
Measuring with ultra-low power Wi-Fi sensor tags in LabVIEW

TOM SAVU

POLITEHNICA University of Bucharest

313 Spl. Independentei, 060042 sector 6, Bucharest

ROMANIA

tom@tomsavu.net http://www.tomsavu.net

MARIUS GHERCIOIU

National Instruments Corp.

11500 N. Mopac Expressway, Austin, TX 78759

U.S.A.

marius.ghercioiu@ni.com http://www.ni.com

Abstract: - G2 Microsystems of Campbell, California, USA, released in 2007 the first ever ultra-low power Wi-

Fi System on a Chip (SoC) named G2C501. This SoC includes a 32-bit CPU, crypto accelerator, real-time

clock and a versatile sensor interface that can serve as a standalone host subsystem. The G2C501 goes beyond

today’s basic radio frequency identification (RFID) technology to offer intelligent tracking and sensor

capabilities that leverage IEEE 802.11 (Wi-Fi) networks. Due to its support for multiple location technologies,

small form factor and ultra-low power consumption, the G2C502 SoC can be integrated into Wi-Fi sensor tags

that lower cost of ownership and meet the needs of a variety of industries including consumer electronics,

pharmaceuticals, chemical manufacturing, cold chain and more.

A battery powered, small size ultra low-power Wi-Fi wireless measurement node name IP Sensor has been

built using the G2C501 SoC. Sensors for measurement of temperature, humidity, light, and vibration or motion

are currently mounted on the IP Sensor board. The node is able to read a sensor and send data to the network by

using an IP-based application protocol such as UDP.

This paper describes the new IP Sensor device and gives a programming methodology using LabVIEW.

Key-Words: - Wi-Fi sensors, System on a Chip (SoC), ultra-low power, LabVIEW

1 The IP Sensor
The IP Sensor is a Wi-Fi sensor tag that is battery

powered and it has been designed around the G2C501

ultra-low power 802.11b 32-bit SoC. The G2C501

SoC was designed for the mobile asset tracking

market that is in need of active tags with a battery life

time of 1 to 5 years.

The G2C501 SoC (system on a chip) enables the

development of ultra low power small form factor

tags for asset location, sensing, and tracking.

Designed in low cost 0.13um CMOS, it incorporates a

full 802.11b PHY and MAC, the LWIP TCP/IP

protocol stack, a 32-bit CPU and a hardware

encryption engine. Complex power management is

fully integrated to achieve maximum lifetime from a

wide variety of high-energy density and low cost

battery chemistries. Feature rich analog and digital

interfaces allow for straightforward connection of

sensors and external control. The G2C501 has been

designed to be the first truly global integrated solution

for MRM (mobile resource management)

applications. The ultra low-power SoC solution

significantly reduces the TCO (total cost of

ownership) by leveraging the ubiquitous IEEE

802.11b/g Wi-Fi installed base. The G2C501 allows

for the development of ultra low-power field

programmable tags. The high level of integrated

functionality on this single-chip solution eliminates

the need for almost all external circuitry, resulting in

PCBs (printed circuit board) with small footprints and

low total BOM (bill of material) cost.

The work leveraged the integrated functionality of the

G2C501 to build sensors. IP Sensors (Figure 1) are

Wi-Fi tags that also contain sensors. IP Sensors send

measurement data to Access Points or Wi-Fi enabled

computers.

Fig. 1: IP sensors

WSEAS TRANSACTIONS on COMPUTERS

Tom Savu

ISSN: 1109-2750 1000 Issue 7, Volume 7, July 2008

Access Points will collate measurement data from

multiple IP Sensor tags located in their neighborhood

(Figure 2) and will rout the information to a data

client PC. IP Sensor measurements take place mostly

indoors, in places like a warehouse, factory floor, or a

building facility that is connected to the Internet and

hence will be covered by Access Points. Deployment

of standard Access Points for local network

communication to PC also works in places that are

not Internet connected.

Fig. 2: IP Sensor tags next to a LinkSys Access Point

In a supply chain asset tracking application it is very

useful to be able to monitor temperature to avoid

overheating, especially for foodstuffs, security seals

for containers, shock and acceleration for fragile

goods, humidity for food, etc. The SoC used in tags

that serve this market has to implement signal

conditioning and digitizer elements in order to be

capable of performing all these measurements. The IP

Sensor is using and extending tag SoC functionality

to create a multitude of measurement devices that

monitor light, radiation, pressure, movement,

humidity, vibrations and other physical or chemical

processes. The IP Sensor is an asset tracking tag with

a sensor attachment which is interfaced to the SoC

using signal lines like SPI, analog-to-digital inputs,

DIO and current I/O.

Wi-Fi solutions for sensing and communication are

not new. Wi-Fi had been used in computers, PDAs

and cellular phones for a long time. These devices

though are very power hungry, use rechargeable

batteries with a requirement to last for maybe eight

hours between consecutive recharge cycles. In

contrast with existing Wi-Fi solutions, the IP Sensor’s

novelty is its ultra low power Wi-Fi capability which

makes it suitable for sensing applications where

battery power management is critical. Further on this

line of thoughts it has to be acknowledged the

existence of competitive technologies in very low

power sensors using the 802.15.14 (ZigBee)

specification, or even Bluetooth. The difference

between Wi-Fi IP Sensors and ZigBee sensors is that

the IP Sensor application model does not need

specially designed Access Points to bring

measurement data into the network. ZigBee sensors

send data to other sensors and eventually to some

network Node that is capable of converting ZigBee

into TCP/IP such that finally the data can be delivered

to computers via the Internet. IP Sensors talk TCP/IP

or UDP and therefore can use off-the-shelf Access

Points by that lowering the cost of application. Same

is true when compared to Bluetooth sensors, which

also use more power.

2 IP Sensor hardware description

The IP Sensor device architecture is designed around

an 802.11 32-bit SoC used by asset tracking tags for

ultra low power consumption. The device is built on

one side and it has two distinct parts, the Core and the

Sensor Area. The design contribution is Size and

Modularity. It was built the smallest possible PCB

size of 42.5 mm x 23.5 mm as seen in the attached

component placement picture (Figure 3).

Fig. 3: IP Sensor tag Core and Sensor(s) Attachment

Also, it has been built a modular architecture to

accommodate a Core Area that is fixed, and a Sensor

Area that what will change depending on type of

sensor(s) used in different applications (Figure 4).

Modularity allows for reutilization of the same Core

Area (and related Firmware) in different applications

by simply changing the Sensor Area and by adding

sensor drivers into the existing firmware.

The Core Area contains the SoC, a 44.0 MHz clock

used by the SoC in high power mode, and another

32.768 KHz clock used for timing of sensor circuitry

in low power mode. The Core Area also has:

• 1Mb EEPROM, expandable to 4Mb, used as

application programming space,

• Power section that generates +3.3V and

+1.4V for the Core from a battery input

circuitry with detection for re-versed polarity.

• RF circuitry that includes a power amplifier

and the 2.4 GHz antenna.

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1001 Issue 7, Volume 7, July 2008

Fig. 4: IP Sensor: Component Placement

The Sensor Area can be populated with sensors that

connect to the sensor bus of the SoC (Figure 5). The

DEMO version is populated with circuitry for the

SHT11 temperature and humidity sensor and also for

the ADXL330 vibration / motion / tilt sensor from

Analog Devices.

Fig. 5: IP Sensor tag Core and Sensor(s) Attachment

3 Power consumption and power

management

The IP Sensor is powered by a 3.2V, lithium battery,

model CR123A (Figure 6).

Fig. 6: IP Sensor mounted on battery holder

The IP Sensor has two modes of operation, sleep and

wake-up modes.

Sleep is the low-power mode in which the IP Sensor

will use an average of 100 µW of battery power. This

amount of power is used by the SoC to perform

sensor circuitry current sourcing, sensor readings and

access of a small non-volatile memory location. uC

OS does not run, communication does not run,

everything regarding SoC intelligence is shut down in

sleep mode.

An IP Sensor hardware timer which is pre-

programmed will trigger the SoC to wake-up and

enter a high-power mode state for very short intervals

of time at fixed time intervals. Other causes of

transition from sleep to wake are preconfigured

threshold values ‘seen’ by the motion, temperature,

magnetic and other sensors.

Each wake period the IP Sensor uses power for

reception and transmission of data. The CR123

battery gives a total of 1550 mAh. At 8760 hours in a

year, the total available current is 176.94 µAh. The

node has a reception time of 90 msec and a

transmission time of 4.7 msec for a total wake period

of 94.7 msec.

Power consumption in reception (R) and rransmission

(T) is given by the following formulas:

Ah
h

mmA

RI µ5.1
sec/3600

sec9060
=

⋅
= (1)

Ah
h

mmA

TI µ914.0
sec/3600

sec7.4700
=

⋅
= (2)

The report between wake and sleep is calculated at:

3.73
914.05.1

94.176
=

+
=

AhAh

Ah
N

µµ

µ
 (3)

Based on this computation, the following power

consumption scenarios may be given:

• If the IP Sensor has 73 wake periods of 95

msec every hour (equivalent with one wake

period every 49 seconds), then the CR123

battery that gives 1550 mAh will last for 1

year.

• If the IP Sensor has one wake period of 95

msec every 4.11 minutes, then the CR123

battery that gives 1550 mAh will last for 5

years.

• A sensor node lifetime of 1 week to 5 years

will be achieved based on selection for

duration of the wake period, frequency of

wake periods, and power budget.

In wake or high power mode the IP Sensor starts eCos

OS on the 32-bit µC and enables full intelligence

including communication capabilities using UDP.

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1002 Issue 7, Volume 7, July 2008

The amount, length, and complexity of tasks

performed during high-power periods vary depending

on the application. From short term periods of 1ms to

10 seconds during which the IP Sensor consumes

about 100mW average while it makes measurements,

receives 802.11 data and executes code on the CPU,

to very short periods of say 500us where the IP

Sensor consumes in the range of 1W while it

transmits 802.11b data via UDP. It should be

mentioned here that the 802.11b communication

capability of the IP Sensor operates autonomously

from the CPU and it can execute direct reads/writes

data to system RAM in low-power mode.

During a lifetime period of 1 month to 5 years the IP

Sensor may repeat the task of each waking up for

high-power mode event every 10 to 300seconds. IP

Sensor power consumption is dictated by battery

capacity and the frequency and length of the wake or

high-power mode states of the application.

There is no explicit step for node assignment to an

Access Point in an application that uses Wi-Fi

sensors. The sensor registers with an Access Point

and uses the DHCP protocol to request dynamic

allocation of an IP address from a DHCP server that

may reside in the Access Point or in a networked PC.

If the IP Sensor does not have access to a wireless

network, it could store sensor data, complete with

timestamp. Measurement data will be uploaded to a

PC or Access Point Data Server when Wi-Fi access

becomes available again.

4 Firmware
The IP Sensor contains a 32-bit processor (or CPU)

that runs on a 44MHz external clock. The slower and

lower power sensor measurement operation is

controlled by an external 32 KHz oscillator. The CPU

incorporates full 802.11 PHY, MAC and encryption

engine. The IP Sensor CPU has internal 80Kbytes of

RAM and 320Kbytes of ROM that comes loaded with

the following firmware components:

• Boot loader

• eCos OS

• TCP/IP stack

• 802.11b stack

• Encryption and decryption support

• Application/deployment specific sensor

drivers and communication protocol

• Power-saving support

802.11b communication capability of the IP Sensor

operates autonomously from the CPU and it can

execute direct reads/writes data to the system RAM.

All this is part of the node firmware. Besides this

infrastructure related firmware, there is more

firmware that is related to user applications.

User code is downloaded in external Flash, the 1Mb

EEPROM memory that is controlled by the CPU

using an SPI interface. An example of user code is the

I2C driver imple-menting communication with the

SHT11 sensor, and a time loop that wakes-up the

sensor every User Defined number of seconds. After

each sleep period of time, the sensor node wakes up

timer triggered, and communicates with the AP to

find out if there is any data in its buffer that needs to

be red. If there is none, then the node will perform a

temperature and humidity SHT11 sensor read and it

will send the data to the (client) IP address via the

AP. All this is described by the user application

firmware that is stored in the 1Mb EEPROM memory

location.

5 Data Server Use Case
The use case scenario that makes most sense has

several IP Sensor measurement nodes associated with

an AP Data Server to which the nodes send

information on a periodic basis and from which the

nodes may receive commands. The AP Data Server

collates measurement data from these multiple sensor

tags and presents them as a web page to a Data Client

PC user or users. The following demo could be

imagined:

• User opens a Web Browser on the Data

Client PC,

• User browses to the IP address of the AP

Data Server,

• Data Server sends Data Client PC a web page

containing controls that allow the user to

configure each IP Sensor for measurement

related parameters including alarms to

parameters that are monitored and frequency

of data transmission to the AP.

• User sets measurement, alarm and

transmission parameters using controls

displayed by the web page,

• Data from IP Sensors appears in indicators

and graphs displayed by the web page panel

(Figure 7).

Fig. 7: IP Sensors Data in the webpage panel

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1003 Issue 7, Volume 7, July 2008

During the tests described above there were used two

IP Sensors having three transducers each:

• a temperature sensor;

• a light intensity sensor;

• an on / off motion sensor.

6 LabVIEW Tools
Many users in the test and measurement industry are

programming their computer based measurement

applications from LabVIEW. Wireless sensor

networks are seen by these users as extensions of

existing measurement systems based on plug-in PC

boards, PXI, cRIO chassis, etc., which are all

LabVIEW platforms. LabVIEW users will program

the IP Sensor wireless measurement application from

LabVIEW by calling UDP Read/Write VIs.

An IP Sensor sends UDP messages every three

seconds to IP address 192.168.1.1, port 50007.

Each message contains the current state of the tag

sensors and is always 28 bytes long, seven int32

values using big endian ordering.

The seven int32 values are the following

0 - the fixed value 1

1 - sleep period in milliseconds(initially 3000)

2 - total seconds spent powered down

3 - total seconds spent powered up

4 - temperature in Deg C * 1000

5 - light sensor voltage value * 1000 (range 0-599,

corresponding to 0 to 0.599 V)

6 - 0 = no motion, 1 = in motion

To change the sleep period of an IP Sensor (currently

default setting is 3 seconds), a message needs to be

sent to the address it sent the message from (IP, UDP

port). The message must contain three integer values

in big endian encoding:

0 - 0xABCDEF00 (code to denote write message)

1 - new sleep period value in milliseconds

2 - 1

The diagram of a simple LabVIEW Virtual

Instrument (VI) used for reading the IP Sensor

message is presented in Figure 8.

The VI is designed to return only the message sent

from a specified address (from a specified IP Sensor).

Messages sent from other addresses will be ignored.

The VI is first using an UDP Open function for

opening an UDP socket on port 50007.

The function creates a network connection refnum

that uniquely identifies the UDP socket and which is

subsequently used by an UDP Read function.

The UDP Read function returns the address of the IP

Sensor which wrote the datagram in the UDP socket.

The specified IP address from where the message is

allowed to be read is converted to a net address using

the String To IP function and then compared with the

address returned by the UDP Read function.

If the two addresses are not the same, then the current

iteration of the VI's While loop is not going to be the

last iteration, which means that the message read in

this iteration will be ignored.

The network connection refnum is further used by an

UDP Close function for closing the UDP socket. If

the UDP Close function returns an error, the VI's

While loop will continue to the next iteration and so

the current read message will be ignored.

The message returned by the UDP Read function, in

String format, is converted to an array of int32

integers in big-endian, network order, using an

Unflatten From String function. It has to be specified,

using a boolean False constant, that data does not

include array or string size.

If the two above mentioned IP addresses are the same,

this array is going to be further sent through the data

flow. If the addresses are different, then the array will

be replaced, using a Select function, by an array

containing seven NaN (null) values. The second array

is created by an Initialize Array function.

Fig. 8: LabVIEW VI for reading IP Sensor's message

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1004 Issue 7, Volume 7, July 2008

The seven values from the data array are separated

using an Index Array function.

The first value is compared with 1 for verifying the

message syntax. The result of the comparison is

passed as a VI's boolean output value.

Values representing temperature and light sensor

voltage are scaled by dividing them with 1000.

0 or 1 value describing the motion state is converted

to a boolean value using a Not Equal To 0? function.

Six of the values are grouped into a named cluster,

using a Bundle By Name function. The data structure

is passed to the function using a cluster constant. The

cluster containing the six grouped values is passed as

the VI's second output value.

For testing the response time of the above described

VI, two Tick Count functions (returning the value of

the millisecond timer) were placed in its diagram

(Figure 9).

The first function is registering the time when the

While loop starts.

The second function was placed inside the While

loop, in the True window of a Case structure, so it's

registering the time when the While loop ends.

The whole VI's diagram was placed in a For loop

executing ten iterations. After each iteration of the

For loop, the execution time of the While loop and its

number of performed iterations are stored in a cluster,

using a Bundle function.

The clusters resulted from all the ten iterations of the

For loop are passed as an array to an indicator on the

VI's control panel.

Fig. 9: Modified diagram for testing purposes

Data obtained during testing one IP Sensor show that

the VI's response time is usually no longer than 110

% of the sensor's sleeping period (Figure 10, Table 1).

Fig. 10: Test data

Table 1

Test no. Time [ms] Attempts

1 166 1

2 3274 2

3 3277 2

4 3278 2

5 3277 2

6 3278 2

7 3275 2

8 3378 2

9 3279 2

10 3277 2

Another LabVIEW VI developed for the IP Sensors is

one to be used for discovering which sensors are in

the communication range (Figure 11).

The VI's logic is assuming that, at each iteration of

the While loop, when the UDP socket is opened, it is

not known which IP Sensor will communicate.

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1005 Issue 7, Volume 7, July 2008

Only the sensor's address is extracted from the UDP

Read function, and is transformed in string format

using the IP To String function with dot notation.

A string array, initially void, is sent from one iteration

to another using a loop's shift register. This array will

finally contain the IPs of the discovered sensors.

If the UDP socket is closed without errors, then the

sensor's address is searched in the solutions array

using a Search 1D Array function.

The function is returning an unsigned index if the

address was found or a negative value otherwise.

If the address wasn't found, then it is added to the

solution array using a Build Array function (in the

True window of the Case structure, Figure 12). If the

address was found, then a number of attempts is

incremented.

The While loop stops either if an error was returned

or if the number of possible attempts was reached.

The solution array is then sorted and send as a VI's

output value.

A front panel image of the VI discovering two IP

sensors is presented in Figure 13.

Fig. 11: Diagram for the discovering sensors VI

Fig.12: Partial diagram for not found address

Fig. 13: Results of sensors discovering VI

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1006 Issue 7, Volume 7, July 2008

For testing the response time of the sensors

discovering VI, two Tick Count functions (returning

the value of the millisecond timer) were placed in its

diagram (Figure 14).

The first function is registering the time when the

While loop starts. The second function was placed

inside the While loop, so it's registering the time

when the While loop ends.

The whole VI's diagram was placed in a For loop

executing ten iterations. After each iteration of the

For loop, the execution time of the While loop and the

number of attempts are stored in a cluster, using a

Bundle function.

The clusters resulted from all the ten iterations of the

For loop are passed as an array to an indicator on the

VI's control panel.

Fig. 14: Test VI for sensors discovering

If an error occurs during an iteration of the For loop,

then the number of attempts is set to zero (Figure 15).

Fig. 15: Setting the number of attempts to zero

because of an error

Test results for a situation when only one IP sensor

was in the range are presented in Figure 16 and Table

2. Test results for a situation when two IP sensors

were in the range are presented in Figure 17 and

Table 3.

Not so obvious at a first look, the time needed for

discovering two sensors is smaller than the time spent

for the discovery of only one sensor.

Neglecting the 7th iteration from the first case, each

time three attempts were made, which means that, in

each iteration of the For loop, the VI had to find three

times an already existing sensor.

When only one sensor is in range, the time for finding

it is approximately 10 % bigger than the sleep period

of 3 s, as in Table 1.

When two sensors are in range, because their sleep

periods do not start in the same time, the time for

finding one of the two sensors decreases.

Fig. 16: Test results for one sensor in the range

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1007 Issue 7, Volume 7, July 2008

Table 2

Test no. Time [ms] Attempts

1 9775 3

2 9829 3

3 9933 3

4 9832 3

5 9933 3

6 10036 3

7 3367 0

8 9761 3

9 9933 3

10 9829 3

Fig. 17: Test results for two sensors in the range

Table 3

Test no. Time [ms] Attempts

1 5478 3

2 6649 3

3 6553 3

4 6674 3

5 6463 3

6 6657 3

7 6553 3

8 6553 3

9 6656 3

10 6556 3

The last LabVIEW tool to be presented is a VI for

setting the sleep time for a specified sensor (Figure

18). After opening the UDP connection on the usual

port and building the necessary command string

(using the Flatten To String function, with big-endian

network order, the UDP Write function is used ten

times, in a For loop, for achieving a high probability

that the command string will be read by the sensor

during it's wake time.

Fig. 18: Setting sensor's sleep time

7 Application example

The diagram of an example application VI is

presented in Figure 19.

The sensor discovery VI is first used for obtaining an

array containing the IPs of the sensors in range. For

each IP in the array, which means for each sensor in

range, the data reading VI is used to obtain the

measured values of temperature and light intensity

and also the boolean value of the sensors motion

state. The boolean value is then transformed into 0 or

1 values.

The above mentioned values are grouped and sent to a

waveform chart indicator in the application's front

panel.

Results obtained during a test sessions are graphically

displayed in Figure 20.

Fig. 19: Diagram of an example application VI

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1008 Issue 7, Volume 7, July 2008

Fig. 20: Results during a test session of the application example

The second sensor was moved at iteration 6, so a

value of 1 for its motion state was obtained (dark blue

line). First sensor was also moved at iteration 12

(violet line).

Starting with iteration 16, the second sensor was

shadowed, so an abrupt decrease in its light intensity

signal can be observed on the light blue line.

When the operator's hand was placed over the second

sensor at iteration 21, covering it, both a decrease in

its light intensity signal and an increasing slope of the

temperature signal (red line) may be observed.

At iteration 40 the second sensor was uncovered, so

its light intensity signal immediately went back to the

original value and the temperature signal begin to

decrease.

The same procedure was then applied to the first

sensor, shadowing it at iteration 42 (decrease in light

intensity, green line), completely covering it at

iteration 50 (less light intensity and an increase in

temperature due to operator's hand, black line) and

uncovering it at iteration 60 (light intensity

immediately at initial value and temperature begining

to decrease).

When uncovering the first sensor at iteration 60, a

little shock was applied to it by mistake and it was

registered on the corresponding violet line.

At iteration 75, air started to be blown over the two

sensors, so it can be observed a modification in the

decreasing speed of the temperature because the two

sensors were cooling faster.

At iteration 85 the air flow was stopped and the speed

of the temperature variation returned to normal.

8 Conclusion
The new technologies embedded in the IP Sensors

make them suitable for a wide range of applications

where the low-power consumption and the wireless

communication are compulsory.

Developing LabVIEW applications, both for testing

the IP Sensors' characteristics and for providing

usefull subVIs for further developments will be

continued.

References:

[1] Weilian Su, Bassam Almaharmeh, "QoS

Integration of the Internet and Wireless Sensor

Networks", WSEAS Transactions on Computers,

Issue 4, Volume 7, April 2008

[2] J. Levendovszky, A. Bojárszky, B. Karlócai, A.

Oláh, "Energy Balancing by Combinatorial

Optimization for Wireless Sensor Networks",

WSEAS Transactions on Communications, Issue 2,

Volume 7, February 2008

[3] Kuang Xing-Hong, Shao Hui-He, " Localization

Assisted by the Mobile Nodes in Wireless Sensor

Networks", WSEAS Transactions on

Communications, Issue 8, Volume 6, August 2007

[4] Marius Ghercioiu, Silviu Folea, Jani Monoses,

“The IP Sensor - a WiFi Sensor TAG”, ICOMP-07,

Las Vegas, Nevada, USA, June 25-28, 2007

[5] G2 Microsystems, "G2C501 for Ultra Low-power

Wi-Fi", http://www.g2microsystems.com/ as on June

2008

[6] http://www.tag4m.com/ as on June 2008

WSEAS TRANSACTIONS on COMPUTERS Tom Savu

ISSN: 1109-2750 1009 Issue 7, Volume 7, July 2008

