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Abstract: - This paper presents a management approach applied to search algorithms to achieve more efficient 
search. It acts as a management agent to a core search unit, in which the Adaptive Tabu Search (ATS) has 
been applied. The proposed management agent composes of partitioning mechanism (PM), sequencing method 
(SM), and discarding mechanism to speed up the search. It has been tested against Bohachevsky’s, Rastrigin’s 
and Shekel’s foxholes functions, respectively, for surface optimization. The paper gives a review of the ATS, 
detailed explanations of the PM, SM, and DM, respectively. Comparison of the optimization results are 
elaborated. 
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1   Introduction 
For the first time in 1989, Glover introduced the 
Tabu Search (TS) to solve combinatorial 
optimization problems [1,2]. Recently, it has been 
applied to school timetabling [3], power system 
restoration [4], job-shop scheduling [5], etc. The TS 
possesses two main strategies namely intensification 
and diversification [6,7] which make the TS quite 
flexible for a diversity of problems. On the basis of 
the naïve TS, researchers at Suranaree Unviversity 
of Technology (SUT) launched a modified TS so 
called Adaptive Tabu Search (ATS)  in 2004. The 
ATS contains two distinctive mechanisms denoted 
as back-tracking (BT) and adaptive radius (AR) 
mechanisms, respectively. The former can be 
regarded as one type of the diversification strategies, 
while the later as one of those intensification tactics. 
Performance assessment and convergence proof of 
the ATS have been reported [8,9]. The ATS has 
been applied to solve various optimization problems, 
e.g. power system protection [10], dynamic system 
identification [11,12], control system synthesis 
[13,14], and audio signal processing [15]. 
  This paper reports our attempts to improve 
the performance of the ATS. Our approach is to 
have algorithms working as a management agent to 

distribute the search units over an entire search 
space, and to effectively terminate some search 
paths unlikely to hit the global solution. The 
effectiveness of the management agent (MA) is 
demonstrated by using the ATS as its search units. 
So, we firsty review the ATS in Section 2.1. 
Explanation of the MA follows in Section 2.2. 
Performance evaluation, results and discussions can 
be found in Sections 3 and 4, respectively. Section 5 
provides conclusions. 
 
 
2   Algorithms 
2.1 Adaptive Tabu Search (ATS) 
The ATS as an original search core or unit begins 
the search with some random initial solutions 
belonging to a neighbourhood search space. The 
objective functions of these solutions are evaluated 
such that one with the best objective value is kept. 
This recent solution serves as the starting point of 
the next search or move, and is recorded in the tabu 
list. Subsequent searches occur in this manner until 
the global solution is reached. As a matter of fact, 
search moves can be entrapped by some local 
solutions. Without an efficient escaping logic, the 
search could fall into a deadlock situation. The ATS 
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possesses the BT mechanism which looks up the 
tabu list and selects one of its listed solution as a 
new starting point. A new search could begin in a 
new direction by using this mechanism. Hence, an 
entrapment by a local solution can be released. Once 
the search approaches the global solution, the AR 
mechanism is invoked. Commonly, the search radius 
is subsequently reduced to provide finer and finer 

solutions within a short search time. Fig. 1 illustrates 
some  movements  of the  ATS  while  searches, and 
and Fig. 2 showsthe flow diagram of the ATS. In 
addition, the ATS algorithms can be described in a 
step-by-step manner as follows: 

Step 1  Initialize a search space, count and  
            countmax  

          Step 2  Randomly select an initial solution S0 
 

 
Fig. 1 Movements of the ATS. 

 
            from the search space. Let S0 be a  
            current local minimum. 
Step 3  Randomly generate N solutions around  

         S0 within a certain radius R. Store the    
         N solutions, called neighborhood, in a  
         set X.  

Step 4  Evaluate a cost function of each mem-  
         ber in X. Set S1 as a member that  
         gives the minimum cost in X. 

Step 5  If S1 < S0, put S0 into the Tabu list and  
         set S0 = S1, otherwise, store S1 into the   
         Tabu list instead.  

Step 6  Activate the back-tracking mechanism  
         , when solution cycling occurs. 

Step 7  If the termination criteria:  
            count≥ countmax, or desired specificat- 
            ions are met, then stop the search pro- 

         cess. S0 is the best solution, otherwise  
         go to  Step 8. 

Step 8  Activate the adaptive search radius  
         mechanism, when a current solution  
         S0  is relatively close to a local mini- 
         Mum to refine searching accuracy. 

Step 9  Update count, and go to Step 2. 
 

To apply the ATS effectively, potential users should 
consider the following recommendations (i) the 
initial search radius, R, should be 7.5-15.0% of 
search space radius, (ii) the number of neighborhood 
members, N, should be 30-40, (iii) the number of 
repetions of a solution before invoking the back-
tracking mechanism should be 5-15, (iv) the kth 
backward solution selected by the back-tracking 
mechanism should be equal or close to the number 
of repetitions of a solution before invoking the back-
tracking mechanism, (v) the adaptive search radius 
should employ 20-25% of radius reduction, and (vi) 
a well educated guess of the search space that is 
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wide enough to cover the global solution is 
necessary, [8-13].  

 
  

     

Start

                                                                     ATS Initialization :
  - Set zero to the following variables: Tabu list, count, Re (number of solution cycling for back-tracking),
          n_cycling (number of solution cycling for adaptive radius)
  - Set proper values to the following variables: R (search radius), Remax (maximum solution cycling allowance),
          countmax , N (neighbourhood members), Jmin (expected minimum cost value).

 Randomly generate N solutions, called neighbourbood, around S0 within R.
Store the N solutions in a set called X.

Within the search radius R, randomly select initial solution S0 from the search space.
Let S0 be a current solution (current local minimum).

Load cost function to be minimized.

 Evaluate the cost value of each member belonging to X. Let the member giving minimum cost,J1, be S1.

J1<J0  Keep S1 in the Tabu list

 Keep S0.in the Tabu list.
Set S0=S1.

Solution
cycling
occurs?

count >countmax
 Report the best solution
(global minimum) found.

J<Jth
( Jth: Threshold J )

Activate the adaptive search radius
mechanism by reducing R: R=αR ,

Update count = count + 1

 Update Re=Re+1,
n_clycling=n_clycling+1

Re > Remax

Activate the back-
tracking mechanism.

Reset Re=0.

back-tracking
mechanism

adaptive search
radius mechanism

Stop

yes

yes

yes

yes

no
no

yes

no

no

where 0<α<1

no

J <Jmin

yes

no

 
 

Fig. 2 Flow diagram of the ATS. 
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2.2   Management Agent (MA)  
The MA organizes corresponding search units to 
achieve a global solution within a rapidly finite 
search time. It contains three main strategies namely 
sequencing method (SM), partitioning and 
discarding mechanisms (PM and DM), respectively. 
The PM assists on dividing the entire search space 
into several to many sub-search-spaces. Also, PM 
initiates searches among those spaces. The DM 
serves to identify some unlikely to be successful 
search moves, and extinguish them.  

By going through the DM process 
repeatedly within a finite time, the most likely to be 
successful search path would be singled out. The 
particular search path eventually hits the global 
solution. More descriptions of PM and DM appear 
in the topics 2.2.1 and 2.2.3, respectively. The SM is 
explained in the topic 2.2.2. Since the ATS has been 
chosen as a core search unit, our proposed MA can 
be represented by the flow diagram in Fig. 3.  

 
 

                    

MA Initialization :
- Preset variables(count, Re, n_cycling, Tabu list) in all ATSs to be zero or empty.

- Set proper values for these variables, countmax, Remax, N.

Choose number of paths for MA.

Activate PM to genetate sub-search-spaces for generating initial solutions.
After obtaining all initial solutions in each sub-search-space,

then, replace all sub-search-spaces with the original search space to all ATSs.

ATS # 1

Sequencing these
sub-search-spaces on the

basis of time sharing.

TC met
?

Stop searching and
report results

                 Activate DM
- extinguish k ATS search paths
- n = n - k, k >= n -1 , nmin = 1

yes

yes

no

no

DC met
?

Load a surface optimization problem, from eq.(1) -(3), including its search space.

Start

Stop

ATS # 2

ATS # n

 
 

Fig. 3 Flow diagram of the MA. 
 
 

The MA contains 7 major steps as follows: 
Step 1  Identify search spaces, and obtain  

         initial solutions.  

Step 2  Define the number of search units or  
         search paths. 

Step 3  Invoke the PM. 
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Step 4  Invoke the ATS#1, ATS#2,…,ATS# n  
         )1,1,( min =−≤−= nnkknn  

Step 5  Evaluate termination criteria (TC). 
         Completely stop some paths of the  
         ATS according to the TC. 

Step 6  Invoke the DM. 
Step 7  Update counter. Goto step 4 until the  

         global solution is reached. 
 

As the ATS possesses the convergence pro-perty 
[8,9], the proposed MA having the ATS as its core 
always converges to the global solution. PM, one of 
the main strategies of the MA, is explained in the 
topic 2.2.1 as follows. 
 
2.2.1 Partitioning Machanism (PM)  
The concept of problem partitioning is well known, 
and recently been applied to data fusion [16] and 
genetic algorithms [17]. Our work also utilizes the 
PM to provide higher successful rates of the search 
hitting the global solution. The PM, once invoked, 
starts dividing the entire search space into a few to 
many sub-search-spaces. From our previous tests 
against some surfaces, whose details are given in 
Section 3, it was found that the searches had been 
slow if the number of sub-search-spaces was more 
than 8. To aid the understanding, let the entire  
search space be a 2D-rectangle, ABCD, as shown in 
Fig. 4(a). Figs. 4(a)-(c) depict the partitioning of 
rectangular forms into 2, 4, and 8 parts, while other 
geometrical forms are also possible.  

            

y

x

C D

AB

(xC,yC) (xD,yD)

(xA,yA)(xB,yB)

x=xC+0.5(xD-xC)

#2 #1

 
                                (a) 

C D

AB

(xC,yC) (xD,yD)

(xA,yA)(xB,yB)

x=xC+0.5(xD-xC)

#3

#2

#4

#1

y

x
 

                                (b) 

        

y

x
C D

AB

(xC,yC) (xD,yD)

(xA,yA)(xB,yB)

x=xC+0.5(xD-xC)

y=yC+0.5(yB-yC)

#3#4 #1#2

#5 #6 #7 #8

x=xC+0.25(xD-xC)

x=xC+0.75(xD-xC)  
                                (c) 

Fig. 4 Partitioning 2D-search-space (a) 2 regions  
(b) 4 regions and (c) 8 regions. 

 
Partitioning the 3-D Bohachevsky’s func-

tion into 4 rectangular cylinders is shown in Fig. 5. 
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       Fig. 5 Partitioning 3D-search-space (PM) 
        (a) Bohachevsky’s surface  (b) 2-D map. 
   

After successful partitioning, the PM creates 
initial solutions with their corresponding  
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neighbourhoods for all sub-search-spaces. Then, the 
partitioning boundaries are removed, and all search 
paths run freely over the entire search space. At this 
stage, symmetrical and non-overlapping partitioning 
is assumed. Asymmetrical and overlapping 
partitioning is possible and open for further 
investigations. 
  An important issue concerning the use of 
PM is the maximum number of search units. The 
number of partitioned regions must be finite. For the 
ATS and 2D problem confined within a square, it is 
defined by 

2

max 2
⎟
⎠
⎞

⎜
⎝
⎛=

R
lN    (1) 

, where maxN is the maximum number of partitioned 
regions, l  is the length (m) of the side of the square, 
and R  is the ATS search radius (m). Readers are 
reminded that the ATS employs circular 
neighbourhoods with the radii R . For example, a 
search problem fitted in a square of  30 cm x 30 cm, 
and  the ATS having its search radius of 1.5 cm, 

maxN is equal to 100.   
        

2.2.2 Sequencing Method (SM)  
Referring to Fig. 3, between the PM and the DM, 
there exists the sequencing method (SM). The SM is 
a time-sharing tactic which organizes the search 
units to run in a sequential manner. Readers are 
reminded that the ATS and the MA are sequential 
algorithms. The SM organizes the ATS paths to run 
one-by-one on a single iteration at a time. This 
process is repeated k times. Then, their results are 
transferred to the DM. After the DM completing its 
task (described in the next section), the remaining 
search paths are transferred back to the SM. These 
sequential process do not require a parallel platform. 
Nonetheless, a parallel platform with multitasking 
operating system (OS) would result in a more rapid 
search. By the SM, each ATS unit performs its 
search one-by-one with its own initial solutions. 
This process is depicted in Fig. 6. By the end of 
each iteration, i.e. the ATS#n performs a complete 
search at each iteration, the DM is invoked. Its 
mechanism is described next.  
 
2.2.3 Discarding Mechanism (DM)  
The DM assists on eliminating some unlikely to be 
successful search paths. For example, some search 
paths could be locked by local solutions, 
convergence of some paths may be slow, etc. The 
criterion for an activation of the DM is called 
discarding criterion (DC). The DC is set upon the 

threshold of the ε . ε  is defined by the absolute 
difference between the objective value of the current 
solution and the goal objective value. In some 
aspects, the DM may behave similarly to the 
location management algorithms in [18,19].  
 

ATS#1

ATS#2

ATS#n

Begin
     Loads ATS#1 initial parameters
     Runs ATS#1 process
        (including BT and  AR)
     Check TC
     Updates ATS#1 parameters
        (and wait for next iteration)
End

Ite
ra

tio
n 

lo
op

 o
be

yi
ng

 ti
m

e-
sh

ar
in

g 
m

et
ho

d

Begin
     Loads ATS#n initial parameters
     Runs ATS#n process
        (including BT and  AR)
     Check TC
     Updates ATS#n parameters
        (and wait for next iteration)
End

 
Fig. 6 Diagram of the sequencing method (SM). 

 
The proposed DM performs a min-max sort 

to the objective values, keep only half of the search 
paths with smaller objective values, and eliminate 
the rest. The number of times invoking the DM 
depends on the number of search paths. As 
summarized in Table 1, the MA#16 possesses 16 
search paths and requires 4 cycles of operation of 
the DM. By the first stage, the DM extinguishes the 
search paths by half, thus only 8 paths remain. By 
the forth stage, only a single path remains and 
particularly expected to strike the global solution. 
  
 Table 1 DM and number of agents. 

MA#2
MA#4
MA#8

MA#16
MA#32
MA#64

1st stage 2nd stage 3rd stage 4th stage 5th stage 6th stage

number of agents when DM invoked
Types of MA

in out in in in in inout out out out out
2 1
4 2 2 1
8 4 4 2

64 32 32 16 16 8 8 4 4 2 2 1
32 16 16 8 8 4 4 2
16 8 8 4 4 2

2 1
2 1

2 1

 
 

3   Performance Evaluations 
The proposed MA has been tested against surface 
optimization problems of the following functions: 
Bohachevsky’s (see Fig. 5(a)), Rastrigin’s (see Fig. 
7), Shekel’s foxholes (see Fig. 8), etc. They are 
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described by the mathematical expressions in the 
equations (2)-(4), respectively. 
 

7.0)4cos(4.0)3cos(3.02),( 22 +−−+= yxyxyxf ππ   (2), 
 

        20)2cos(10)2cos(10),( 22 +−−+= yxyxyxf ππ     (3), 
 

-2
-1

0
1

2

-2
-1

0
1

2
0

10

20

30

40

50

f(
x,

y)

x
y

 
Fig. 7 Rastrigin’s surface 
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Fig. 8 Shekel ’s foxholes surface 
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The Bohachevsky’s and Rastrigin’s 
functions have their global minima of zero values at 
(0,0), while the minimum of the Shekel’s foxholes 
function is at (-32,-32) and equal to 1. These 
surfaces are very difficult to search. Mostly, 
conventional search and optimization methods fail 
to find their minima, even some unconventional and 
intelligent search methods fail too.  

Our algorithms were coded in MATLABTM, 
and run on a Pentium IV 2.4 GHz 640 Mbytes of 
SD-RAM. Performance of the original ATS has 
been compared with those of the MA. The search 
parameters need to be predefined for the MA and 
the ATS. Tables 2, 3 and 4, in the next page, 
summarize those parameters in accordance with the 
functions to be searched in which BF, RF and SF 

                                                      ATS parameters 
BT    TC AR 

Test 
functions radius 

(R) 
no. of  

neighbours Remax countmax Jmin stage I stage II 
search- 
spaces 

BF 0.2 (5%) 30 5 10,000 1x10-9 
RF 0.2 (5%) 30 5 10,000 1x10-8 

J<1x10-1 
,R=2x10-3 

J<1x10-3 
,R=2x10-4 

SF 0.8 (1%) 30 5 10,000  0.999 J<5 
,R=0.5 

J<2 
,R=0.1 

 
Up to 
PM 

Table 2 ATS parameters. 

Table 3 MA parameters in terms of DM arguments. 

WSEAS TRANSACTIONS on COMPUTERS Jukkrit Kluabwang, Deacha Puangdownreong
 and Sarawut Sujitjorn

ISSN: 1109-2750 797 Issue 6, Volume 7, June 2008



 

stand for Bohachevsky’s, Rastrigin’s and Shekel’s foxholes functions, respectively. 
 
 
 

 
     

 
 
4   Results and Discussions 

 Tables 5 and 6 summarize the results obtained from 
50 trials. MA#2, #4, #8 #16 #32 and #64 in these 
tables stand for 2, 4, 8, 16, 32 and 64 regions 
partitioned by the PM, respectively. 

 
Table 5 Average search times.  

 

Test
functions

BF

RF

SF

ATS MA
MA#2 MA#4 MA#8

average search time (seconds)

3.9672 3.1231 3.7378 1.4087

5.0669 4.8881 4.3737 4.1637

3.7800 2.5297 1.4616 1.2141

MA#16
1.5482

MA#32 MA#64

3.1396

3.2082 3.2082

3.7825

2.4709

2.1206

4.6094

3.9618

 
   In Table 4, readers should refer to the 
partitioning coordinates illustrated in Fig. 4 as well 
as the rectangularly cylindrical  partitioning concept 

            
 

 
 
 
 

 
in Fig. 5. As an example, #1[2 2;0 -2] and #2[0 2;-2 
-2] for MA#2 in Table 4 are referred to the 
coordinates of the points #1[a;b] and #2[c;d], 
respectively,   in   accordance  with  the  partitioning  
 
Table 6 Average search rounds. 
 

Test
functions

BF

RF

SF

ATS MA
MA#2 MA#4 MA#8

average search rounds

661.98 402.14 465.48 104.60

811.02 504.68 397.14 222.64

118.44 60.40 49.40 26.22

MA#16
132.64

MA#32 MA#64

266.26

35.54 10.16

165.00

167.48

30.22

196.36

172.06

 
shown in Fig. 5(b). 

 
 

Sub-search-spaces from PM Test 
functions MA#2* MA#4* MA#8* MA#16* MA#32* MA#64* 

 
 
 
 
 
 

BF and RF 

 
 
 
 
 
 
 
 
1#[2  2; 0  -2] 
2#[0  2;-2  -2] 

 
 
 
 
 
 
 
1#[2 2;0  0] 
2#[0 2;-2  0] 
3#[0 0;-2 -2] 
4#[2 0;0 -2] 

 
 
 
 
 
1#[2  2;1  0] 
2#[1  2;0  0] 
3#[0 2;-1 0] 
4#[-1 2;-2   0] 
5#[-1  0;-2 -2] 
6#[0  0;-1  -2] 
7#[1  0;0    -2] 
8#[2   0;1   -2] 

1#[2  2;1  1] 
2#[1  2;0  1] 
3#[0 2;-1 1] 
4#[-1 2;-2   1] 
5#[-1  1;-2 0] 
6#[0  1;-1  0] 
7#[1  1;0    0] 
8#[2   1;1   0] 
9#[2  0;1  1] 
10#[1  0;0  1] 
11#[0 0;-1 1]  
12#[-1 0;-2   1] 
13#[-1-1;-2 -2] 
14#[0 -1;-1 -2] 
15#[1 -1;0  -2] 
16#[2  -1;1 -2] 

1#[2  2;1.5  1] 
2#[1.5  2;1  1] 
3#[1 2;0.5 1] 
4#[0.5 2;0   1] 
5#[0  2;-0.5 1] 
6#[-0.5  2;-1  1] 
7#[-1 2;-1.5    1] 
8#[-1.5  2;-2   1] 
9#[2  1;1.5  0] 
10#[1.5  1;1  0] 
11#[1 1;0.5 0]  
12#[0.5 1;0   0] 
13#[0 1;-0.5 0] 
14#[-0.5 1;-1 0] 
15#[-1 1;-1.5  0] 
16#[-1.5  1;-2 0] 
the rest is omitted. 

1#[2  2;1.5  1.5] 
2#[1.5  2;1  1.5] 
3#[1 2;0.5 1.5] 
4#[0.5 2;0   1.5] 
5#[-0  2;-0.5 1.5] 
6#[-0.5  2;-1  1.5] 
7#[-1  2;-1.5    1.5] 
8#[-1.5   2;-2   1.5] 
9#[-1.5  1.5;-2  1] 
10#[-1  1.5;-1.5  1] 
11#[-0.5 1.5;-1 1]  
12#[0 1.5;-0.5 1] 
13#[0.5 1.5;0 1] 
14#[1 1.5;0.5 1] 
15#[1.5 1.5;1  1] 
16#[2  1.5;1.5 1] 
the rest is omitted. 

 
 
 
 
 
 

SF 

 
 
 
 
 
 
 
 

1#[40 40; 0 -40] 
2#[0 40;-40 -40] 

 
 
 
 
 
 
 
1#[40 40; 0 0] 
2#[0 40;-40 0] 
3#[40 0;0 -40] 
4#[0 0;-40 -40] 

 
 
 
 
 
1#[40 40; 20 0] 
2#[20 40;0 0] 
3#[0 40;-20 0] 
4#[-20 40;-40 0] 
5#[40 0;20 -40] 
6#[20 0;0 -40] 
7#[0 0;-20 -40] 
8#[-20 0;-40 -40] 

1#[40 40; 20 20] 
2#[20 40;0 20] 
3#[0 40;-20 20] 
4#[-20 40;-40 20] 
5#[-20 20;-40 0] 
6#[0 20;-20 0] 
7#[20 20;0 0] 
8#[40 20;20 0] 
9#[40 0; 20 -20] 
10#[20 0;0 -20] 
11#[0 0;-20 -20] 
12#[-20 0;-40 -20] 
13#[-20 -20;-40-40] 
14#[0 -20;-20 -40] 
15#[20 -20;0 -40] 
16#[40-20;20 -40] 

1#[40 40; 30 20] 
2#[30 40;20 20] 
3#[20 40;10 20] 
4#[10 40;0 20] 
5#[0 40;-10 20] 
6#[-10 40;-20 20] 
7#[-20 40;-30 20] 
8#[-30 40;-40 20] 
9#[-30 20; -40 0] 
10#[-20 20;-30 0] 
11#[-10 20;-20 0] 
12#[0 20;-10 0] 
13#[10 20;0 0] 
14#[20 20;10 0] 
15#[30 20;20 0] 
16#[40 20;30 0] 
the rest is omitted. 

1#[40 40; 30 30] 
2#[30 40;20 30] 
3#[20 40;10 30] 
4#[10 40;0 30] 
5#[0 40;-10 30] 
6#[-10 40;-20 30] 
7#[-20 40;-30 30] 
8#[-30 40;-40 30] 
9#[-30 30; -40 20] 
10#[-20 30;-30 20] 
11#[-10 30;-20 20] 
12#[0 30;-10 20] 
13#[10 30;0 20] 
14#[20 30;10 20] 
15#[30 30;20 20] 
16#[40 30;30 20] 
the rest is omitted. 

Table 4 MA parameters in terms of PM outputs.

  * 2, 4, 8, 16, 32 and 64 regions partitioned. 
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 “Speed up ratios” in the Fig. 9 is defined by    
 

)(ATSMAbytimesearchaverge
ATSbytimesearchaverge

ratiosupspeed =   (5) 

 
where MA(ATS) stands for the MA having the ATS 
as its search core. It can be noticed that the MA 
considerably  reduces the search time for all cases. 
Confirmed by the results in Fig. 9, the MA(ATS) 
performs searches 1.04-3.11 times faster than the 
ATS solely does. To apply the proposed algorithms 
effectively, potential users are recommended to 
explore the PM for specific problems to find highly 
effective number of regions partitioned. 
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Fig. 9  Comparative bar charts of speed up ratios. 
 

Some of the results are disclosed herewith 
to support our claims of the MA’s performance. Fig. 
10 illustrates the top view of the BF surface and the 
movement directions of the 32 search paths denotes 
by #1, #2, …, and #32. It can be noticed that almost 
all of the paths move towards the valley where the 
global solution sits in. Fig. 11 discloses the operation 
of the DM, and the convergence of one particular 
search path. At the 1st stage of the operation, the DM 
ceases 16 ATS paths. By the 2nd stage, only 8 paths 
remain, and finally only 1 path remains by the 5th 
stage. This last search path, which is found to be the 
ATS#8, strikes the global solution at the 50th iteration 
with J<1x10-9 as the TC, and within 1.633 seconds. 
This path, ATS#8, begins its seach at the coordinate 
(-1.49,1.50) quite far away from the location of the 
global solution with its J=6.9919. It strikes the global 
solution at (-0.05x10-6 , 3.915x10-6) with 
J=5.1476x10-10<1x10-9. Figs. 12 and 13 illustrate the 
case of RF. The same concepts of understanding the 
graphical results previously explained for Figs. 10 

and 11 can be applied. The case of RF is more 
difficult than that of the BF as this can be noticed 
from Fig.12 that reveals some local locks. As our 
results summarized by Fig. 13, the ATS#12 of 32 
paths hits the global solution at the 442th iteration, 
with J=4.645x10-6<1x10-8 (TC), at the coordinates 
(3.533x10-6 , -3.307x10-6) and within 6.049 seconds. 
Figs. 14 and 15 illustrate similar situations for the 
case of SF surface to the previus ones. It can be 
concluded that among the 32 search paths the 
ATS#18 hits the global solution at the 30th iteration, 
with J=0.9984<0.999 (TC), at the coordinates          
(-32.015,-31.7282) and within 2.3617 seconds. 

 
 

5   Conclusions 
This paper has presented the management agent 
(MA) to improve the effectiveness of the ATS 
regarded as the search core. The proposed MA 
composes of partitioning mechanism (PM), 
sequencing method (SM), and discarding 
mechanism (DM). Both MA and ATS are sequential 
algorithms that do not need any parallel computing 
platform. Performance of the MA has been 
evaluated against the surface optimization problems 
using the BF, RF and SF. The results indicate that 
the MA(ATS) searches 1.04-3.11 times faster than 
the ATS does. 
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Fig. 10 BF contour with 32 ATS paths (MA#32). 
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Fig. 11 Convergence curves (search on the BF surfaces). 
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Fig. 12 RF contour with 32 ATS paths (MA#32).  
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Fig. 14 SF contour with 32 ATS paths (MA#32). 
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