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Abstract: - Localization discovery techniques are required by most Wireless Sensor Networks applications. 
Moreover, in case of video surveillance, localization includes not only spatial coordination but also cameras 
direction and video-field overlap estimation. Accurate methods involve expensive and power consuming 
hardware. This paper presents an efficient node localization including video-field overlap estimation that 
employs image registration in order to align images quasi-simultaneously acquired from different video 
sensors. A SIFT algorithm is used to discover common features between pairs of images. Experimental and 
simulation evaluation shows the estimation accuracy comparing with a manual approach. 
 
 
Key-Words: - wireless sensor networks, topology, localization, deployment, image processing, image 
registration, SIFT 
 
1 Introduction 
Wireless Sensor Networks (WSNs) consist of many 
small, simple, cheap sensor nodes that cooperatively 
monitor physical environment. They operate in the 
absence of a pre-deployed infrastructure, are self-
configurable, low cost, can be rapidly deployed and 
can work in hostile scenarios. The sensors interact 
with the surroundings monitoring and measuring 
light, heat, position, movement, chemical presence, 
etc. The information collected is then delivered to 
the other nodes over the wireless network.  

Wireless Sensor Networks have applications in 
various fields such as emergency rescue, 
environmental monitoring [1], military operations, 
medical monitoring and industrial systems [2]. But 
WSNs impose unique challenges in terms of power 
consumption [3], network protocols [4], efficient 
data processing and aggregation [5], lifetime and 
connectivity preservation. Furthermore, most WNSs 
applications highly depend on the capacity of the 
networks to determine their nodes’ locations. 
Indeed, location is assumed known in the realization 
of many network operations such as routing or 
security protocols. Therefore significant research 
work has focused on developing efficient node 
localization techniques. 

After sensor network is distributed randomly in a 
given region a very first step consists in self-
localization. Precise GPS-based solutions are not 
feasible due to expensive and power consuming 
hardware involved [6]. Therefore several alternative 
methods were proposed [7], [8].  

Video-based Wireless Sensor Networks are a 
special kind of wireless sensor networks in which 
large amounts of video data are sensed, processed in 
real-time, and then transferred over the wireless 
network. 

In this paper we propose a novel technique of 
node localization designed for Video-based 
Wireless Sensor Networks. Video is an important 
medium for the observation of a variety of 
phenomena in the physical world. For example, in 
the cameras can be used to monitor different 
activities as evaluate land erosion or observe a 
variety of animal species. Due to the fact that 
cameras from a Video-based WSN can exist in a 
great number, the pictures gathered from them could 
contain images with a common field of view, 
images that are taken from different position and 
angles. A reconstruction of the scene would imply 
combining these images in order to give us a 
panoramic view over environment. Therefore, an 
image registration task is involved. However, 
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information gathered by this task will add to basic 
node localization useful information like cameras’ 
direction and field of view. 

The approach investigated here analyzes the 
opportunity of using an automatic feature selection 
as a base for image registration localization. The 
rest of the paper is organizes as following. Section 2 
provides an overview of existing localization 
techniques. Image registration is presented in 
Section 3. Next section describes how the 
registration is performed using a SIFT algorithm. 
Section 5 presents evaluation results on real world 
images. Finally, conclusions of this work are 
presented in the last section. 

 
2 WSN Localization Techniques 

As presented before, sensor nodes of a WSN are 
usually deployed in a random, ad-hoc manner. Often 
they are scattered from an airplane or moving 
vehicle on an unplanned infrastructure. The key 
problem of estimating spatial-coordinates of 
network nodes is referred as topology extraction or 
localization.  

A simple solution uses GPS at the level of each 
node. However, this can work only outdoors and, as 
the receiver is expensive, large and power 
consuming, it is not suitable for the construction of 
small, cheap and energy efficient sensor nodes. 
Indeed, many localization methods estimate the 
locations of sensors by using knowledge of the 
absolute positions of only a few GPS-based sensors 
based on inter-sensor distance measurements [9]. 
Moreover, advanced techniques are proposed to 
reduce the power consumption required by 
localization phase [10]. 

 
 

2.1 Distance Measurement Algorithms 
Distance measurement algorithms are used to 
estimate relative position for network nodes. A 
coarse classification of these algorithms contains 
three main categories: angle-of-arrival 
measurements, distance related measurements and 
RSS profiling measurements. 

The angle-of-arrival measurement techniques 
can use the receiver antenna’s amplitude response or 
they can consider the receiver antenna’s phase 
response. The accuracy of these techniques is 
limited by the directivity of the antenna, by 
shadowing and by multi-path reflections.  A multi-
path component may appear as a signal arriving 
from an entirely different direction and can lead to 
very large errors in AOA measurements. Multi-path 
problems in AOA measurements can be addressed 

by using the maximum likelihood (ML) algorithms. 
Various ML algorithms were developed. The best-
known examples are Multiple Signal Classification 
(MUSIC) [11] and Conjugate Estimation of Signal 
Parameters by Rotational Invariance Techniques (C-
ESPRIT) [12]. 

Distance related measurements are based on 
propagation time or radio signal strength. In the first 
case one possibility is to estimate distances between 
neighboring sensors using time-of-arrival. It 
represents the propagation time of a signal between 
the transmitter and the receiver. Therefore it 
requires the local time at the transmitter and the 
local time at the receiver to be accurately 
synchronized. This disadvantage makes time-to-
arrival time measurements a less attractive [13]. An 
improved technique is called roundtrip propagation 
time. It measures the difference between the time 
when a sensor sends a signal and the time when the 
answer is received at the original sensor. Since the 
same clock is used to compute the time 
synchronization problem is avoided. However, a 
major error source in roundtrip propagation time 
measurements is the delay required for handling the 
signal in the second sensor [14]. Another interesting 
approach to distance measurements is the lighthouse 
approach [15] which derives the distance between 
an optical receiver and a transmitter of a parallel 
rotating optical beam by measuring the time 
duration that the receiver dwells in the beam. Weak 
points of this approach are the cost of optical sensor 
and requirements of a direct line-of-sight between 
the optical receiver and the transmitter.  

Another category of distance related 
measurement techniques estimates the distances 
between neighboring sensors from the received 
signal strength. They are attractive because they 
require no additional hardware. However, 
depending of the deployment environment the 
propagation of a signal is affected by reflection, 
diffraction and scattering [16].  

As concerning RSS profiling-based localization, 
it works by constructing a form of map of the signal 
strength behavior in the coverage area. The map is 
obtained either offline by a priori measurements or 
online using sniffing devices [17] deployed at 
known locations. They have been mainly used for 
location estimation in WLANs, but they would 
appear to be attractive also for wireless sensor 
networks. The model is stored in a central location. 
By referring to the RSS model, a non-anchor node 
can estimate its location using the RSS 
measurements from anchors. 
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2.2 Localization in Context of Video-based 
Wireless Sensor Networks 
In context of video-based Wireless Sensor Networks 
the localization problem is more complex. In 
addition to nodes coordinates the information 
regarding topology includes the angles between 
cameras and video fields overlapping. Indeed, these 
extra parameters are essential for most video 
surveillance applications. 

In [18] we propose an earlier version of a 
solution for node localization and video-filed 
overlap estimation.  It starts from video images 
acquired from different nodes and computes video 
fields superposition with the help of a central server 
(could be a PC or a notebook). Then it computes 
parameters like coordinates translation, rotation 
angle and scaling factor and diffuses the extracted 
information into the entire network. Node 
localization is based on estimation of these 
parameters between each pair of neighbor nodes. 
First a setup protocol is used to collect video data 
from entire network and allow a central sink to 
calculate all necessary transformation parameters 
between each pair of cameras. These parameters are 
then distributed back to the network and used by 
nodes to cooperate in object tracking work. Same 
time, the server is able to estimate the fine-grained 
localization based on scaling factor. This set-up 
phase represents the initial step after the node 
deployment. However, this phase could by repeated 
time to time to ensure configuration update. The 
protocol is derived from LAR [19] and Direct 
Diffusion [4]. It has a dual scope. The first one is to 
fill routing tables, maintained by each node, with 
information about proximity and hop count to the 
central point. The second is to query the nodes for 
synchronously image information used to extract 
topology. 

The central server broadcasts a setup message 
containing empty route path information. Each node 
that receives a setup message will determine if itself 
is included or not in the route information. If 
included, it simply drops the message. It not, it 
refreshes its routing table from the message routing 
information and broadcasts the message further. 
Same time, it starts a timer that manage the image 
capturing.  

Nodes are both routers and end points in the 
same time. Each nodes help server requests to be 
propagated to the entire network by forwarding the 
request to its neighbors. Also images that are sent to 
the server are routed back to the server in an energy-
efficient manner that preserves network integrity. 
Each node keeps simple routing information that 
will describe each of its neighbors by its current 

energy level and the hop-count until the server. To 
obtain energy-efficiency, when node energy is over 
50% no restrictions are considered in electing a 
node as next hop. When energy node is between 
20%-50% the node will be elected as next hop only 
if there aren’t other nodes (also neighbors of the 
current node) with lower hop-count and energy level 
over 20% or nodes with equal hop-count but in the 
same or lower major energy level. If we have more 
than one candidate as possible next hop we will use 
a LRU like algorithm to impose equal energy 
consumption for neighbors. 

At server request the sensor nodes will send back 
an image captured by node's camera. The server 
makes a single multicast request available for all 
nodes connected inside the network. Due the 
deployment density, a request from server will be 
received by a node possibility multiple times. In 
order to avoid sending same image twice, each 
request has a unique ID. Then, the message 
containing node's response will be sent back to the 
server using the most energy-efficient path with 
network integrity preservation. The most energy-
efficient path is considered the path with the lowest 
hop-count to server having enough energy to cover 
communication. 

 After receiving all nodes images localization 
involves image registration applied against each 
pairs of them. Furthermore, to accomplish the 
registration task for a pair of corresponding images 
the first step is the feature selection. Considering the 
features detected, a transformation is found and each 
point in one image is mapped to a point in the 
considered pair of it. The first version of our 
localization algorithm has used manually selection 
of the corresponding features. Indeed, it was based 
on detecting corners by a simply click of the mouse 
on the images. For this, we need a human operator 
to interact with the mouse in choosing the 
corresponding pairs of feature points in the images. 
After evaluation the algorithm was still affected by 
small errors (1 to 5 pixels) specific to 
correspondence point setting procedure. To deal 
with these errors a post-processing step was 
required. Therefore, a chamfer-matching post-
processing was considered [20]. However, as 
suggested above the main drawback of the method 
consists in large amount of time involved. The work 
presented here is motivated by the need of an fast 
automatic extraction of corresponding points as the 
starting point for registration. 
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3 Image Registration 
Image registration is a basic image processing 
operation employed by many computer vision 
applications used in areas such as remote sensing, 
biomedical imaging, surveillance and robotics [21]. 
Its goal is to overlay two or more images of the 
same scene taken at different times, from different 
viewpoints, and/or by different cameras. In order to 
register two images, a transformation must be found 
so that each point in one image (reference image) 
can be mapped to a point in the second (sensed 
image). In other words, registration optimally aligns 
two images. Due to the diversity of images to be 
registered and various types of degradations 
encountered (mainly caused by transmission errors), 
it is impossible to design a universal method 
applicable to all registration tasks. Every method 
should consider not only the assumed type of 
geometric deformation between images but also 
radiometric deformations and noise corruption, 
required registration accuracy and application-
dependent data characteristics.  

In the context of general real-life images the 
registration problem is difficult and prone to errors 
like noise, small movements or various reflections. 
Therefore robust estimation methods are needed to 
cope with point correspondence errors. 

One of the first robust estimators proposed for 
image registration was the RANSAC [22]. More 
recently the M-estimators-based solution and a 
related scheme that relies on kernel-based estimators 
received much attention in the research community 
[23]. The two methods have complementary merits. 
The M-estimators scheme finds good solutions but 
requires a good initial estimate to converge 
correctly. RANSAC does not need to start from an 
initial estimate [24], but the solution does not 
consider all the available data, reducing its 
precision. 

In this work we use a mean shift based solution 
[25] for robust parameters like coordinates 
translation, rotation angle and scaling factor 
estimation. Like RANSAC, the Mean Shift Estimator 
method does not require an initial estimation and 
like the M-estimators scheme, it makes a better use 
of the available data samples. 

The Mean Shift Estimator is based on the mean 
shift algorithm, a fast and robust method to detect 
local maxima of a multivariate probability density.  
Mean Shift Estimator allows us to find the 
parameters of the geometric transform aligning two 
images as the parameters with the highest 
probability density in the solution space. 

Starting from a sample of N d-dimensional data 
points, xi, drawn from a distribution with 

multivariate probability density function p(x), it 
estimates the density at the vector (point) x as: 
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is the kernel function depending on the symmetric 
positive definite d×d matrix H, called bandwidth 
matrix. Frequently H has a diagonal form or even 
the form H= h2I, assuming the same scale h for all 
dimensions, i.e. a single scale parameter. In this 
case, an isotropic estimator, Kh is used. A radially 
symmetric estimator can be generated starting from 
a 1D kernel function K1 as: 
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with α is a strictly positive constant chosen such that 
the kernel function integrates strictly to 1. The 
profile of the radially symmetric kernel is defined 
as: 

( ) )||(|| 2xx ckK R = ,                (4)  

where c  is a normalization constant.   
Starting from any location y0, a gradient ascent 

mean shift algorithm [17] can be used to find the 
location of the maxima of the estimated PDF closest 
to the starting location. This can be simply done by 
iterating until convergence the equation 

,...2,1,

1

2

1

2

1 =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

=

∑

∑

=

=

+ j

h
g

h
g

n

i

ij

n

i

ij
i

j
xy

xy
x

y       (5) 

where  
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In practice the convergence is very fast, typically 
only two or three iterations being needed. 

 
 

3.1 The Registration Model 
A widely used 2D geometric transformation in 
image registration is the similarity transform, 
consisting of rotation, translation and scaling. The 
model is defined by the equations: 
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relating the old pixel coordinates (x, y) to the new 
ones. As this transform preserves the angles and 
curvatures, it has been named “shape-preserving 
mapping”. The four parameters of the 
transformation can be unambiguously determined 
from the correspondence of two pairs of points. 
However, in most of the cases, the number of the 
points available for estimating the transformation 
parameters s, φ, tx and ty is higher. By denoting the 
vector of parameters as 
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the problem of estimating the geometric 
transformation can be formulated as the problem of 
minimizing a measure of the fitting error of the 
available data points: 

∑=
i

i

x

rx )(minarg ρ
43421

,                     (9) 

where the residuals ri represent the matching error 
between a pair of corresponding features after 
registration. 
 
 
3.2 Computation of the Rotation Angle, Scale 
Factor and Translation Vector Components 
The proposed algorithm starts from the observation 
that the angle between two line segments is not 
changed by translation or rescaling. Therefore, the 
rotation parameter, φ can be estimated based on 
such angles prior to estimating the translation or 
rescaling parameters. Rescaling parameter 
estimation can also be performed prior to translation 
or rotation estimation, based on the distances 
between known pairs of points. The translation 
vector components have to be calculated after the 
rotation and rescaling parameters have been 
estimated and compensated for. A minimal set of 
points is necessary to estimate the transformation 
parameters. For rotation angle estimation, the 
minimal set is defined by two pairs of points (Qi, Qj) 
and (Vi, Vj), and is represented by the corresponding 
vectors qij and vij. The angle between the two lines 
that connect (Qi, Qj) and (Vi, Vj) respectively is 
given by the equation: 

T
ij

T
ij

ij
T
ij

vq

vq
=ϕ)cos(                        (10) 

where xT denotes transpose of vector x.   

Considering {φi}, i = 1,2,….,M as the set of M 
angles obtained from pairs of points, the rotation 
angle is defined as the highest density location 
obtained by the 1D mean shift algorithm (d =1) 
applied on all data angle data samples available. 

In a similar manner, scale factor estimates can 
be obtained from the sets of pairs of points using the 
following equation: 

s = ||vij||/||qij||.                        (11) 

After performing the inverse geometrical 
transform to compensate scale and rotation angle, 
robust translation vector component estimation is 
performed by point correspondences.  Each pair of 
points generates pair of translation parameters. The 
same mean shift algorithm is used to find the best 
estimates of the translation vector. 

 

 
(a) 

 
(b) 

Fig. 1. Chamfer Matching post-processing: (a) 
Images Difference before post-processing; (b) 

Images Difference after chamfer matching 
 
 

3.3 Post-Processing Adjustments 
After registration, the result is still affected by small 
errors (1 to 5 pixels). To deal with these errors a 
post-processing step is required. We consider a 
Chamfer Matching method as the best one in our 
case. Chamfer Matching is an edge matching 
technique, which was first proposed by Barrow [26] 
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and then refined by Borgefors [20]. It involves 
several steps. 

First the distance transformation is computed and 
the distance map is produced starting from the upper 
right corner. The pattern we are looking for is then 
moved over the relief defined by the distance map. 
Under the action of gravity, the pattern slides over 
the relief until it reaches the lowest possible altitude. 
If this altitude is zero or close to zero, an optimal 
matching pattern was found in the image. More 
formally, the matching criterion is the correlation of 
the searched pattern with the distance map. The 
pattern is located where this correlation reaches an 
absolute minimum.  

The hierarchical Chamfer matching method 
proposed by Borgefors is relaying on a resolution 
pyramid. The matching is done not only in the 
original image resolution but also in a series of 
images, where each image is a representation of the 
original scene at a lower resolution. Poor local 
minima are rejected. The remaining positions are 
considered at next higher resolution level of the 
pyramid, and the procedure is repeated until local 
minima are found at the highest resolution level of 
the pyramid. However, due the small correction – 1 
to 5 pixels – required in our case, the computation 
overhead of hierarchical matching is not justified. 

Fig. 1 depicts the result of chamfer post-
processing. It can be seen how the original result 
presented in Fig. 1a is improved in Fig. 1b when 
using chamfer post-processing. 

 
 

4 Registration using Automatic 
Feature Selection for Parameter 
Estimation 
The correspondence between the features can be 
classified in two categories: feature-based and 
region-based. Due to the fact that the region-based 
registration is prone to errors generated by 
segmentation and different color sensitivities of the 
cameras, image point features can be used instead. 
This approach has been shown to be more robust 
with viewpoint, scale and illumination changes, and 
occlusion. Feature selection can be carried out 
manually or automatically. While first approach 
involves a human operator, the second one uses a 
SIFT derived algorithm [27]. Unfortunately, even is 
more precise, first approach is to slow in case of a 
real world application involving thousands of nodes. 

The point mapping technique is a primary 
approach taken to register two images that type of 
misalignment is unknown. The general method 
consists of three steps. In the first step features in 

the images are computed. The second step is 
identifying feature correspondences in pairs of 
images. And the last step is estimating parameters of 
geometrical transforms optimally mapping features 
between pairs of images. 

Feature selection can be carried out in two ways. 
We can select feature correspondences manually, 
using only the button of the mouse or we can select 
automatically using an algorithm for feature 
detection. 

The automatic selection is based on a SIFT 
feature selection algorithm. SIFT is coming from 
Scale-Invariant Feature Transform which is an 
algorithm in computer vision to detect and describe 
local features in images. These local features are 
invariant to image scale and rotation. They are also 
robust to changes in illumination, noise, occlusion 
and minor changes in viewpoint. In addition to these 
properties, the local features given by SIFT are 
distinctive, easy to extract, allow for correct object 
identification with low probability of mismatch and 
are easy to match against a (large) database of local 
features and they can be used for matching. In order 
to generate a set of image features four steps of 
computation are used: 
• Scale-space extrema detection 
• Key-point localization 
• Orientation assignment 
• The local image descriptor 

An important aspect of this approach is that it 
generates large numbers of features that densely 
cover the image over the full range of scales and 
locations. 

After one of these steps is accomplished, the next 
step based on a robust estimation method gives the 
best estimate of the parameters of geometrical 
transform, mapping features between pairs of 
images. 

 
 

5 Testing Results 
In order to test the performances of the automatic 
selection, we used image pairs containing a common 
field of view, obtained for different camera 
positions and orientations. As test bed we use a five 
TRENDNET IP-400W wireless camera nodes 
network.  
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(Sensor 1) 

 
(Sensor 2) 

Fig. 2 Feature Point Extraction in a Natural 
Environment. 

 

 
(Sensor 1) 

 
(Sensor 2) 

Fig. 3 Feature Points Extraction in an Office 
Environment. 

The real world applications could be deployed in 
various environments. However, we identify three 
common situations for most applications. First is 
represented by nature scenes, like forests or desert; 
the second is city landscapes, like squares or 
intersections; and the last is indoor, like rooms or 
passage. Due to this fact, the experiments were 
realized with images considering these 
environments. Consequently, the images were split 
in three categories: forest, office and urban 
landscape. Fig. 2, Fig. 3 and Fig. 4 depict some 
examples involving two overlapped sensors 
deployed in each of considered environments. 

 
 

 
(Sensor 1) 

 
(Sensor 2) 

Fig. 4 Feature Points Extraction in an Urban 
Environment 

 
 

For each image, the selection was made 
automatic and manual for different number of 
feature points. Each method is tested on 15 images 
(5 images x 3 categories).   

The parameters of the similarity transform (s, φ, 
tx and ty), which are resulting from using manual 
selection, are considered as the ideal ones.  

All comparisons use a relative error computed 
with the equation: 
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( ) *100,
dim
x yerr −

=                            (12) 

where x  is the ideal value, obtained from using the 
manual selection, y is the value obtained from using 
the automatic method and dim  is the horizontal 
dimension of the image for x and y translation, 1 for 
scale parameter and π  for angle parameter. This 
equation is applied to every parameter of the 
similarity transform. Equation (12) quantifies the 
deviation of the automatic method from the manual 
method, considered ideal. The resulting values are 
presented in Table 1. 

Small deviation errors are present for the scale 
and angle estimate in all three categories. Horizontal 
and vertical translation estimate presents small 
errors for pictures with office and urban 
environment. The worst case is for the horizontal 
translation estimate, where the worst-case error is 
about 32%. The best results are obtained for scale 
and angle on urban images which contain buildings. 
The vertical translation estimate presents a relative 
highest error, 6.51%, when an indoor image is used. 

 
Table 1 

The Relative Error (in percentage) 
Forest Parameters 

of the of 
similarity  
transform 

Img1 Img2 Img3 Img4 Img5 

Translation X 32 1.7 0.07 0.67 0.35 
Translation Y 0.36 1.46 0.08 0.29 1.43 

Scale 0.064 0.42 0.90 0.49 0.41 
Angle 0.049 0.24 0.35 0.28 0.46 

 
Office Parameters 

of the of 
similarity  
transform 

Img1 Img2 Img3 Img4 Img5 

Translation X 1.58 0.39 0.98 1.69 0.19 
Translation Y 0.64 3.18 0.08 0.79 6.51 

Scale 0.33 2.06 1.8 0.06 4.46 
Angle 0.18 0.19 0.96 0.072 0.79 

 
Urban Parameters 

of the of 
similarity  
transform 

Img1 Img2 Img3 
 

Img4 Img5 

Translation X 0.001 0.70 0.14 0.55 0.17 
Translation Y 0.50 0.59 0.19 1.19 0.021 

Scale 0.18 0.22 0.28 1.13 0.35 
Angle 0.013 0.16 0.012 0.16 0.11 

 
 

The highest and the lowest values of the error are 
presented in Table 2, along with the trimmed mean 
for every parameter of the similarity transform. 

A trimmed mean is calculated by discarding a 
certain percentage of the lowest and the highest 
values of the relative error followed by computing 
the mean of the remaining values. 

 
Table 2 

The Trimmed Mean Value (in percentage) 
Parameters 

of the of 
similarity 
transform 

Highest 
value 

Trimmed 
mean 

Lowest 
value 

Translation X 32 0.71 0.001 
Translation Y 6.51 0.83 0.021 

Scale 4.41 0.66 0.06 
Angle 0.96 0.23 0.012 

 
 

The trimmed mean is a family of measures. The 
α % - trimmed mean of N values 1,..., nx x  is 
computing by sorting all the N values, discarding 
α % of the lowest and α % of the highest values, 
and computing the mean of the remaining values. 

 In our case, to calculate a trimmed mean α % = 
6.66 % for a set of values N=15, steps are the 
following: 

• Step 1. Sort the values. 
• Step 2. Discard 20% of the largest values 

and 20% of the smallest values. 
• Step 3. Compute the mean of the 

remaining values. 
 The idea of a trimmed mean is to eliminate 

outliers, or extreme observations that do not 
seem to have any logical explanations in 
calculating the overall mean of a distribution. 

 
Table 3 

The Execution Time 
Manual Automatic 
25 pts 25 pts 

Parc Office Urban Parc Office Urban 
4’10” 3’10” 2’10” 15” 12” 9” 

15 pts 15 pts 
3’5” 1’30” 1’30” 14” 11” 8” 

 
 

Table 3 presents the time measurement for each 
category in the case of 25 points and 15 points. In a 
real WNS the number of gather images is large. 
Based on the measurements from the Table III, we 
can estimate the time involved by a real application. 
Suppose we gather 500 pairs of images. When the 
number of considered points is 25 and the selection 
is manually, the registration process will take about 
4’10” x 500 pairs of images resulting in 35 hours. 
When the feature selection is automatic, the 
estimated time for registration process will be 15”x 
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500 pairs of images that means around 2 hours. 
Even considering the best case of city landscapes, 
for manual selection the localization time is 
unacceptable (around 18 hours) while the automatic 
selection takes just 1 hour. 
 
 
6 Conclusion 
This paper proposes a localization algorithm based 
on registration applied on images gathered from 
network nodes. It uses an automatic features 
selection based on SIFT algorithm. In addition to 
spatial localization we estimate also the video-field 
overlap between each pair of camera-nodes. All 
processing are done on the central server and 
localization information is sent back into the 
network. Test results demonstrate the benefit of this 
technique in terms of execution time while loosing 
in precision is kept very low. The method presented 
in the paper may find a large application in system 
identification based on sensor networks [28]. 
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