
Deriving Ontologies Using Multi-agent Systems

VICTORIA IORDAN, ANTOANELA NAAJI * , ALEXANDRU CICORTAS
Department of Computer Science

West University of Timisoara, * “Vasile Goldis” Western University of Arad
Blvd. V. Parvan 4, Timisoara 300223, Blvd. Revolutiei 94-96, Arad 310025

ROMANIA
iordan@info.uvt.ro, anaaji@uvvg.ro , cico@info.uvt.ro

Abstract: - The complex systems are designed using multi-agent concepts. Agent interaction is complex and
requires appropriate models for a communication and cooperation. Also the interaction between the users and
the system agents must be done in an efficient way. One of the basic conditions is that to use a convenient
"language", a common way of understanding. The ontology is the appropriate concept that allows doing it. The
operations on the ontologies cover many of such requirements. Due to the complexity of systems interaction
that has an impact on the different ontologies used in them. Our model tries to define a specific operation
deriving an ontology form another one. The competence descriptions in education are given as an application.
The research for this paper has been partial supported by the project PN II 91-047/2007.

Key-Words: - Ontology, competence description, multi-agent systems

1 Introduction

Ontologies are intended for knowledge
representation, sharing, management, modeling,
engineering and education among others. In [37]
were given software engineering concepts, ideas
and knowledge, software development
methodologies, tools and techniques into ontologies
and used them as a basis for classifying the
concepts in communication and enabling
knowledge sharing.

In any domain can be used two ontologies:
generic ontology and application-specific ontology.
Generic ontology is a set of domain terms including
the vocabulary, the semantic interconnections and
some simple rules of inference and logic for
software development. Application-specific
ontology is an explicit specification of domain
problem for a system from the domain. This
ontology can be used for communication between
the system components, persons that are implied in
system functionality and the agent which are used
in the modeled systems. The ontological
representation of domain problem not only
represents the commonly agreed knowledge but
also provides detailed relationships (descriptions)
between the concepts and specific features of the
domain problem. The application-specific ontology
of domain problem can also be customized.

The artificial intelligence (AI) shows that
knowledge is critical for intelligent systems. In
many cases, better knowledge can be more
important for solving a task than better algorithms.

To have truly intelligent systems, knowledge needs
to be captured, processed, reused, and
communicated. Ontologies support all these tasks.

One of the important motivations for using
ontologies is also the design and the
implementation of software agents [34].

From a practical point of view, a given software
ontology establishes the content of messages
exchanged among agents and provides facilities to
validate them. Moreover, ontologies are a good
starting point for defining interaction protocols
which are the most common way to define a
structured communication among two entities.

The paper is organized as follows. In the second
Section the basics of the ontologies are discussed in
order to motivate our intentions. The need for an
ontology framework is also grounded. The third
Section treats the specificities of ontology
modeling and design. The fourth Section shortly
reviews the ontology representation languages. As
an example in the fifth Section a software
engineering ontology platform implementation is
given. It resembles with our model. The sixth
Section details our model in that the deriving
operation is presented, in the context of a multi-
agent system. The last Section prefigures the future
works.

2 Ontologies basics
From a short overview and role of ontologies were
presented in [26], here are reasons why

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 814 Issue 6, Volume 7, June 2008

mailto:iordan@info.uvt.ro
mailto:anaaji@uvvg.ro
mailto:cico@info.uvt.ro

understanding, using and manipulating ontologies
can bring practical benefit:
- depending on their degree of formalism (an

important dimension), ontologies help make
explicit the scope, definition and language and
meaning (semantics) of a given domain or
world view;

- may provide the power to generalize about their
domains;

- if hierarchically structured in part (and not all
are), can provide the power of inheritance;

- provide guidance for how to correctly place
information in relation to other information in
that domain;

- may provide the basis to reason or infer over its
domain (again as a function of its formalism);

- can provide a more effective basis
for information extraction or content clustering;

- again depending on their formalism, may be a
source of structure and controlled vocabularies
helpful for disambiguating context; they can
inform and provide structure to the lexicons
in particular domains;
- can provide guiding structure for browsing

or discovery within a domain, and
- can help relate and place other ontologies

or world views in relation to one another;
in other words, ontologies can organize
ontologies from the most specific to the
most abstract.

The expressiveness of the ontology is given by its
structure and formalism that allow classifying the
ontologies.
The expressiveness is the mean by which ontology
can describe domain semantics. Structure can be
defined as the degree of organization or
hierarchical extent of the ontology. The granularity
is the level of detail in the ontology.

Fig. 1: Evolution of Semantic Clarity

In the Figure 1 is illustrated the increased semantic
precision.
Based on the following ontology definitions some
comments that characterize the conceptualization
will be done in the following:

1. Ontology is a term in philosophy and its
meaning is theory of existence.

2. Ontology is an explicit specification of
conceptualization.

3. Ontology is a body of knowledge
describing some domain, typically
common sense knowledge domain.

The first definition is the meaning in philosophy;
however it has many implications for the AI
purposes. The second definition is generally
accepted as a definition of what ontology is for the
AI community. The last third definition views
ontology as an inner body of knowledge, not as the
way to describe the knowledge.

Intended models
(description of the
domain, what is

Ontology
(restriction of the
possible models,
expressing
conceptualization)

Fig. 2: Possible models expressible in the ontology

language

2.1. Conceptualization
The second definition of ontology mentioned
above, as explicit specification of conceptualization
was done in [10], [11]. The exact meaning depends
on the understanding of the terms specification and
conceptualization. Explicit specification of
conceptualization means that ontology is a
description (like a formal specification of a
program) of the concepts and relationships that can
exist for an agent or a community of agents. This
definition is consistent with the usage of ontology
as set of concept definitions, but more general
ontology specification diagram.

Time/Money

High
Semantic
Clarity

Strong

Semantics

Weak
Semantics

Word/HTML

XML, XSLT

UML, XMI

RDF

Concept Maps

OWL

Glossaries

Thesaurus

Controlled Vocabularies

Enterprise Data Models

Taxonomies

Ontologies

The ontology can be defined also as an explicit
specification of conceptualization. Ontologies
capture the structure of the domain, i.e.
conceptualization. This includes the model of the
domain with possible restrictions. The
conceptualization describes knowledge about the
domain, not about the particular state of affairs in

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 815 Issue 6, Volume 7, June 2008

the domain. In other words, the conceptualization is
not changing, or is changing very rarely. Ontology
is then specification of this conceptualization - the
conceptualization is specified by using particular
modeling language and particular terms. Formal
specification is required in order to be able to
process ontologies and operate on ontologies
automatically.

Ontology describes a domain, while a
knowledge base that is based on ontology describes
particular state of domain.

A conceptualization can be defined as an
intentional semantic structure that encodes implicit
knowledge constraining the structure of a piece of a
domain.

Fig.3: The relation between conceptualizations,
ontologies, knowledge representations and

domains.

Ontology is a (partial) specification of this
structure, i.e., it is usually a logical theory that
expresses the conceptualization explicitly in some
language. Conceptualization is language
independent, while ontology is language
dependent. The use can be illustrated in the Fig.3 -
it shows how an ontology restricts (i.e., defines)
possible use of constructs used in the description of
the domain.
Notice that ontology does not have to express all
the possible constraints - the level of details in
conceptualization depends on the requirements of
the intended application and expressing
conceptualization in ontology in addition depends
on the used ontology language.
The Fig. 3 illustrates the relations between
conceptualizations, ontologeis and knowledge
representation.

Ontology

describes

CONCEPTUALIZATION

provides
ontological
commitments for

Knowledge representation

represents

DOMAIN

Definitions of
concepts, objects,
relations

concepts, objects, relations
 =
 set of ontological
 commitments

LANGUAGE

KNOWLEDGE BASE

part of the
world being
representation

2.2 Ontology Framework
Generally speaking:
- There are at least two important word senses for

ontology: ontology as a field of study ontology
(philosophy) and ontology as a technology for
computer and information scientists. We are
talking about the second sense of the word,
ontology (computer science);

- Ontology could refer to either a piece of
information that can be talked about objectively,
communicated in digital media, and shared
without loss of information among a
community; or a set of ideas, concepts,
abstractions, or other entities that are not the
same as the representations or descriptions of
them. We propose that we limit our discussions
to the first sense: ontology as an objective form
(the other sense is called a conceptualization
that was treated above);

- In the context of computer and information
sciences, ontology is a specification of a
conceptualization. That is, it specifies the
concepts, ideas, relations, abstractions, and so
forth in an objective form. The intent is to
clarify the meaning, enabling shared
understanding.

- Ontology provides a specification of a
conceptualization by defining a representational
vocabulary (a set of terms that can be used to
represent the domain) together with constraints
on their meaningful use. The representational
vocabulary may include concepts or categories,
relations, properties, or other primitives for
representing knowledge. The content of the
specification includes:

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 816 Issue 6, Volume 7, June 2008

- identification of the fundamental categories
in the domain;

- identification of the ways in which
members of the categories are related to
each other;

- constraints on the ways in which the
relationships can be used.

- Although ontology defines vocabulary for
representing a domain, it is not a specification
of form. That is, it does not prescribe the form
in which knowledge is represented, stored,
communicated, or reasoned about. This is how
ontology differs from a data model, and is why
ontology is not defined by its form but by its
role: to enable sharing, reuse, and application of
knowledge.

- It does not matter to this definition whether
ontology is formally equivalent to a logical
theory, whether there is a formal difference
between ontology and a knowledge base, or
whether ontology is only definitional or also
contains axiomatic constraints. In fact, it is not
necessary that the ontology is represented in any
kind of logical formalism. Many highly
successful specifications (e.g., the HTTP
standard) are given only in natural language, yet
can be enforced with machine-understandable
tests and examples. What matters is that its
purpose is to specify a conceptualization, in
what ever representational form is appropriate;

For the purposes of the framework is defined what
we mean by the term ontology (computer science).
Incorporating the distinctions introduced above, we
have adapted the definition of ontology given, to
this:

Ontology (definition), for computer and
information sciences, is a specification of a
conceptualization, which is the set of ideas,
concepts, relationships, or other abstractions that
comprise a domain of modeling or discourse.
Ontology defines a representational vocabulary for
the conceptualization, and specifies constraints on
the meaningful use of this vocabulary, so that facts
about the domain can be shared, communicated,
and reasoned about.

2.3 Kinds of Ontologies
Ontologies can vary on several important
dimensions. We propose a set of dimensions that
can be used to distinguish among different
approaches. There are two kinds of dimensions:

- semantic, which shows how ontology specifies
the meaning of its representational vocabulary
and

- pragmatic, which shows the purpose and
context in which the ontology is designed and
used.

Semantic Dimension includes:
- level of structure: This is akin to the notion of

structured and unstructured data in computer
science. An ontology that specifies formally
defined concepts such as mathematical
abstractions is high in structure, while an
ontology that specifies very general concepts
such as document and hyperlink is low in
structure. Many ontologies are semi structured,
containing a mix of formal and informal
definitions of concepts and relationships.

- Expressiveness of the language or framework
used: Although ontology is not a definition of
form (e.g., the syntax of a language), ontology
defines its vocabulary in some representational
form. Ontologies differ in the expressive power
of the language used in the specification. Some
conceptualizations require a highly expressive
language to define the concepts, where others
can be specified with a less expressive
language. This is related to the level of structure
dimension. A highly structured and formal
ontology might require a language capable of
stating logical or mathematical constraints,
whereas an informal ontology may be expressed
only as a list of terms and definitions in a
natural language such as English. Furthermore,
the language used for stating logical or
mathematical constraints can vary in
expressivity.

- Representational granularity: While
expressiveness is a characteristic of the
language in which ontology is given, granularity
is a property of the content of ontology itself.
Coarse granularity ontology is specified using
only very general representational primitives,
such as concepts and subsumption in taxonomy,
where fine granularity ontology specifies much
more detail about the properties of concepts and
how they can relate to each other.

Pragmatic Dimension contains:
- Intended use: The intended use may be to share

knowledge bases, to enable communication
among software agents, to help integrate
disparate data sets, to represent a natural
language vocabulary, to help provide
knowledge-enhanced search, to provide a

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 817 Issue 6, Volume 7, June 2008

starting-point for building knowledge systems,
to provide a conceptual framework for indexing
content, etc. The intended use often means that
there is some application that is envisioned for
which the ontology is being developed.

- Role of automated reasoning: Automated
reasoning can range from simple to complex.
Simple automated reasoning can mean machine
semantic interpretability of the content, which
only requires that the language that the content
is modeled in, is a logic or that a special
interpreter/inference engine has been
constructed that knows how to interpret the
content. The former approach logic) is a
principled or standards-based approach; the
latter (construction of a special
interpreter/inference engine) is an ad hoc and
often proprietary approach. In the simple
automated reasoning case, the machine may be
able to make inferences such as that the subclass
relation means that properties defined at the
parent class should be inherited down to the
children classes; this is the property of
transitivity. More complex automated reasoning
is usually expressed as deductive rules, i.e.,
inference rules or expressions that combine
information from across the ontology that
characterize dependencies much like if-then-else
statements in programming languages or
business rules that try to characterize things that
have to hold in an enterprise but which can’t
typically be expressed in relational databases or
object models. Complex automated reasoning
requires that the content be modeled in a logic
based language simply because notions like
‘validly concludes’ or ‘X is consistent with Y’
are not expressible generally in ad hoc
implementations.

- Descriptive vs. prescriptive: The content
describe, i.e., characterize the entities and
relations among the entities, as a user or an
expert might characterize those objects. Or the
content prescribe, i.e., mandate the way that
those entities and their relationships are
characterized. Descriptive often takes a looser
notion of characterization, perhaps allowing
arbitrary objects into the model, which might
not exist in the real world but which are
significant conceptual items for the given user
community. Prescriptive often takes a stricter
notion of characterization, stating that only
objects which actually exist or that represent
natural kinds or types of things in the real world
should be represented in the content of the
engineering model.

- Design methodology: how the methodology is
employed in the construction of the ontology.
Possible ranges of methodology include:
bottom-up, top-down. A bottom-up (sometimes
called empirical) methodology places strong
emphasis on: either solely analyzing the data
sources so that the resulting ontology covers
their semantics, or enabling arbitrary persons to
characterize their content as they personally see
fit, using terminology or metadata and whatever
structuring relations (or not) that they desire to
use, with perhaps an auxiliary notion or
assumption that in by doing so, patterns of
characterizations may emerge or be preferred by
a large group or community of persons.

3 Specific Design
Before development, a designer has to have a
model of the conceptual structure of the domain i.e.
the ontology as well as an understanding of the
structure of information describing instances of
these concepts and their relationships [3]. A critical
aspect of modeling and designing ontology is lack
of graphical notation [8]. The UML can be used to
model ontology. UML object diagrams can be
interpreted as declarative representations of
knowledge. Instance information can be conveyed
as a UML object diagram that shows the values of
object attributes and the link i.e. instances of
associations that exist between objects. There are
benefits for using the same paradigm for modeling
ontologies and knowledge. Even standard UML
cannot express advanced ontology features such as
restrictions, cannot easily conclude whether the
same property was attached to more than one class,
and cannot create a hierarchy of properties [2].
It is a kind of agile modeling method for ontology
design and the main aim of this use of UML
notation is simply to create a graphical
representation of ontologies to make them easier to
understand. This use of UML notation to model the
underlying ontology should be distinguished from
its use in software development to model the
application domain model. During the ontology
modeling and designing the concepts in object-
oriented: the classes and the use case-diagrams
must be defined.

4 Ontology Representation Languages
Ontologies are used to capture knowledge in some
domains of interest. Ontology describes the

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 818 Issue 6, Volume 7, June 2008

concepts in the domain and also the relationships
that hold among those concepts. Different ontology
languages provide different facilities [12].

There are many ontology representation
languages for creating ontology including
Knowledge Interchange Format (KIF) [9], Simple
HTML Ontology Extension (SHOE) [18], ISO
standard for describing knowledge structures
(Topic Maps) [19], Ontology Exchange Language
(XOL) [17], Ontology Markup Language (OML)
[18], Ontology Inference Layer (OIL [13],
DAML+OIL [14]) and Web Ontology Language
(OWL)[22].
The XML is used in many languages as support
[35], [36].
Between the most current developments in standard
ontology languages is OWL [22].
Concerning the considerations and the
requirements on ontology languages based on the
fact that RDF is a main ontology language, the
following refers to the RDF and RDFS [28], [29].
For shared meaning different data sources should
be able to commit to the same ontology.
Data sources that commit to the same ontology
explicitly agree to use the same identifiers with the
same meanings. An organization must be able to
create an ontology which extends an existing
ontology and adds any desired identifiers and
definitions.
Ontology may change during its lifetime.
Different ontologies may model the same concepts
in different ways. The language should provide
primitives for relating different representations,
thus allowing data to be converted to different
ontologies. For that, any use case in which data
from different providers with different
terminologies must be integrated [31]. Different
ontologies or data sources may be contradictory.
RDF and RDFS do not allow inconsistencies to be
expressed.
In order to prevent agents from combining
incompatible data or from taking consistent data
and evolving it into an inconsistent state, it is
important that inconsistencies can be detected
automatically.
An ontology language must have the ability to
express the most important kinds of knowledge.
Expressivity determines what can be said in the
language, and thus determines its inferential power
and what reasoning capabilities should be expected
in systems that fully implement it.

The design goals (and use cases) motivate a
number of requirements for a web ontology
language. For web design for example, some
requirements are:

- ontologies as distinct resources. Ontologies
must be resources that have their own unique
identifiers, such as a URI reference;

- unambiguous concept referencing with URIs.
Two concepts in different ontologies must have
distinct absolute identifiers (although they may
have identical relative identifiers). It must be
possible to uniquely identify a concept in an
ontology using a URI reference;

- explicit ontology extension. Ontologies must be
able to explicitly extend other ontologies in
order to reuse concepts while adding new
classes and properties. Ontology extension must
be a transitive relation; if ontology A extends
ontology B, and ontology B extends ontology C,
then ontology A implicitly extends ontology C
as well;

- commitment to ontologies. Resources must be
able to explicitly commit to specific ontologies,
indicating precisely which set of definitions and
assumptions are made;

- ontology metadata. It must be possible to
provide meta-data for each ontology.

Some considerations concerning the OWL are

giving in the following (OWL ontology consists of
Individuals, Properties and Classes).
Individuals represent objects in the domain of
interest. Individuals are also known as instances. It
can be referred to as being instances of classes or
concepts. Properties are relationships between two
things i.e. a concept/individual links to a
concept/individual known as object property or a
concept/individual link to an XML schema data
type value or an rdf literal known as data type
property.
The inverse of has Relationship is isRelatedTo.
Properties can be limited to having a single value;
to being functional or multiple values i.e., to being
non-functional. Also, they can be either transitive
or symmetric. Properties are also known as roles in
description logics, and attributes in UML and other
object-oriented notions.
Classes are a concrete representation of concepts
interpreted as sets that contain individual(s).
Individuals may belong to more than one class.
Classes may be constructed in a superclass-subclass
hierarchy, which is also known as taxonomy.
Subclasses are subsumed by their superclasses. For
example, in object-oriented design, association
dependency and generalization are all a relationship
between object classes.

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 819 Issue 6, Volume 7, June 2008

5 Software Engineering Ontology
Platform Implementation
The following are based on [37] and in some
way, our model is similar with Ontology Classes.
The class hierarchy from [37] is shown in Fig. 4.
The class owl:Thing is the class that represents the
set containing all individuals. Thereby, all classes
are subclasses of owl:Thing. OWL classes are
assumed to overlap. Therefore, one cannot assume
that an individual is only a member of a particular
class; it can be a member of more than one class. In
order to separate a group of classes, we must make
them disjoint from each other.

Fig. 4: Class hierarchy shown concept of object
class diagram in the object-oriented design

This assures that an individual who has been
asserted to be a member of one of the classes in the
group cannot be a member of any other class in that
group. For example, Association, Dependency, and
Generalization have been disjointed from one
another. This means that there is no chance for an
individual to be an association and dependency and
generalization relationship. Likewise, Attribute,
ObjectClass, Operation, and Relationship have
been disjointed also, because individual such as an
Attribute cannot be individual of either
ObjectClass, Operation, or Relationship in the
group of ObjectClassDiagramEntity.

Ontology has three types of properties: Object
properties, Datatype properties, and Annotation
properties. Object properties link one class or
individual to another; Datatype properties link a
class or an individual to an XML schema datatype
value or an rdf literal and Annotation properties are
used to add information to classes, individuals and
object and datatype properties.
The meaning of properties is enriched through the
use of property characteristic. The various
characteristics show that properties are functional,
inverse functional, transitive and symmetric.

So, if a property is functional, there will be at most
one individual that is linked to the individual
through the property. In the case in which the
property links individual x to individual y then its
inverse property will link individual y to individual
x. If property x is transitive and the property x
relates individual a to individual b and also
individual b to individual c, then it can be inferred
that individual a is related to individual c via
property x. The last characteristic shows that, if
property x is symmetric and the property links
individual a to individual b then individual b is also
linked to individual a via property x.
In [37] was illustrated how software engineering
ontologies facilitate communication and allow
knowledge sharing. Figure 5 shows software
engineering knowledge base allowing knowledge
sharing.

owl: Thing
♦ Object ClassDiagramEntity

Attribute
 ObjectCkass
 Operation
 ♦ Relationship

♦ Association
 Aggregation
 Composition
 Dependency

Generalization

PROPERTIES
 hasAdvantage (multiple String)
 hasDisavantage (multiple String)
 hasTool (multiple Tool)
 hasAbbreviation (single String)

hasDefinition (single String)

Fig. 5: Functional and non-functional properties

Any concept related to software engineering
can be fetched showing the concept’s details e.g. its
definition, abbreviation, principles, advantage,
disadvantage, output, template, tool, involved
concept, etc. The user will see all details of the
relevant concepts which are arranged in hierarchy.
This can be done by utilizing generic ontology and
software agent to go through the ontology.
Furthermore, from generic ontology software agent
will be able to extract information e.g. from
templates stored in the ontology as instances and
create a handle book for the project.

By utilizing application-specific ontologies and
individuals/instances of a particular project data, it
can convert the plain text into a UML-like diagram
that helps communication among the team
members within the same project and provides
consistent understanding. Software agents can be
utilized to extract information from ontology
described in OWL. To do so, the software agent
consults, for example, the object class ontology.
The ontology shows how class is formed in the
class diagram; and each class contains a name,
attributes, and operations; and relationships
between the classes. Therefore, the software agent
dynamically acts to retrieve involved class names,
involved class attributes, involved class operations,
and involved relationships to draw a class diagram.

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 820 Issue 6, Volume 7, June 2008

6 Our model
6.1 Preliminaries
Reasoning in ontologies and knowledge bases is
one of the reasons why a specification needs to be
formal one. By reasoning we mean deriving facts
that are not expressed in ontology or in knowledge
base explicitly. All of the formalisms were created
with the outlook of automatic processing, but due
their properties such as decidability or
computational complexity or even due to the level
of formality it is not always possible.
Description logics are created with the focus on
tractable reasoning. A few examples of tasks
required from reasoner are as follows:
- satisfiability of a concept - determine whether a

description of the concept is not contradictory;
- subsumption of concepts - determine whether

concept C subsumes concept D, i.e., whether
description of C is more general than the
description of D;

- consistency;
- check an individual - check whether the

individual is an instance of a concept;
- retrieval of individuals - find all individuals that

are instances of a concept;
- realization of an individual.

6.2 Operations on Ontologies
It is possible that one application uses multiple
ontologies [11], [32], [24], [25] especially when
using modular design of ontologies or when we
need to integrate with systems that use other
ontologies. In this case, some operations on
ontologies may be needed in order to work with all
of them. The terminology in this areas is still not
stable and different authors may use these terms in
a bit shifted meaning, and so the terms may
overlap, however, all of these operations are
important for maintenance and integration of
ontologies:
- merge of ontologies means creation of a new

ontology by linking up the existing ones;
- mapping from one ontology to another one is

expressing of the way how to translate
statements from ontology to the other one;

- alignment is a process of mapping between
ontologies in both directions whereas it is
possible to modify original ontologies so that
suitable translation exists (i.e., without losing
information during mapping);

- refinement is mapping from ontology A to
another ontology B so that every concept of
ontology A has equivalent in ontology B,

however primitive concepts from ontology A
may correspond to non-primitive (defined)
concepts of ontology

Refinement defines partial ordering of ontologies;
- unification is aligning all of the concepts and

relations in ontologies so that inference in one
ontology can be mapped to inference in other
ontology and vice versa;

- integration is a process of looking for the same
parts of two different ontologies A and B while
developing new ontology C - Integration is a
process of looking for the same parts of two
different ontologies A and B while developing
new ontology C;

- inheritance means that ontology A inherits
everything from ontology B. It inherits all
concepts, relations and restrictions or axioms
and there is no inconsistency introduced by
additional knowledge contained in ontology A.

Relations between ontologies [6], [30] are:
extension, identical, equivalent, strongly-
translatable, weakly-translatable and approx-
translatable.
The purpose of authoring ontologies is also reusing
of knowledge. Once ontology is created for a
domain, it should be (at least to some degree)
reusable for other applications in the same domain.
To simplify both ontology development and reuse,
modular design is beneficial. The modular design
uses inheritance of ontologies: upper ontologies
describe general knowledge and application
ontologies describe knowledge for a particular
application, as illustrated in the figure below.
Modularization of ontologies depending on the
scope and partial ordering defined by inheritance
are illustrated [24] in the Figure 6.

Upper Ontology

Domain Ontology Task Ontology

Application Ontology

Fig. 6: Modularization of ontologies

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 821 Issue 6, Volume 7, June 2008

6.3 Communication between Agents
The ontology provides the vocabulary from which
to construct queries [11], and the semantics so that
two agents can agree on what makes sense in a
given vocabulary. In this case, the agents can agree
about which quantity expressions and term
expressions denote quantities and units, and when
they are given as arguments to the quantity. These
agreements establish a basis for agent discourse.
Separating the core ontology about quantities and
units from the specific conventions for systems of
units minimizes the ontological commitment of
participating agents. While they all need to commit
to the core theory, they can commit to differing
standards of measure. Since commitment to an
ontology does not require completeness of
inference, agents can understand the conditions
under which a value exists (e.g., a magnitude in
some unknown unit) without knowing how to
compute the value. As it was previously expressed:
the ontology is important for the purpose of
enabling knowledge sharing and reuse [25] and, an
ontology is in this context a specification used for
making ontological commitments.
Practically, an ontological commitment is an
agreement to use a vocabulary (i.e., ask queries and
make assertions) in a way that is consistent (but not
complete) with respect to the theory specified by an
ontology. Agents then commit to ontologies and
ontologies are designed so that the knowledge can
be shared among these agents.

The representation of a body of knowledge
(knowledge base) is based on the specification of
conceptualization. When the knowledge of a
domain is represented in a declarative formalism,
the set of objects that can be represented (the
universe of discourse). This set of objects and the
describable relationships among them are reflected
in the representational vocabulary with which a
knowledge-based program represents knowledge.
Thus, in the context of AI, we can describe the
ontology of a program by defining a set of
representational terms. In such an ontology,
definitions associate the names of entities in the
universe of discourse (e.g. classes, relations,
functions, or other objects) with descriptions of
what the names mean, and formal axioms that
constrain the interpretation and well-formed use of
these terms. Formally it can be said that an
ontology is a statement of a logical theory.
Knowledge sharing and exchange is particularly
important in multi-agent systems (MAS). An agent
is usually described as a persistent entity with some
degree of independence or autonomy that carries
out some set of operations depending on what he

perceives. An agent usually contains some level of
intelligence, so it has to have some knowledge
about its goals and desires. The whole multi-agent
system is created to be capable of reaching goals
that are difficult to achieve by an individual agent
or a monolithic system. In multi- agent systems, an
agent usually cooperates with other agents, so it
should have some social and communicative
abilities.

In order to communicate, agents must be able
to:
- deliver and receive messages - at this physical

level,
- parse the messages - at the syntactic level, and
- understand the messages - at the semantic level.

For multi-agent systems the first physical level

as well as the second syntactic level is well
standardized by the Foundation for Intelligent
Physical Agents (FIPA), for example by agent
management specification and agent
communication language specification. As for the
third level, semantics, standard exists that describe
the content languages and that describe usage of
ontologies.

Software

Agent

Agent
Management

System

Directory
Facilitator

Message Transport System

Agent Platform

Agent Platform

Message Transport System

Fig. 7: Communication between agents

The Figure 7 illustrates by arrows the possible
communication between agents.

6.4 Ontologies for Agents
Each agent has to know something about a domain
it is working in and also has to communicate with
other agents. An agent is able to communicate only
about facts that can be expressed in some ontology.

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 822 Issue 6, Volume 7, June 2008

This ontology must be agreed and understood
among the agent community (or at least among its
part) in order to enable each agent to understand
messages from other agents.
Unfortunately, the ontology used for
communication between agents is not always
expressed explicitly - the constructs used to
exchange information may be hardcoded in agents,
and no explicit form describing the ontology may
be available. The assumptions on the meaning of
the vocabulary are implicitly embedded in agents,
i.e., in software programs representing agents. In
this case it is harder to integrate such agents with
other agents that were not programmed to
communicate together.
The need to obtain form some ontology another one
that can be inferred by appropriate tools is one of
the goals in our model. As was seen the operations
on the ontologies [24] does not give a such and
direct capability.
Not all of operations can be made for all
ontologies. In general, these are very difficult tasks
that are in general not solvable automatically in
some cases because of undecidability when using
very expressive logical languages or because of
insufficient specification of an ontology that is not
enough to find similarities with another ontology.
In [33] are given the rules used to group related
concepts together for reranking the list of concepts
produced by the weighting scheme in such a way
that related concepts appear close to each other.
This allows concepts that are related to a concept
that gets a high score to benefit from this relation
and move up the ranking. In the Figure 8 some
suggestions can be seen.

Fig.8: Related concepts

In the OWL version of the ontology [30]

special properties hasPart and partOf have been
designed as recommended in the W3C Working
Draft.

It is needed a framework that provides a
complete support to ontology design,

implementation, and management. These three
functionalities are collectively referred as the
ontology service.

The ontology service [30] is based on the
following framework components:
- a set of classes representing the object model

defining all the elements required to represent
an ontology (classes, concepts, instances,
attributes, constraints, validation, etc);

- a set of tools that can be used to automatically
generate the specific classes for a given
ontology by starting from its visual or textual
representation;

- an Ontology Agent (OA) which maintains the
knowledge about all the ontologies registered
in the hosting agent platform and about the
agent which are able to communicate by using
the concepts defined into a given ontology;

- FIPA SL0 [7] ACL message support.

6.5 Ontology Object Model
The design and the implementation of the object
model defining the ontology reflects the
specifications outlined in the corresponding FIPA
standards [7] and has been inspired by the type
system designed in JADE [1] to support ontologies.

The object model defined within the
framework defines a meta-ontology which contains
all the concepts and the elements which are
required to compose user defined ontologies. The
meta-ontology defines the following entities:
predicate, term, concept, query, action, variable,
primitive, and aggregate.
Figure 9 describes how these elements are
connected each other.

semantic
paradox

semantic

meaning
relation

semantic
network

hyponymy
semantic relation

antonymy
semantic
relation

synonymy
semantic relation

child child child

Term

Concept Query

Variable Primitive

Aggregate

Action

Predicate

Fig. 9: Ontology elements hierarchy

The elements depicted in Figure 9 define the
domain in which every communication based on a
given ontology takes place. User defined ontologies
will provide specific instances of these elements

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 823 Issue 6, Volume 7, June 2008

and MAS engineers will have to specialize the
abstract classes representing the entities defined by
the meta-ontology: the new classes will represent
the concepts, the queries, the actions, the terms, etc.
which are pertaining to the specific problem
domain.

6.6 The proposed multi-agent system
In the domain, we had the papers [4], [16] that treat
the competence representation and description
using ontologies. As we stated above, based on the
remarks from [24] and in accordance with our
intentions, the following is proposed.

Problem statement: having ontology construct a
tool that generates another ontology based on
appropriate inference and reasoning.

As a simple example in education: having many
course descriptions define the skills and the
capabilities and based on these, derive the
competences that can be obtained attending these
courses. In one of the previous sections were
presented the operations on the ontologies. As it
can be seen we propose another operation deriving
ontology from other one. For that we have at least
two possible solutions:
- conceive an expert system with appropriate

goals;
- conceive intelligent agents that are able to do it

in an appropriate context.

The proposed model for our multi-agent system

has as main goal to derive ontology from another
one in the following way. It will extract from
course descriptions the possible skills and
capabilities. From the skills and capabilities, the
competences that are acquired which are expressed
in terms of a new ontology.

The system has three agents: Extractor,
Reasoner and Competence Management Agents.

As is shown in the Figure 10, the ontology that
describes the courses and the generic rules are used
by the Extractor Agent. It extracts the skills and
capabilities that are obtained after attending these
courses

After it, the Reasoner Agent defines the possible
competences from the skills. These competences
are refined based on the comparisons with the
similar competences that exist in the Competence
repository and the resulted ontology (of the new
competences) is obtained.

Our model has some similitude and some
functionality like the model presented in [19].

As basis for information and knowledge
representation, the XML will be used. The main

motivation is due to the fat that on the Internet the
information must be extracted processed and
presented in some specific form.

Based on it the agents will be able use the
information for communicating each other and with
the users.

Extracting basic
skills

Extractor Agent

Ontology
terms

Generic
Extraction
rules Basic

skills

Reasoning about
basic skills

Reasonner Agent

Reasoning
skills

Reasoning
rules Competence

Management Agent

Matching skills
with
competences

Resulted
competences

Competences
repository

New
competence
ontology
generated

Refined the
competences

Fig. 10: Multi-Agent system for extracting the
competences

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 824 Issue 6, Volume 7, June 2008

7 Future Works
The new proposed operation i.e. the deriving a new
ontology from another one will be refined in the
new version of our work. The formal definition of
derivation operation will be done.
In the next stages we will conceive in detail the
capabilities of our agents.
One of the first tasks wills that to define the rules
used by the Extractor Agent for:
- finding the sites that have the required

information:
- extracting the information, processing and

putting it in an XML file for future use.

Other task concern the rules used by the Reasoner
Agent that will define the skills and form these
appropriate competences.
The other future tasks will be defined after the
above work will be conceived and also the concepts
and tools used or new tool must be designed, in
order to fulfill the model objectives and goals.

References:
[1] G. Caire, Jade Tutorial – Application-defined

Content Languages and Ontologies, TILab
S.p.A, http:/jade.cselt.it/, 2002.

[2] S. Cranefield, M. Purvis, A UML profile and
mapping for the generation of ontology-
specific content languages, Knowledge
Engineering Review, 17(1), pp. 21-39, 2002.

[3] S. Cranefield, J. Pan, M. Purvis, A UML
ontology and derived content language for a
travel booking scenario, OAS'03 Ontologies in
Agent Systems, 2nd International Joint
Conference on Autonomous Agents and
Multi-Agent Systems, Melbourne, Australia,
2003.

[4] A. Cicortas, V. Iordan, A Multi-Agent
Framework for Execution of Complex
Applications, Acta Polytechnica Hungarica,
Journal of Applied Sciences, Vol. 3 Issue 3,
pp. 97-119, ISSN 1785-8860, 2006.

[5] Alexandru Cicortas, Victoria Iordan,
Antoanela Naaji, Ontologies for Competence
Description in Multi-agent Systems,
Proceedings of the 10th Wseas International
Conference Mathematical Methods and
Computational Techniques in Electrical
Engineering, Sofia, 2008, ISSN: 1790-5-117,
ISBN:978-9606766-602, p.100-107, ISI
Thomson proceeding

[6] A.S.Drigas, L.G.Koukianakis, An Open
Distance Learning e-system to support SMEs
e-enterprising, 5th WSEAS International
Conference on Artificial Intelligence,

Knowledge Engineering, Data Bases (AIKED
2006), Madrid, Spain, February 15-17, 2006.

[7] A.S.Drigas, A. Tagoulis, P.Kyragianni, P.
Nikolopoulos, D. Kalomoirakis, S. Peradonis,
D. Kouremenos, CH. Emmanouilidis, J.
Vrettaros, An e-learning platform for
multiform and interactive education of
scholars in Greek Paleography, 5th
International WSEAS Conference on Distance
Learning and Web Engineering, Corfu,
Greece, August 23-25, 2005.

[8] FIPA Ontology Service Specification,
http://www.fipa.org/specs/fipa00086/.

[9] FIPA SL Content Language Specification,
http://www.fipa.org/specs/fipa00008/SC00008
I.html.

[10] D. Gasevic, V. Devedzic, D. Djuric, MDA
Standards for Ontology Development,
International Conference on Web Engineering
(ICWE2004), Munich, Germany, 2004.

[11] M.R. Genesereth, R.E. Fikes, et al.,
Knowledge Interchange Format Version 3
Reference Manual, Logic-92-1, Stanford
University Logic Group, 1992.

[12] T.R. Gruber, A translation approach to
portable ontologies, Knowledge Acquisition,
5(2):199-220, 1993.

[13] T.R. Gruber, Toward principles for the design
of ontologies used for knowledge sharing,
Workshop on Formal Ontology, International
Journal of Human-Computer Studies, Vol. 43,
Issues 4-5, November 1995, pp. 907-928.

[14] W. Guo, J. Chen, A dynamic model for Web-
based learning system design. WSEAS
Transactions on Information Science and
Applications, Vol. 1, 2004

[15] M. Horridge, A Practical Guide to Building
OWL Ontologies with the Protege-OWL Plug-
in, 1.0, Editor. 2004, University of
Manchester.

[16] I. Horrocks et al., OIL in a Nutshell,
Proc.ECAI ’00 Workshop on Application of
Ontologies and PSMs, Berlin, Germany, 2000.

[17] I. Horrocks, F. van Harmelen, Reference
Description of the DAML+OIL Ontology
Markup Language, draft report, 2001.

[18] Victoria Iordan, Alexandru Cicortas, Multi-
Agent Systems Used for Managing
Competences, The Proceedings of the 8th
International Conference on Informatics in
Economy, ASE Publishing House, 2007,
Informatics in Knowledge Society, ISBN 978-
973-594-921-1, Bucharest, pp. 633-638, 2007

[19] Victoria Iordan, Alexandru Cicortas,
Ontologies used for Competence Management,

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 825 Issue 6, Volume 7, June 2008

Acta Polytechnica, Journal of Applied
Sciences at Budapest Tech, Hungary, ISSN
1785-8860, Volume 5, Issue No.2, 2008,
pp.133-144.

[20] R. Karp, V. Chaudhri, J. Thomere, XOL: An
XML-Based Ontology Exchange Language,
Aug. 1999.

[21] R. Kent, Conceptual Knowledge Markup
Language, 1998.

[22] M. Laclavik, Z. Zoltan Balogh, N.T. Giang, E.
Gatial, L. Hluchy, L., Methods for Presenting
Ontological Knowledge to the Users,
L.Popelinsky, M.Kratky (Eds.): Znalosti 2005,
Proceedings, VSB-Technicka universita
Ostrava, Fakulta elektrotechniky a
informatiky, 2005, pp.61-64. ISBN 80-248-
0755-6, Vysoke Tatry, Slovakia, February
2005.

[23] S. Luke, J. Heflin, SHOE 1.01 Proposed
specifications, SHOE Project, Feb. 2000.

[24] G. Librelotto, J.C. Ramalho, P.R. Henriques,
XML Topic Map Builder: Specification and
Generation. In: XATA: XML, Aplicaes e
Tecnologias Associadas, 2003.

[25] D.L. McGuinness, F.V. Harmelen, OWL Web
Ontology Language Overview. 2004.

[26] M. Obitko, V. Snasel, Ontology Repository in
Multi-Agent System, Procs of Artificial
Intelligence and Applications (AIA 2004),
Editor: Hamza, M.H., Innsbruck, Austria,
2004.

[27] http://www.obitko.com/tutorials/ontologies
-semantic-web/operations-on-ontologies.html

[28] M. Obitko, V. Mafik, Integration of Multi-
Agent Systems: Architectural Considerations,
Emerging Technologies and Factory
Automation, 2006. ETFA '06. IEEE
Conference on 20-22 Sept. 2006 pp. 1145 -
1148

[29] Ontology Summit 2007 - Ontology,
Taxonomy, Folksonomy: Understanding the
Distinctions, http://ontolog.cim3.net/cgi-
bin/wiki.pl?OntologySummit2007

[30] Ontolog UBL Ontology Project Status Report,
ONTOLOG - collaborative work environment,
Open, International, Virtual Community of
Practice on Ontology, Ontological
Engineering and Semantic Technology,
http://ontolog.cim3.net/

[31] Resource Description Framework (RDF):
Concepts and Abstract Syntax, Graham Klyne
and Jeremy J. Carroll, Editors, W3C
Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-

concepts -20040210/. Latest version available
at http://www.w3.org/TR/rdf-concepts/.

[32] RDF/XML Syntax Specification (Revised),
Dave Beckett, Editor, W3C Recommendation,
10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-syntax-
grammar-20040210/. Latest version available
at http://www.w3.org/TR/rdf-syntax-
grammar/.

[33] A. Rector, C. Welty, Simple part-whole
relations in OWL Ontologies, 2005,
URL:http://www.w3.org/2001/sw/BestPractice
s/OEP/SimplePartWhole/index.html.

[34] RDF Vocabulary Description Language
1.0:RDF Schema, Dan Brickley and R. V.
Guha, Editors, W3C Recommendation, 10
February 2004,
http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/ . Latest version available at
http://www.w3.org/TR/rdf-schema/.

[35] G. Stumme, R. Studer, Y. Sure, Towards an
Order-Theoretical Foundation for
Maintaining and Merging Ontologies, F.
Bodendorf and M. Grauer, editor(s),
Verbundtagung Wirtschaftsinformatik 2000,
pp. 136-149, Aachen,2000.

[36] W. van Hage, M. de Rijke, M. Marx,
Information Retrieval Support for Ontology
Construction and Use, S.A. McIlraith et al,
Proceedings 3rd International Semantic Web
Conference (ISWC 2004), LNCS 3298, pages
518-533, Springer, 2004.

[37] C. Vecchiola, A. Grosso, A. Boccalatte,
Integrating Ontology Support within Agent
Service, 7thWOA 2006, From Objects to
Agents - Grid, P2P, and Self-Systems, Catania
(Sicily), Italy, September 2006.

[38] XML Extensible Markup Language 1.0
(Second Edition), Tim Bray, Jean Paoli, C. M.
Sperberg-McQueen, Eve Maler, Editors, W3C
Recommendation, 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-
20001006. Latest version available at
http://www.w3.org/TR/REC-xml .

[39] XML Schema Part 2: Datatypes, Paul V. Biron
and Ashok Malhotra, Editors, W3C
Recommendation, 2 May 2001.
http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/.

[40] P. Wongthongtham, E. Chang, T. Dillon, I.
Sommerville, Software engineering ontologies
and their implementation, in Kobol, P. (ed),
IASTED International Conference on
Software Engineering (SE), pp. 208-213,
Innsbruck, Austria, Feb 15 2005.

WSEAS TRANSACTIONS on COMPUTERS Victoria Iordan, Antoanela Naaji
 and Alexandru Cicortas

ISSN: 1109-2750 826 Issue 6, Volume 7, June 2008

http://www.w3.org/TR/2004/REC-rdf-concepts
http://www.w3.org/TR/2004/REC-rdf-concepts

