0 MHz clock 

used by the SoC in high power mode, and another 

32.768 KHz clock used for timing of sensor circuitry 

in low power mode. The Core Area also has: 

• 1Mb EEPROM, expandable to 4Mb, used as 

application programming space, 

• Power section that generates +3.3V and 

+1.4V for the Core from a battery input 

circuitry with detection for re-versed polarity. 

• RF circuitry that includes a power amplifier 

and the 2.4 GHz antenna. 
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Fig. 4: IP Sensor: Component Placement 

 

The Sensor Area can be populated with sensors that 

connect to the sensor bus of the SoC (Figure 5). The 

DEMO version is populated with circuitry for the 

SHT11 temperature and humidity sensor and also for 

the ADXL330 vibration / motion / tilt sensor from 

Analog Devices. 

 

 
Fig. 5: IP Sensor tag Core and Sensor(s) Attachment 

 

 

3   Power consumption and power 

management 

The IP Sensor is powered by a 3.2V, lithium battery, 

model CR123A (Figure 6).  

 

 
Fig. 6: IP Sensor mounted on battery holder 

 

The IP Sensor has two modes of operation, sleep and 

wake-up modes. 

Sleep is the low-power mode in which the IP Sensor 

will use an average of 100 µW of battery power. This 

amount of power is used by the SoC to perform 

sensor circuitry current sourcing, sensor readings and 

access of a small non-volatile memory location. uC 

OS does not run, communication does not run, 

everything regarding SoC intelligence is shut down in 

sleep mode. 

An IP Sensor hardware timer which is pre-

programmed will trigger the SoC to wake-up and 

enter a high-power mode state for very short intervals 

of time at fixed time intervals. Other causes of 

transition from sleep to wake are preconfigured 

threshold values ‘seen’ by the motion, temperature, 

magnetic and other sensors.  

 

Each wake period the IP Sensor uses power for 

reception and transmission of data. The CR123 

battery gives a total of 1550 mAh. At 8760 hours in a 

year, the total available current is 176.94 µAh. The 

node has a reception time of 90 msec and a 

transmission time of 4.7 msec for a total wake period 

of 94.7 msec. 

Power consumption in reception (R) and rransmission 

(T) is given by the following formulas: 

 

Ah
h

mmA

RI µ5.1
sec/3600

sec9060
=

⋅
=  (1) 
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h
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=

⋅
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The report between wake and sleep is calculated at: 
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914.05.1
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=

+
=
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N

µµ

µ
  (3) 

 

Based on this computation, the following power 

consumption scenarios may be given: 

• If the IP Sensor has 73 wake periods of 95 

msec every hour (equivalent with one wake 

period every 49 seconds), then the CR123 

battery that gives 1550 mAh will last for 1 

year. 

• If the IP Sensor has one wake period of 95 

msec every 4.11 minutes, then the CR123 

battery that gives 1550 mAh will last for 5 

years. 

• A sensor node lifetime of 1 week to 5 years 

will be achieved based on selection for 

duration of the wake period, frequency of 

wake periods, and power budget. 

 

In wake or high power mode the IP Sensor starts eCos 

OS on the 32-bit µC and enables full intelligence 

including communication capabilities using UDP. 
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The amount, length, and complexity of tasks 

performed during high-power periods vary depending 

on the application. From short term periods of 1ms to 

10 seconds during which the IP Sensor consumes 

about 100mW average while it makes measurements, 

receives 802.11 data and executes code on the CPU, 

to very short periods of say 500us where the IP 

Sensor consumes in the range of 1W while it 

transmits 802.11b data via UDP. It should be 

mentioned here that the 802.11b communication 

capability of the IP Sensor operates autonomously 

from the CPU and it can execute direct reads/writes 

data to system RAM in low-power mode.  

During a lifetime period of 1 month to 5 years the IP 

Sensor may repeat the task of each waking up for 

high-power mode event every 10 to 300seconds. IP 

Sensor power consumption is dictated by battery 

capacity and the frequency and length of the wake or 

high-power mode states of the application.  

There is no explicit step for node assignment to an 

Access Point in an application that uses Wi-Fi 

sensors. The sensor registers with an Access Point 

and uses the DHCP protocol to request dynamic 

allocation of an IP address from a DHCP server that 

may reside in the Access Point or in a networked PC. 

If the IP Sensor does not have access to a wireless 

network, it could store sensor data, complete with 

timestamp. Measurement data will be uploaded to a 

PC or Access Point Data Server when Wi-Fi access 

becomes available again. 

 

 

4   Firmware 
The IP Sensor contains a 32-bit processor (or CPU) 

that runs on a 44MHz external clock. The slower and 

lower power sensor measurement operation is 

controlled by an external 32 KHz oscillator. The CPU 

incorporates full 802.11 PHY, MAC and encryption 

engine. The IP Sensor CPU has internal 80Kbytes of 

RAM and 320Kbytes of ROM that comes loaded with 

the following firmware components: 

• Boot loader 

• eCos OS 

• TCP/IP stack 

• 802.11b stack 

• Encryption and decryption support 

• Application/deployment specific sensor 

drivers and communication protocol 

• Power-saving support 

 

802.11b communication capability of the IP Sensor 

operates autonomously from the CPU and it can 

execute direct reads/writes data to the system RAM. 

All this is part of the node firmware. Besides this 

infrastructure related firmware, there is more 

firmware that is related to user applications. 

User code is downloaded in external Flash, the 1Mb 

EEPROM memory that is controlled by the CPU 

using an SPI interface. An example of user code is the 

I2C driver imple-menting communication with the 

SHT11 sensor, and a time loop that wakes-up the 

sensor every User Defined number of seconds. After 

each sleep period of time, the sensor node wakes up 

timer triggered, and communicates with the AP to 

find out if there is any data in its buffer that needs to 

be red. If there is none, then the node will perform a 

temperature and humidity SHT11 sensor read and it 

will send the data to the (client) IP address via the 

AP. All this is described by the user application 

firmware that is stored in the 1Mb EEPROM memory 

location. 

 

 

5   Data Server Use Case 
The use case scenario that makes most sense has 

several IP Sensor measurement nodes associated with 

an AP Data Server to which the nodes send 

information on a periodic basis and from which the 

nodes may receive commands. The AP Data Server 

collates measurement data from these multiple sensor 

tags and presents them as a web page to a Data Client 

PC user or users. The following demo could be 

imagined:  

• User opens a Web Browser on the Data 

Client PC,  

• User browses to the IP address of the AP 

Data Server,  

• Data Server sends Data Client PC a web page 

containing controls that allow the user to 

configure each IP Sensor for measurement 

related parameters including alarms to 

parameters that are monitored and frequency 

of data transmission to the AP. 

• User sets measurement, alarm and 

transmission parameters using controls 

displayed by the web page, 

• Data from IP Sensors appears in indicators 

and graphs displayed by the web page panel 

(Figure 7). 

 
Fig. 7: IP Sensors Data in the webpage panel 

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1003 Issue 7, Volume 7, July 2008



 

During the tests described above there were used two 

IP Sensors having three transducers each: 

• a temperature sensor; 

• a light intensity sensor; 

• an on / off motion sensor. 

 

 

6   LabVIEW Tools 
Many users in the test and measurement industry are 

programming their computer based measurement 

applications from LabVIEW. Wireless sensor 

networks are seen by these users as extensions of 

existing measurement systems based on plug-in PC 

boards, PXI, cRIO chassis, etc., which are all 

LabVIEW platforms. LabVIEW users will program 

the IP Sensor wireless measurement application from 

LabVIEW by calling UDP Read/Write VIs. 

An IP Sensor sends UDP messages every three 

seconds to IP address 192.168.1.1, port 50007. 

Each message contains the current state of the tag 

sensors and is always 28 bytes long, seven int32 

values using big endian ordering. 

The seven int32 values are the following 

0 - the fixed value 1 

1 - sleep period in milliseconds(initially 3000) 

2 - total seconds spent powered down 

3 - total seconds spent powered up 

4 - temperature in Deg C * 1000 

5 - light sensor voltage value * 1000 (range 0-599, 

corresponding to 0 to 0.599 V) 

6 - 0 = no motion, 1 = in motion 

To change the sleep period of an IP Sensor (currently 

default setting is 3 seconds), a message needs to be 

sent to the address it sent the message from (IP, UDP 

port). The message must contain three integer values 

in big endian encoding: 

0 - 0xABCDEF00 (code to denote write message) 

1 - new sleep period value in milliseconds 

2 - 1 

The diagram of a simple LabVIEW Virtual 

Instrument (VI) used for reading the IP Sensor 

message is presented in Figure 8. 

The VI is designed to return only the message sent 

from a specified address (from a specified IP Sensor). 

Messages sent from other addresses will be ignored. 

The VI is first using an UDP Open function for 

opening an UDP socket on port 50007. 

The function creates a network connection refnum 

that uniquely identifies the UDP socket and which is 

subsequently used by an UDP Read function. 

The UDP Read function returns the address of the IP 

Sensor which wrote the datagram in the UDP socket. 

The specified IP address from where the message is 

allowed to be read is converted to a net address using 

the String To IP function and then compared with the 

address returned by the UDP Read function. 

If the two addresses are not the same, then the current 

iteration of the VI's While loop is not going to be the 

last iteration, which means that the message read in 

this iteration will be ignored. 

The network connection refnum is further used by an 

UDP Close function for closing the UDP socket. If 

the UDP Close function returns an error, the VI's 

While loop will continue to the next iteration and so 

the current read message will be ignored. 

The message returned by the UDP Read function, in 

String format, is converted to an array of int32 

integers in big-endian, network order, using an 

Unflatten From String function. It has to be specified, 

using a boolean False constant, that data does not 

include array or string size. 

If the two above mentioned IP addresses are the same, 

this array is going to be further sent through the data 

flow. If the addresses are different, then the array will 

be replaced, using a Select function, by an array 

containing seven NaN (null) values. The second array 

is created by an Initialize Array function. 

 
Fig. 8: LabVIEW VI for reading IP Sensor's message 

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1004 Issue 7, Volume 7, July 2008



 

The seven values from the data array are separated 

using an Index Array function. 

The first value is compared with 1 for verifying the 

message syntax. The result of the comparison is 

passed as a VI's boolean output value. 

Values representing temperature and light sensor 

voltage are scaled by dividing them with 1000. 

0 or 1 value describing the motion state is converted 

to a boolean value using a Not Equal To 0? function. 

Six of the values are grouped into a named cluster, 

using a Bundle By Name function. The data structure 

is passed to the function using a cluster constant. The 

cluster containing the six grouped values is passed as 

the VI's second output value. 

For testing the response time of the above described 

VI, two Tick Count functions (returning the value of 

the millisecond timer) were placed in its diagram 

(Figure 9). 

The first function is registering the time when the 

While loop starts. 

The second function was placed inside the While 

loop, in the True window of a Case structure, so it's 

registering the time when the While loop ends. 

The whole VI's diagram was placed in a For loop 

executing ten iterations. After each iteration of the 

For loop, the execution time of the While loop and its 

number of performed iterations are stored in a cluster, 

using a Bundle function. 

The clusters resulted from all the ten iterations of the 

For loop are passed as an array to an indicator on the 

VI's control panel. 

 

 
Fig. 9: Modified diagram for testing purposes 

 

Data obtained during testing one IP Sensor show that 

the VI's response time is usually no longer than 110 

% of the sensor's sleeping period (Figure 10, Table 1). 

 

 
Fig. 10: Test data 

Table 1 

Test no. Time [ms] Attempts 

1 166 1 

2 3274 2 

3 3277 2 

4 3278 2 

5 3277 2 

6 3278 2 

7 3275 2 

8 3378 2 

9 3279 2 

10 3277 2 

 

Another LabVIEW VI developed for the IP Sensors is 

one to be used for discovering  which sensors are in 

the communication range (Figure 11). 

The VI's logic is assuming that, at each iteration of 

the While loop, when the UDP socket is opened, it is 

not known which IP Sensor will communicate. 
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Only the sensor's address is extracted from the UDP 

Read function, and is transformed in string format 

using the IP To String function with dot notation. 

A string array, initially void, is sent from one iteration 

to another using a loop's shift register. This array will 

finally contain the IPs of the discovered sensors. 

If the UDP socket is closed without errors, then the 

sensor's address is searched in the solutions array 

using a Search 1D Array function. 

The function is returning an unsigned index if the 

address was found or a negative value otherwise. 

If the address wasn't found, then it is added to the 

solution array using a Build Array function (in the 

True window of the Case structure, Figure 12). If the 

address was found, then a number of attempts is 

incremented. 

The While loop stops either if an error was returned 

or if the number of possible attempts was reached. 

The solution array is then sorted and send as a VI's 

output value. 

A front panel image of the VI discovering two IP 

sensors is presented in Figure 13. 

 

 

 
Fig. 11: Diagram for the discovering sensors VI 

 

 

 
Fig.12: Partial diagram for not found address 

 

 
 

Fig. 13: Results of sensors discovering VI 
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For testing the response time of the sensors 

discovering VI, two Tick Count functions (returning 

the value of the millisecond timer) were placed in its 

diagram (Figure 14). 

The first function is registering the time when the 

While loop starts. The second function was placed 

inside the While loop, so it's registering the time 

when the While loop ends. 

The whole VI's diagram was placed in a For loop 

executing ten iterations. After each iteration of the 

For loop, the execution time of the While loop and the 

number of attempts are stored in a cluster, using a 

Bundle function. 

The clusters resulted from all the ten iterations of the 

For loop are passed as an array to an indicator on the 

VI's control panel. 

 

 

 
Fig. 14: Test VI for sensors discovering 

 

If an error occurs during an iteration of the For loop, 

then the number of attempts is set to zero (Figure 15). 

 

 
Fig. 15: Setting the number of attempts to zero 

because of an error 

 

Test results for a situation when only one IP sensor 

was in the range are presented in Figure 16 and Table 

2. Test results for a situation when two IP sensors 

were in the range are presented in Figure 17 and 

Table 3. 

Not so obvious at a first look, the time needed for 

discovering two sensors is smaller than the time spent 

for the discovery of only one sensor. 

Neglecting the 7th iteration from the first case, each 

time three attempts were made, which means that, in 

each iteration of the For loop, the VI had to find three 

times an already existing sensor. 

When only one sensor is in range, the time for finding 

it is approximately 10 % bigger than the sleep period 

of 3 s, as in Table 1. 

When two sensors are in range, because their sleep 

periods do not start in the same time, the time for 

finding one of the two sensors decreases. 

 

 
Fig. 16: Test results for one sensor in the range 
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Table 2 

Test no. Time [ms] Attempts 

1 9775 3 

2 9829 3 

3 9933 3 

4 9832 3 

5 9933 3 

6 10036 3 

7 3367 0 

8 9761 3 

9 9933 3 

10 9829 3 

 

 
Fig. 17: Test results for two sensors in the range 

 

Table 3 

Test no. Time [ms] Attempts 

1 5478 3 

2 6649 3 

3 6553 3 

4 6674 3 

5 6463 3 

6 6657 3 

7 6553 3 

8 6553 3 

9 6656 3 

10 6556 3 

 

The last LabVIEW tool to be presented is a VI for 

setting the sleep time for a specified sensor (Figure 

18). After opening the UDP connection on the usual 

port and building the necessary command string 

(using the Flatten To String function, with big-endian 

network order, the UDP Write function is used ten 

times, in a For loop, for achieving a high probability 

that the command string will be read by the sensor 

during it's wake time.  

 

 
Fig. 18: Setting sensor's sleep time 

 

 

7   Application example 

The diagram of an example application VI is 

presented in Figure 19. 

The sensor discovery VI is first used for obtaining an 

array containing the IPs of the sensors in range. For 

each IP in the array, which means for each sensor in 

range, the data reading VI is used to obtain the 

measured values of temperature and light intensity 

and also the boolean value of the sensors motion 

state. The boolean value is then transformed into 0 or 

1 values. 

The above mentioned values are grouped and sent to a 

waveform chart indicator in the application's front 

panel. 

Results obtained during a test sessions are graphically 

displayed in Figure 20. 

 

 

 
Fig. 19: Diagram of an example application VI 
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Fig. 20: Results during a test session of the application example 

 

The second sensor was moved at iteration 6, so a 

value of 1 for its motion state was obtained (dark blue 

line). First sensor was also moved at iteration 12 

(violet line). 

Starting with iteration 16, the second sensor was 

shadowed, so an abrupt decrease in its light intensity 

signal can be observed on the light blue line. 

When the operator's hand was placed over the second 

sensor at iteration 21, covering it, both a decrease in 

its light intensity signal and an increasing slope of the 

temperature signal (red line) may be observed. 

At iteration 40 the second sensor was uncovered, so 

its light intensity signal immediately went back to the 

original value and the temperature signal begin to 

decrease. 

The same procedure was then applied to the first 

sensor, shadowing it at iteration 42 (decrease in light 

intensity, green line), completely covering it at 

iteration 50 (less light intensity and an increase in 

temperature due to operator's hand, black line) and 

uncovering it at iteration 60 (light intensity 

immediately at initial value and temperature begining 

to decrease). 

When uncovering the first sensor at iteration 60, a 

little shock was applied to it by mistake and it was 

registered on the corresponding violet line. 

At iteration 75, air started to be blown over the two 

sensors, so it can be observed a modification in the 

decreasing speed of the temperature because the two 

sensors were cooling faster. 

At iteration 85 the air flow was stopped and the speed 

of the temperature variation returned to normal. 

 

 

 

8   Conclusion 
The new technologies embedded in the IP Sensors 

make them suitable for a wide range of applications 

where the low-power consumption and the wireless 

communication are compulsory. 

Developing LabVIEW applications, both for testing 

the IP Sensors' characteristics and for providing 

usefull subVIs for further developments will be 

continued. 
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