
Lightweight Log Management Algorithm for Removing Logged
Messages of Sender Processes With Little Overhead

JINHO AHN
Department of Computer Science

Kyonggi University
San 94-6 Yiuidong, Yeongtonggu, Suwonsi Gyeonggido 443-760

Republic of Korea
jhahn@kyonggi.ac.kr

Abstract: Sender-based message logging allows each message to be logged in the volatile storage of its corre-
sponding sender. This behavior avoids logging messages on the stable storage synchronously and results in lower
failure-free overhead than receiver-based message logging. However, in the first approach, each process should
keep in its limited volatile storage the log information of its sent messages for recovering their receivers. In this
paper, we propose a 2-step algorithm to efficiently remove logged messages from the volatile storage while en-
suring the consistent recovery of the system in case of process failures. As the first step, the algorithm eliminates
useless log information in the volatile storage with no extra message and forced checkpoint. But, even if the step
has been performed, the more empty buffer space for logging messages in future may be required. In this case, the
second step forces the useful log information to become useless by maintaining a vector to record the size of the
information for every other process. This behavior incurs fewer additional messages and forced checkpoints than
existing algorithms. Experimental results verify that our algorithm significantly performs better than the traditional
one with respect to the garbage collection overhead.

KeyWords: Distributed systems, Fault-tolerance, Rollback recovery, Sender-based message logging, Checkpoint-
ing, Garbage collection

1 Introduction
As long-running scientific and business applications
[4, 6, 8, 9, 10, 17, 23] are executed on large-scale
distributed systems composed of hundreds or thou-
sands of independent computers, process failure may
become the most critical issue [2, 3, 21]. To ad-
dress the issue, the systems use log-based rollback
recovery as a cost-effective and transparent fault-
tolerance technique, in which each process periodi-
cally saves it local state by or without synchronizing
with other processes, and logs each received message
[1, 11, 14, 15, 18]. If a process crashes, the technique
creates a new process and allows the process to re-
store its consistent state and replay its previously re-
ceived messages beyond the state [13]. Message log-
ging protocols are classified into two approaches, i.e.,
sender-based and receiver-based message logging, de-
pending on which process each message is logged by
[13]. First, receiver-based message logging approach
[20, 26] logs the recovery information of every re-
ceived message to the stable storage before the mes-
sage is delivered to the receiving process. Thus, the
approach simplifies the recovery procedure of failed
processes. However, its main drawback is the high

failure-free overhead caused by synchronous logging.

Sender-based message logging approach [5, 12,
25] enables each message to be logged in the volatile
memory of its corresponding sender for avoiding log-
ging messages to the stable storage synchronously.
Therefore, it reduces the failure-free overhead com-
pared with the first approach. But, the second ap-
proach forces each process to maintain in its limited
volatile storage the log information of its sent mes-
sages required for recovering receivers of the mes-
sages when they crash. Therefore, the sender-based
message logging approach needs an efficient garbage
collection algorithm to have the volatile memory of
each process for message logging become full as late
as possible because, otherwise, the technique forces
the message log in the memory to be frequently
flushed to stable storage or requires a large number
of additional messages and forced checkpoints for re-
moving the log.

Existing sender-based message logging protocols
use one between two message log management al-
gorithms to ensure system consistency despite future
failures according to each cost like in step 2 of fig-
ure 1. The first algorithm just flushes the message log

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 804 Issue 6, Volume 7, June 2008

Start

Step 1

Check the volatile memory for message logging

Is it full?

End

Yes

No

Step 3

Logthe sent message onto the memory

Step 2

-Flush the message
log to stable storage

Depending on each cost

-Force the log to be useless
for future failures

-Remove the log

Algorithm 1 Algorithm 2

Start

Step 1

Check the volatile memory for message logging

Step 1

Check the volatile memory for message logging

Is it full?

End

Yes

No

Step 3

Logthe sent message onto the memory

Step 3

Logthe sent message onto the memory

Step 2

-Flush the message
log to stable storage

Depending on each cost

-Force the log to be useless
for future failures

-Remove the log

Algorithm 1 Algorithm 2

Step 2

-Flush the message
log to stable storage

Depending on each cost

-Force the log to be useless
for future failures

-Remove the log

Algorithm 1 Algorithm 2

Figure 1: Log management algorithms of previous
sender-based message logging protocols

to the stable storage. It is very simple, but may re-
sult in a large number of stable storage accesses dur-
ing failure-free operation and recovery. The second
algorithm forces messages in the log to be useless
for future failures and then removes them. In other
words, the algorithm checks whether receivers of the
messages has indeed received the corresponding mes-
sages and then taken no checkpoint since. If so, it
forces the receivers to take their checkpoints. Thus,
this behavior may lead to high communication and
checkpointing overheads as inter-process communica-
tion rate increases. In this paper, we propose a 2-step
algorithm to efficiently remove logged messages from
the volatile storage while ensuring the consistent re-
covery of the system in case of process failures. As
the first step, the algorithm eliminates useless log in-
formation in the volatile storage with no extra mes-
sage and forced checkpoint. But, even if the step has
been performed, the more empty buffer space for log-
ging messages in future may be required. In this case,
the second step forces the useful log information to
become useless by maintaining a vector to record the
size of the information for every other process. This
algorithm can choose a minimum number of processes
participating in the garbage collection based on the
vector. Thus, this behavior incurs fewer additional
messages and forced checkpoints than the existing al-
gorithms.

The remainder of the paper is organized as fol-
lows. In sections 2 and 3, we describe the system
model and explain our log management algorithm.
Sections 4 and 5 prove the correctness of the proposed
algorithm and verify its effectiveness by showing re-
sults of the experiments respectively. Finally, section
6 concludes this paper.

2 System Model

A distributed computation consists of a set P of
n(n > 0) sequential processes executed on hosts in
the system and there is a stable storage that every
process can always access that persists beyond pro-
cessor failures [13]. Processes have no global mem-
ory and global clock. The system is asynchronous:
each process is executed at its own speed and com-
municates with each other only through messages at
finite but arbitrary transmission delays. We assume
that the communication network is immune to parti-
tioning and hosts fail according to the fail stop model
[22]. Events of processes occurring in a failure-free
execution are ordered using Lamport’s happened be-
fore relation [16]. The execution of each process
is piecewise deterministic [24]: at any point during
the execution, a state interval of the process is deter-
mined by a non-deterministic event, which is deliv-
ering a received message to the appropriate applica-
tion. The k-th state interval of process p, denoted by
sip

k(k > 0), is started by the delivery event of the k-
th message m of p, denoted by devp

k(m). Therefore,
given p’s initial state, sip

0, and the non-deterministic
events, [devp

1, devp
2, · · ·, devp

i], its corresponding
state sp

i is uniquely determined. Let p’s state, sp
i =

[sip0, sip
1, · · ·, sipi], represent the sequence of all

state intervals up to sip
i. sp

i and sq
j(p 6= q) are

mutually consistent if all messages from q that p
has delivered to the application in sp

i were sent to p
by q in sq

j , and vice versa. A set of states, which con-
sists of only one from each process in the system, is
a globally consistent state if any pair of the states
is mutually consistent [7].

3 The Proposed 2-step Algorithm

In this section, we describe an efficient algorithm con-
sisting of two steps taken depending on the available
empty buffer space for logging messages in future.
The proposed algorithm is executed like in figure 2.
As the first step, while the free buffer space of each
process is larger than its lower bound LB, the pro-
cess locally removes useless log information from its
volatile storage by using only a vector piggybacked on
each received message. In this case, the algorithm re-
sults in no additional message and forced checkpoint.
In case that the free buffer space is smaller than LB
in some checkpointing and communication patterns,
the second step forces a part of useful log information
in the buffer to be useless and removed until the free
space becomes the upper bound UB. In this case, the
algorithm chooses a minimum number of processes
to participate in the garbage collection based on an

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 805 Issue 6, Volume 7, June 2008

array recording the current size of the log informa-
tion in its buffer for every other process. Therefore,
regardless of specific checkpointing and communica-
tion patterns, the 2-step algorithm enables the cost of
garbage collection performed during failure-free op-
eration to be significantly reduced compared with the
existing algorithms. Next subsections will explain the
two steps of the algorithm in detail respectively.

Start

executethe second step
until Free_Buffer_Spacep>= UBp

executethe first step

Free_Buffer_Spacep

< LBp?

Exit

Yes

No

Start

executethe second step
until Free_Buffer_Spacep>= UBp

executethe second step
until Free_Buffer_Spacep>= UBp

executethe first stepexecutethe first step

Free_Buffer_Spacep

< LBp?

Exit

Yes

No

Figure 2: The 2-step algorithm for process p

3.1 The First Step

The sender-based message logging approach has the
feature that each failed process has to be rolled back to
the latest checkpoint and replay the received messages
beyond the checkpoint by obtaining the recovery in-
formation from their sender processes. From this fea-
ture, we can see that all the messages received before
process p takes its latest checkpoint, are useless for
recovering p to a consistent state in case of p’s failure.
For example, there are three processes p1, p2 and p3
in figure 3. In here, process p1 sends two messages
msg1 and msg3 to p2 after having saved the log in-
formation of the messages in its volatile storage. Also,
process p3 sends message msg2 to p2 in the same
way. In this case, we suppose that process p2 takes
its i-th checkpoint after it received the three messages
like in this figure. Afterwards, even if p2 fails, it rolls
back at most up to the i-th checkpoint. Thus, the log
information of the three messages msg1, msg2 and
msg3 becomes useless in case of future failures.

Therefore, the first step of the proposed algorithm
is designed to enable a process p to locally remove
the useless logged messages from the volatile stor-
age without requiring any extra message and forced
checkpoint. For this purpose, each process p must
have the following data structures.

• Sendlgp: a set saving lge(rid, ssn, rsn, data)
of each message sent by p. In here, lge is the log

p2

p3

time
p1

msg1

msg2

FailChk2
i

msg3

Figure 3: What is useless log information in sender
based message logging?

information of a message and the four fields are
the identifier of the receiver, the send sequence
number, the receive sequence number and data
of the message respectively.

• Rsnp: the receive sequence number of the latest
message delivered to p.

• Ssnp: the send sequence number of the latest
message sent by p.

• SsnV ectorp: a vector in which SsnV ectorp[q]
records the send sequence number of the latest
message received by p that q sent.

• RsnV ectorp: a vector in which RsnV ectorp[k]
is the receive sequence number of the last mes-
sage delivered to k before k has saved the last
checkpointed state of k on the stable storage.

• EnableSp: a set of rsns that aren’t yet recorded
at the senders of their messages. It is used for
indicating whether p can send messages to other
processes.

Informally, our algorithm is performed as follows.
Taking a local checkpoint, p updates RsnV ectorp[p]
to the receive sequence number of the latest mes-
sage delivered to p. If p sends a message m to an-
other process q, the vector is piggybacked on the mes-
sage. When receiving the message with RsnV ectorp,
q takes the component-wise maximum of two vectors
RsnV ectorp and RsnV ectorq. Afterwards, q can re-
move from its message log Sendlgq all lge(u)s such
that for all k ∈ a set of all processes in the system,
lge(u).rid is k and lge(u).rsn is less than or equal to
RsnV ectorp[k].

To explain the algorithm more easily, figure 4
shows an example of a distributed computation con-
sisting of three processes p1, p2 and p3 communi-

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 806 Issue 6, Volume 7, June 2008

cating with each other. In this example, the pro-
cesses take their local checkpoints Chkw

1 , Chkx
2 and

Chky
3 . In this case, they update RsnV ector1[1],

RsnV ector2[2] and RsnV ector3[3] to each rsn of
the last message received before taking its respec-
tive checkpoint. In here, we assume that values of
Rsn1, Rsn2 and Rsn3 are a, b and c. Afterwards,
p2 receives four messages, msg1 and msg5 from
p1 and msg2 and msg4 from p3. At this point, p1
keeps lge(msg1) and lge(msg5) in Sendlg1, and
p3, lge(msg2) and lge(msg4) in Sendlg3. On tak-
ing the next local checkpoint Chkx+1

2 , p2 updates
RsnV ector2[2] to rsn of msg5 as msg5 is the last
message received before the checkpoint. In this case,
the value of Rsn2 becomes (b+4). Then, it sends a
message msg7 with RsnV ector2 to p1. When re-
ceiving the message, p1 updates RsnV ector1[2] to
(b+4). Thus, it can remove useless log information,
lge(msg1) and lge(msg5), from Sendlg1 because
rsn of message msg5 is equal to RsnV ector1[2].
Hereafter, it takes the next local checkpoint Chkw+1

1
and so sets the value of RsnV ector1[1] to rsn of
the last message, msg7, received before taking the
checkpoint. In this case, RsnV ector1[1] becomes
(a+3). After that, it sends a message msg8 with
RsnV ector1 to p3. On receiving the message, p3
updates RsnV ector3 to (a+3, b+4, c) by using the
vector of p1 piggybacked on the message. It can
remove lge(msg2), lge(msg4) and lge(msg6) from
Sendlg3 because rsns of messages msg4 and msg6
are less than RsnV ector3[2] and RsnV ector3[1] re-
spectively. Then, p3 sends p2 a message msg9
with RsnV ector3. When p2 receives the message,
RsnV ector2 becomes (a+3, b+4, c) after updating it.
In this case, p2 can remove useless lge(msg3) and
lge(msg7) from Sendlg2. From this example, we can
see that the algorithm allows each process to locally
remove useless log information from its volatile stor-
age with no extra messages and forced checkpoints.

However, in some checkpointing and commu-
nication patterns like figure 5, the first step cannot
allow each process to autonomously decide whether
log information of each sent message is useless for
recovery of the receiver of the message by using
some piggybacking information. In the traditional
sender-based message logging protocols, to garbage
collect every lge(m) in Sendlgp, p requests that the
receiver of m (m.rid) takes a checkpoint if it has
indeed received m and taken no checkpoint since.
Also, processes occasionally exchange the state
interval indexes of their most recent checkpoints for
garbage collecting the log information in their volatile
storages. However, the previous algorithm may result
in a large number of additional messages and forced
checkpoints needed by the forced garbage collection.

p2

p3

p1

msg3msg1

msg2 msg4

msg5
msg7 msg8

RsnVector1 = (a,b,c),
Sendlg1(lge(msg1), lge(msg5))

RsnVector3 = (i,j,c),
Sendlg3(lge(msg2), lge(msg4),lge(msg6))

msg6
msg9

RsnVector1 = (a,b+4,c), Sendlg1()RsnVector2 = (a,b+4,c),
Sendlg2(lge(msg3), lge(msg7))

RsnVector3 = (a+3,b+4,c), Sendlg3()

RsnVector2 = (a+3,b+4,c),
Sendlg2()

Rsn1 = a

Rsn2 = b

Rsn3= c

Rsn2 = b+4

Rsn1= a+3

p2

p3

p1

msg3msg1

msg2 msg4

msg5
msg7 msg8

RsnVector1 = (a,b,c),
Sendlg1(lge(msg1), lge(msg5))

RsnVector3 = (i,j,c),
Sendlg3(lge(msg2), lge(msg4),lge(msg6))

msg6
msg9

RsnVector1 = (a,b+4,c), Sendlg1()RsnVector2 = (a,b+4,c),
Sendlg2(lge(msg3), lge(msg7))

RsnVector3 = (a+3,b+4,c), Sendlg3()

RsnVector2 = (a+3,b+4,c),
Sendlg2()

Rsn1 = a

Rsn2 = b

Rsn3= c

Rsn2 = b+4

Rsn1= a+3

Figure 4: An example showing the effectiveness of the
first step of the proposed algorithm

p2

p1

msg5

msg1

Chk1
w

Chk
2

x

p3
Chk3

y

Sendlg3(lge(msg1), lge(msg2), lge(msg3), lge(msg4), lge(msg5),
lge(msg6), lge(msg7), lge(msg8))

time

p4
Chk

4
z

msg2 msg4 msg6 msg8

msg3 msg7
garbage

collection
point

Chk
2

x+1

LogSize
3
[1] = X

LogSize
3
[2] = Y

LogSize3[4] = Z

If Y>= Z>= X and Y>=The requested free space

Figure 5: An example of executing the second step of
the proposed algorithm

To illustrate how to remove the log information in
the algorithm, consider the example shown in figure
5. Suppose p3 intends to remove the log information
in Sendlg3 at the marked point. In this case, the
algorithm forces p3 to send checkpoint requests to
p1, p2 and p4. When receiving the request, p1, p2
and p4 take their checkpoints respectively. Then,
the three processes send each a checkpoint reply to
p3. After receiving all the replies, p3 can remove
(lge(msg1), lge(msg2), lge(msg3), lge(msg4), lge(msg5),
lge(msg6), lge(msg7), lge(msg8)) from Sendlg3.
Thus, the previous algorithm results in high synchro-
nization overhead.

3.2 The Second Step

To solve the problem mentioned earlier, the sec-
ond step of the proposed algorithm is designed
based on the following observation: if the requested
empty space (=E) is less than or equal to the sum

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 807 Issue 6, Volume 7, June 2008

(=Y) of sizes of lge(msg1), lge(msg2), lge(msg4),
lge(msg6) and lge(msg8), p3 has only to force p2
to take a checkpoint. This observation implies that
the number of extra messages and forced checkpoints
may be reduced if p3 knows sizes of the respective
log information for p1, p2 and p4 in its volatile stor-
age. The second step obtains such information by
maintaining an array, LogSizep, to save the size of
the log information in the volatile storage by process.
Thus, the algorithm can reduce the number of addi-
tional messages and forced checkpoints by using the
vector compared with the traditional algorithm.

The second step needs a vector LogSizep where
LogSizep[q] is the sum of sizes of all lge(m)s in
Sendlgp, such that p sent message m to q. Whenever
p sends m to q, it increments LogSizep by the size of
lge(m). When p needs more empty buffer space, it ex-
ecutes the second step of the algorithm. It first chooses
a set of processes, denoted by participatingProcs,
which will participate in the forced garbage collec-
tion. It selects the largest, LogSizep[q], among the
remaining elements of LogSizep, and then appends q
to participatingProcs until the required buffer size
is satisfied. Then p sends a request message with
the rsn of the last message, sent from p to q, to all
q ∈ participatingProc such that the receiver of m
is q for ∃lge(m) ∈ Sendlgp. When q receives the re-
quest message with the rsn from p, it checks whether
the rsn is greater than RsnV ectorq[q]. If so, it should
take a checkpoint and then send p a reply message
including RsnV ectorq[q]. Otherwise, it has only to
send p a reply message. When p receives the reply
message from q, it removes all lge(m)s from Sendlgp

such that the receiver of m is q.
For example, in figure 5, when p3 attempts

to execute the second step at the marked point
after it has sent msg8 to p2, it should create
participatingProcs. In this figure, we can see
that LogSize3[2](= Y) is the largest (Y ≥ Z ≥
X) among all the elements of LogSize3 due to
lge(msg1), lge(msg2), lge(msg4), lge(msg6) and
lge(msg8) in Sendlg3. Thus, it first selects and ap-
pends p2 to participatingProcs. Suppose that the
requested empty space E is less than or equal to
Y . In this case, it needs to select any process like
p1 and p4 no longer. Therefore, p3 sends a check-
point request message with msg8.rsn only to p2 in
participatingProcs. When p2 receives the request
message, it should take a forced checkpoint like in
this figure because the rsn included in the message
is greater than RsnV ector2[2]. Then it sends p3 a
reply. When p3 receives a reply message from p2,
it can remove lge(msg1), lge(msg2), lge(msg4),
lge(msg6) and lge(msg8) from Sendlg3. From this
example, we can see that the second step chooses

a small number of processes to participate in the
garbage collection based on LogSize3 compared with
the traditional algorithm. Thus, this algorithm may
reduce the number of additional messages and forced
checkpoints.

3.3 Algorithmic Description

The procedures for process p in our algorithm are
formally described in figures 6 and 7. MSGS()
in figure 6 is the procedure executed when each
process p sends a message m and logs the message
to its volatile memory. In this case, p piggybacks
RsnV ectorp on the message for the first step of
the algorithm and then adds the size of e(m) to
LogSizep[q] after transmitting the message for the
second step. Procedure MSGR() is executed when
p receives a message. In this procedure, p first
notifies the sender of the message of its rsn and
then performs the first step for removing useless
log information from its log based on the piggy-
backed vector. In procedure ACK-RECV(), process
p receives the rsn of its previously sent message
and updates the third field of the element for the
message in its log to the rsn. Then, it confirms
fully logging of the message to its receiver, which
executes procedure CONFIRM-RECV(). If process p
attempts to take a local checkpoint, it calls procedure
CHECKPOINTING(). In this procedure, the element
for p of RsnV ectorp is updated to the rsn of the last
message received before the checkpoint. STEP-2 in
figure 7 is the procedure executed when each process
attempts to initiate the forced garbage collection of
the second step and CHECKLRSNINLCHKPT() is the
procedure for forcing the log information to become
useless for future recovery.

4 Correctness Proof

In this section, we prove the correctness of the first
and the second steps of the proposed algorithm.

Lemma 1. If siq
j is created by message m from

p to q (p 6= q) for all p, q ∈ P and then q takes its
latest checkpoint in siq

l (l ≥ j), lge(m) need not be
maintained in Sendlgp for q’s future recovery in the
sender-based message logging.

Proof : We prove this lemma by contradiction.
Assume that lge(m) in Sendlgp is useful for q’s
future recovery in case of the condition. If q fails, it
restarts execution from its latest checkpointed state
for its recovery in the sender-based message logging.

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 808 Issue 6, Volume 7, June 2008

procedure MSGS(data, q)
wait until(EnableSp = Φ) ;
Ssnp ← Ssnp + 1 ;
send m(Ssnp, data) with RsnV ectorp to q ;
Sendlgp ← Sendlgp ∪ {(q, Ssnp, -1, data)} ;
LogSizep[q]← LogSizep[q] + size of (q, Ssnp,

-1, data) ;

procedure MSGR(m(ssn, data), sid, RsnV ector)
if(SsnV ectorp[sid] < m.ssn) then {
Rsnp ← Rsnp + 1 ;
SsnV ectorp[sid] = m.ssn ;
send ack(m.ssn, Rsnp) to sid ;
EnableSp ← EnableSp ∪ {Rsnp} ;
for all k ∈ other processes in the system do
if(RsnV ectorp[k] < RsnV ector[k]) then {
RsnV ectorp[k] ← RsnV ector[k] ;
for all e ∈ Sendlgp st ((e.rid = k) ∧

(e.rsn ≤ RsnV ector[k])) do
Sendlgp ← Sendlgp - {e} ;

}
deliver m.data to the application ;
} else discard m ;

procedure ACK-RECV(ack(ssn, rsn), rid)
find ∃e ∈ Sendlgp st ((e.rid = rid) ∧

(e.ssn = ack.ssn)) ;
e.rsn ← ack.rsn ;
send confirm(ack.rsn) to rid ;

procedure CONFIRM-RECV(confirm(rsn))
EnableSp ← EnableSp - {rsn} ;

procedure CHECKPOINTING()
RsnV ectorp[p] ← Rsnp ;
take its local checkpoint on the stable storage ;

Figure 6: Procedures for every process p in algorithm
2-step(continued)

procedure STEP-2(sizeOflogSpace)
participatingProcs ← ∅ ;
while sizeOflogSpace > 0 do

if(there is r st ((r ∈ P) ∧ (r is not an element of
participatingProcs) ∧ (LogSizep[r] 6= 0)
∧ (max LogSizep[r]))) then {
sizeOflogSpace ← sizeOflogSpace−

LogSizep[r] ;
participatingProcs ←

participatingProcs ∪ {r} ;
}

T : for all u ∈ participatingProcs do {
MaximumRsn ← (max e(m).rsn) st

((e(m) ∈ Sendlgp)∧(u = e(m).rid)) ;
send Request(MaximumRsn) to u ;

}
while participatingProcs 6= ∅ do {

receive Reply(rsn) from u st
(u ∈ participatingProcs) ;

for all e(m) ∈ Sendlgp st (u = e(m).rid) do
remove e(m) from Sendlgp ;

LogSizep[u]← 0 ;
participatingProcs ← participatingProcs
−{u} ;

}

procedure CHECKLRSNINLCHKPT(Request(
MaximumRsn), q)

if(RsnV ectorp[p] < MaximumRsn) then
CHECKPOINTING() ;

send Reply(RsnV ectorp[p]) to q ;

Figure 7: Procedures for every process p in algorithm
2-step

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 809 Issue 6, Volume 7, June 2008

In this case, p need not retransmit m to q because
devq(m) occurs before the checkpointed state. Thus,
lge(m) in Sendlgp is not useful for q’s recovery. This
contradicts the hypothesis. ut

Theorem 1. The first step of the proposed algorithm
removes only the log information that will not be
used for future recoveries in sender-based message
logging any longer.

Proof : Let us prove this theorem by contradic-
tion. Assume that our algorithm removes the log
information useful for future recoveries. As men-
tioned in section 3.1, the algorithm forces each
process p to remove log information from its volatile
memory only in the following case.

Case 1: p receives a message m from another
process q (i.e., when executing procedure MSGR()
in figure 6).
In this case, RsnV ectorp was piggybacked on m.
Thus, p removes from Sendlgp all lge(l)s such that
for k ∈ P (k 6= p), lge(l).rid is k and lge(l).rsn
is less than or equal to max(RsnV ectorp[k],
RsnV ectorq[k]), which is the rsn of the last mes-
sage delivered to k before having taken its latest
checkpoint. In here, message l need no longer be
replayed in case of failures of process k due to its
latest checkpoint. Thus, lge(l) isn’t useful for its
future recoveries.

Therefore, The first step of the proposed algo-
rithm removes only useless log information for
sender-based message logging in any case. This
contradicts the hypothesis. ut

Theorem 2. After every process has performed the
second step of the proposed algorithm in the sender-
based message logging, the system can recover to a
globally consistent state despite process failures.

Proof : the second step of the proposed algorithm
only removes the following useful log information in
the storage buffer of every process as follows.

Case 1: Process p for all p ∈ P removes any
lge(m) in Sendlgp.
In this case, it sends a request message with the rsn
of the last message, sent from p to lge(m).rid, to
lge(m).rid. When lge(m).rid receives the request
message with the rsn from p, it checks whether the
rsn is greater than RsnV ectorlge(m).rid[lge(m).rid].

Case 1.1: The rsn is greater than
RsnV ectorlge(m).rid[lge(m).rid].

In this case, lge(m).rid takes a checkpoint. After-
wards, lge(m) becomes useless for the sender-based
message logging by lemma 1.

Case 1.2: The rsn is less than or equal to
RsnV ectorlge(m).rid[lge(m).rid].
In this case, lge(m).rid took its latest checkpoint
after having received m. Thus, lge(m) is useless for
the sender-based message logging by lemma 1.

Thus, all the useful log information for the sender-
based message logging is always maintained in the
system in all cases. Therefore, after every process has
performed the second step of the proposed algorithm,
the system can recover to a globally consistent state
despite process failures. ut

5 Performance Evaluation

5.1 Simulation Environment

To evaluate performance of our algorithm(2-step)
with that of the traditional one (Tradi) [12], some ex-
periments are performed in this paper using a discrete-
event simulation language [19]. First, one perfor-
mance index is used for evaluating the effectiveness
of the first step of the proposed algorithm; the aver-
age elapsed time required until the volatile memory
buffer for message logging of a process is full(Tfull).
The performance index Tfull is measured under the
condition that the two algorithms perform no forced
garbage collection procedure, i.e., incur no additional
messages and no forced checkpoints. Second, the
following performance indexes are used for com-
paring forced garbage collection overheads of both
the second step of algorithm 2-step and algorithm
Tradi; the average number of additional messages
(NOAM) and the average number of forced check-
points (NOFC) required for garbage collection per
process.

A simulated system consists of 20 hosts con-
nected by a network, which is modelled as a multi-
access LAN (Ethernet). The message transmission ca-
pacity of a link in the network is 100 Mbps. Nodes
connected to the network are identical and uniformly
distributed along the physical medium. For simplic-
ity of this simulation, it is assumed each node has
one process executing on it and 20 processes are initi-
ated and completed together. For the experiments, it is
also assumed that the size of each application message
ranges from 50 to 200 Kbytes and the size of the mem-
ory buffer for logging of every process is 10Mbytes.
Each process takes its local checkpoint with an inter-
val following an exponential distribution with a mean

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 810 Issue 6, Volume 7, June 2008

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

5 6 7 8 9 10

T
interval

T
full

2-step

Tradi

Figure 8: Average elapsed time required until the
volatile memory buffer for message logging of a pro-
cess is full according to Tinterval

Ckpttime=3 minutes. The simulation parameter is the
mean message sending rate, Tinterval, following an
exponential distribution. All simulation results shown
in this section are averages over a number of trials.

5.2 Simulation Results

Figure 8 shows the average elapsed time of the two al-
gorithms required until the volatile memory buffer for
message logging of a process is full for the specified
range of the Tinterval values. In this figure, as their
Tintervals of algorithms 2-step and Tradi increase,
their corresponding Tfulls also increase. The reason is
that as each process sends messages more slowly, the
size of its message log also increases at a lower rate.
However, as it is expected, Tfull of algorithm 2-step
is significantly higher than that of algorithm Tradi.
In particular, as Tinterval increases, the increasing rate
of the first rises more fast than that of the latter. This
benefit of our algorithm results from its desirable fea-
ture as follows: it enables a process p to autonomously
and locally eliminate useless log information from the
buffer by only carrying a vector RsnV ectorp on each
sent message whereas the traditional algorithm does
not so.

Figure 9 shows NOAM for the various Tinterval

values. In this figure, we can see that NOAMs of the
two algorithms increase as Tinterval decreases. The
reason is that forced garbage collection should fre-
quently be performed because the high inter-process
communication rate causes the storage buffer of each

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

10 20 30 40 50 60

Tinterval

N
O
A
M

Tradi

2-step

Figure 9: NOAM vs. Tinterval

process to be overloaded quickly. However, NOAM
of algorithm 2-step is much lower than that of algo-
rithm Tradi. Algorithm 2-step reduces about 38% -
50% of NOAM compared with algorithm Tradi.

Figure 10 illustrates NOFC for the various
Tinterval values. In this figure, we can also see that
NOFCs of the two algorithms increase as Tinterval

decreases. The reason is that as the inter-process com-
munication rate increases, a process may take a forced
checkpoint when it performs forced garbage collec-
tion. In the figure, NOFC of algorithm 2-step is
lower than that of algorithm Tradi. Algorithm 2-step
reduces about 25% - 51% of NOFC compared with
algorithm Tradi.

Therefore, we can conclude from the simulation
results that regardless of the specific checkpointing
and communication patterns, algorithm 2-step en-
ables the garbage collection overhead occurring dur-
ing failure-free operation to be significantly reduced
compared with algorithm Tradi.

6 Conclusion
This paper presents a novel log management algo-
rithm to effectively eliminate the volatile log informa-
tion at sender processes on demand without the vio-
lation of the system consistency. First, the algorithm
gets rid of needless logged messages from the corre-
sponding senders’ volatile memories only by piggy-
backing a vector on their sent messages. This advan-
tageous feature results in no additional message and
forced checkpoint. If the more empty buffer space
for the volatile logging is needed after the first pro-

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 811 Issue 6, Volume 7, June 2008

0

5

10

15

20

25

30

35

40

45

50

55

60

10 20 30 40 50 60

Tinterval

N
O
F
C

Tradi

2-step

Figure 10: NOFC vs. Tinterval

cedure executed, the next procedure of this proposed
algorithm is performed to address this limitation. This
procedure uses a vector for saving the size of the log
information required to recover every other process
and enables the information to be efficiently removed
while satisfying the consistency condition.

Acknowledgements: This work was supported
by Gyeonggido Regional Research Center Program
grant(2007-081-2, Development and Industrialization
of Integrated Frameworks for Very Large-scale RFID
Services).

References:

[1] A. Acharya and B. R. Badrinath. Checkpoint-
ing Distributed Applications on Mobile Comput-
ers. In Proc. the 3th International Conference on
Parallel and Distributed Information Systems,
1994.

[2] J. Ahn. Lightweight Fault-tolerant Message
Passing System for Parallel and Distributed Ap-
plications. Lecture Series on Computer and
Computational Sciences, Vol. 8, pp. 12-15, Oct.
2008.

[3] J. Ahn. Effective Service Replication Mecha-
nisms Exploiting Agent Mobility. Proc. of the
7th WSEAS International Conference on Soft-
ware Enineering, Parallel and Distributed Sys-
tems, pp. 74-79, Feb. 2008.

[4] F. Baschieri, P. Bellavista and A. Corradi. Mo-
bile Agents for Qos Tailoring, Control and
Adaptation over the Internet: The UbiQoS Video
on Demand Serbvice. In Proc. of the 2nd Inter-
national Symposium on Applications and the In-
ternet, pp. 109-118, 2002.

[5] A. Bouteiller, F. Cappello, T. Hérault, G.
Krawezik, P. Lemarinier and F. Magniette.
MPICH-V2: a Fault Tolerant MPI for Volatile
Nodes based on Pessimistic Sender Based Mes-
sage Logging. In Proc. of the 15th International
Conference on High Performance Networking
and Computing(SC2003), November 2003.

[6] H. Bryhni, E. Klovning and O. Kure. A Compar-
ison of Load Balancing Techniques for Scalable
Web Servers. IEEE Network, 14:58-64, 2000.

[7] K. M. Chandy, and L. Lamport. Distributed
Snapshots: Determining Global States of Dis-
tributed Systems. ACM Transactions on Com-
puter Systems, 3(1): 63-75, 1985.

[8] Y. Chen and D. Li. A Web-GIS based Decision
Support System for Revegetation in Coal Mine
Waste Land. Proc. of the 7th WSEAS Interna-
tional Conference on Applied Computer and Ap-
plied Computational Science, pp. 579-584, April
2008.

[9] J. Cui and H. Chae. Mobile Agent based Load
Balancing for RFID Middlewares. In Proc. of In-
ternational Conference on Advanced Computer
Technology, pp. 973-978, 2007.

[10] C. Curino, M. Giani, M. Giorgetta, A. Giusti,
A. Murphy and G. Picco. Mobile Data Collec-
tion in Sensor Networks: The TinyLime Middle-
ware. Journal of Pervasive and Mobile Comput-
ing, 4(1):446-469, December 2005.

[11] E. N. Elnozahy, D. B. Johnson, and W.
Zwaenepoel. The Performance of Consistent
Checkpointing. In Proc. the 11th Symposium On
Reliable Distributed Systems, pp. 86-95, 1992.

[12] D. B. Johnson and W. Zwaenpoel. Sender-Based
Message Logging. In Digest of Papers: 17th In-
ternational Symposium on Fault-Tolerant Com-
puting, pp. 14-19, 1987.

[13] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B.
Johnson. A Survey of Rollback-Recovery Pro-
tocols in Message-Passing Systems. ACM Com-
puting Surveys, 34(3), pp. 375-408, 2002.

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 812 Issue 6, Volume 7, June 2008

[14] J. L. Kim and T. Park. An Efficient Protocol
For Checkpointing Recovery in Distributed Sys-
tems. IEEE Transactions on Parallel and Dis-
tributed Systems, pp. 955-960, 1993.

[15] R. Koo and S. Toueg. Checkpointing and
rollback-recovery for distributed systems. IEEE
Transactions on Software Engineering. Vol.13,
No.1, pp. 23-31, 1987.

[16] L. Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communica-
tions of the ACM, 21, pp. 558-565, 1978.

[17] Z. Li and M. Parashar. A Decentralized Agent
Framework for Dynamic Composition and Co-
ordination for Autonomic Applications. Proc. of
the 3rd International Workshop on Self-Adaptive
and Autonomic Computing Systems, Copen-
hagen, Denmark, pp. 165-169, August 2005.

[18] D. Manivannan and Mukesh Singhal. A Low-
Overhead Recovery Technique Using Quasi-
Synchronous Checkpointing. In Proc. the 16th
International Conference on Distributed Com-
puting Systems, pp. 100-107, 1996.

[19] R. McNab and F. W. Howell. simjava: a dis-
crete event simulation package for Java with ap-
plications in computer systems modelling. In
Proc. First International Conference on Web-
based Modelling and Simulation, 1998.

[20] M. L. Powell and D. L. Presotto. Publish-
ing: A reliable broadcast communication mech-
anism. In Proc. of the 9th International Sympo-
sium on Operating System Principles, pp. 100-
109, 1983.

[21] J. T. Rough and A. M. Goscinski. The devel-
opment of an efficient checkpointing facility ex-
ploiting operating systems services of the GEN-
ESIS cluster operating system. Future Genera-
tion Computer Systems, Vol. 20, No. 4, pp 523-
538, 2004.

[22] R. D. Schlichting and F. B. Schneider. Fail-
stop processors: an approach to designing fault-
tolerant distributed computing systems. ACM
Transactions on Computer Systems, 1, pp. 222-
238, 1985.

[23] M. O. Spata, S. Rinaudo, A. Marotta and F.
Moschella. Integration of a Parallel Algorithm
with a Cluster Grid for an Industrial Framework.
Proc. of the 7th WSEAS International Confer-
ence on Software Enineering, Parallel and Dis-
tributed Systems, pp. 27-31, Feb. 2008.

[24] R.E. Strom and S.A. Yemeni. Optimistic recov-
ery in distributed systems. ACM Transactions on
Computer Systems, 3, pp. 204-226, 1985.

[25] J. Xu, R.B. Netzer and M. Mackey. Sender-
based message logging for reducing rollback
propagation. In Proc. of the 7th International
Symposium on Parallel and Distributed Process-
ing, pp. 602-609, 1995.

[26] B. Yao, K. -F. Ssu and W. K. Fuchs. Message
Logging in Mobile Computing. In Proc. of the
29th International Symposium on Fault-Tolerant
Computing, pp. 14-19, 1999.

WSEAS TRANSACTIONS on COMPUTERS Jinho Ahn

ISSN: 1109-2750 813 Issue 6, Volume 7, June 2008

