
Parameter Adjustment for Genetic Algorithm for Two-Level Hierarchical
Covering Location Problem

MIROSLAV MARIC, MILAN TUBA, JOZEF KRATICA

Faculty of Mathematics
University of Belgrade

Studentski trg 16, 11000 Belgrade
SERBIA

maricm@matf.bg.ac.yu tubamilan@ptt.rs http://www.matf.bg.ac.yu/~maricm

Abstract: - In this paper the two-level Hierarchical Covering Location Problem - HCLP is considered. A new genetic
algorithm for that problem is developed, including specific binary encoding with the new crossover and mutation
operators that keep the feasibility of individuals. Modification that resolves the problem of frozen bits in genetic code
is proposed and tested. Version of fine-grained tournament [5] was used as well as the caching GA technique [12] in
order to improve computational performance. Genetic algorithm was tested and its parameters were adjusted on
number of test examples and it performed well and proved robust in all cases. Results were verified by CPLEX.

Key-Words: Genetic Algorithms, Evolutionary computing, Location problem, Hierarchical location, Covering models

1 Introduction
The multitude of practical applications is a major reason
for the great interest in network-based facility location
modeling. Location models are application specific, and
their structural form (the objectives, constraints,
variables) is determined by a particular problem under
study. There does not exist a general location model that
is appropriate for all existing and potential discrete
location problems. Much of the literature on the facility
location modeling has been directed to formulating new
and flexible location models that will be adequate for
different applications, and to developing efficient
solution techniques for solving more general models.
 Covering location models are often used in
applications related to the location of emergency
facilities. A demand area is covered if it is within a
predefined service distance from at least one of the
existing facilities. A primary objective in siting service
facilities is to “cover” as much of the potential customer
demand as possible. Many types of location models have
been developed using covering objectives. One of the
most important models is the maximal covering location
problem (MCLP). A node is “covered” if there exists a
facility within a pre-specified coverage radius. The
objective of the MCLP is to locate a fixed number of
facilities so as to maximize the total coverage. We refer
the readers to [7] for a discussion on the problem and its
application.

1.1 Covering Models
Maximum covering models are suitable for siting
desirable facilities. However, some facilities such as

garbage dumps, nuclear reactors and prisons are
“undesirable” or “obnoxious”. Although these
“undesirable” facilities provide service to the society,
they may have an adverse effect on the people living
nearby. In such instances, maximin or maxisum
objectives may be appropriate. For the single facility
case, the maximin objective is to find the location of the
undesirable facility such that the least (weighted)
distance to all nodes is maximized, while the maxisum
objective is to site a facility so as to maximize the
(weighted) sum of the distances from the facility to all
customers located at the nodes of the network. For the
multiple facilities case, there are many well-motivated
problems, depending on how one defines the objective
function. For example, one version of maximin problems
is the p-dispersion problem, in which there are p
facilities to be located on the network so that the
minimum distance between any two facilities is as large
as possible. In the maxisum dispersion problem, the
objective is to maximize the summation of all distances
between the p facilities. The p-dispersion problem and
the maxisum dispersion problem on general networks are
both NP-hard. We refer the readers to [7] for a
comprehensive literature review of undesirable facility
location problems.

The problem of locating undesirable facilities on a
networks employing a coverage type objective function
is often considered in practice. In the literature that
problem is called as the minimum covering location
problem with distance constraints (MCLPDC). Through
locating a fixed number of facilities, intention is to
minimize the number of covered customers (where a
customer is considered covered if her distance to the
closest facility is less than a pre-determined radius).

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 746 Issue 6, Volume 7, June 2008

mailto:maricm@matf.bg.ac.yu
mailto:tubamilan@ptt.rs
http://www.matf.bg.ac.yu/%7Emaricm

 When the number of facilities is greater than one,
minimal distance constraints are imposed to prevent all
facilities to be located at the same point. To motivate the
MCLPDC consider the problem of locating nuclear
reactors. Nuclear reactors may pose a serious danger to
the individuals living nearby. The fewer people
“covered”, the better. Sometimes, for sensitivity and
safety reasons, they should also be separated (e.g., if
several reactors are clustered in the same region, they
may all be attacked by an aggressor). Separation
between nuclear reactors can be constrained by a pre-
specified minimum distance.

A related problem is the expropriation location
problem (ELP), which was introduced by Berman et al.
[1]. Each demand point is associated with a given
expropriation price. Demand points within a pre-
specified distance from a facility will be expropriated.
The ELP seeks the location set of a fixed number of
obnoxious facilities such that the total cost of
expropriation is minimized. Berman et al. studied the
Minimum Covering Location problem on the plane on a
network and presented an algorithm to solve the
problem. The sensitivity of the coverage radius was also
analyzed. They also investigated the Minimum Covering
Location problem which they call Problem 2 of ELP on
a network and generalized the search for the optimal
solution to a dominant set of points. They defined all
demand nodes whose weighted distance from the facility
is less than a pre-specified radius as covered. All
previous approaches only considered the problem of
locating a single facility. Therefore, there was no need to
incorporate distance constraints between facilities.

Of particular relevance in the practice is the location
set covering problem (LSCP), where the objective of the
LSCP is to find the minimum number of facilities that
cover all customer demand. If there is a cost associated
with each demand node, the objective of the LSCP with
variable weights minimizes the total cost of siting
facilities so as to cover the whole network. As
mentioned before, facilities are not always completely
desirable. In some cases this fact is recognized and basic
LSCP is extended to include distance constraints, which
restrict facilities to be no closer than some specified
distances from demand nodes. It is finally shown that
this model has the same structure as the LSCP.

1.2 Hierarchical Models
The hierarchical models may be important in some
situations, for example in the location of schools and
health care facilities. For example, the lower level
facilities - clinics provide only a level one service,
whereas the higher level facilities - hospitals provide
both (level one and level two) services. This hierarchy is
successively inclusive in the sense that a facility

provides its own level of service and all lower levels of
service. Other example of the HCLP is higher education
systems which consist of technical schools and
universities (universities can cover both academic and
applied studies). Third example, the production -
distribution systems may consist of factories and
warehouses, where a given product can be shipped to a
client directly from the factory or through one of the
warehouses. As can be seen from previous examples,
two levels of hierarchy are usually enough for practical
applications.

In the present paper the 2-level hierarchical
extension of the maximal covering problem is
considered. This problem is NP-hard as a generalization
of the well-known p-median problem.

2 Problem Formulation
We use the integer linear programming formulation of
the HCLP from [6]. Let R1 be the service distance for
level 1 service provided by the lower level facility. This
service distance could be considered to be equal for the
same type of service provided by the higher level
facility, but in real life people may be prepared to travel
an extra distance to obtain the same service from a
facility with more resources. So T1, the service distance
for level 1 service provided at the higher level facility, is
supposed to satisfy T1 > R1. On the other hand, let R2 be
the distance for level 2 service. This type of service is
offered only by the higher level facilities and in practice
people will be prepared to travel longer distances to
obtain the more sophisticated level 2 services. Therefore,
in the HCLP model we will consider that R2 > T1 > R1.
The mathematical programming formulation for the
hierarchical covering location problem is given below:

max j j
j J

f x
∈

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ , (1)

 s.t.

0, ,ij i ij i j
i I i I

a y b z x j J
∈ ∈

+ − ≥ ∈∑ ∑ (2)

0, ,ij i j
i I

c z x j J
∈

− ≥ ∈∑ (3)

,i
i I

y p
∈

=∑ (4)

,i
i I

z q
∈

=∑ (5)

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 747 Issue 6, Volume 7, June 2008

{ }0,1 , ,jx j J∈ ∈ (6)

{ }, 0,1 ,i iy z i I∈ ∈ . (7)

Where:
 J = {1, 2, …, m} is the set of demand areas,
 I = {1, 2, …, n} is the set of potential facility sites,
 fj is the population of demand area j,
 aij = 1 if demand area j can be covered by level 1
service (within distance R1) offered at a lower level
facility located at i ∈ I (aij = 0 otherwise),
 bij = 1 if demand area j can be covered by level 1
service (within distance T1) offered at a higher level
facility located at i ∈I (bij = 0 otherwise),
 cij = 1 if demand area j can be covered by level 2
service (within distance R2) offered at a higher level
facility located at i ∈ I (cij = 0 otherwise),
 p is the number of lower level facilities to be located,
 q is the number of higher level facilities to be located
 xj , yi and zi are the decision variables:
 xj = 1 if demand area j is covered (xj = 0 otherwise);
 yi = 1 means that a lower level facility is located at
site i ∈ I (yi = 0 otherwise),
 zi =1 means that a higher level facility is located at
site i ∈ I (zi = 0 otherwise).

In the formulation above the objective function (1), to be
maximized, represents the total population covered by
both level 1 and level 2 services. Constraints (2) state
that a demand area j ∈ J is covered by level 1 service if
there is at least either one lower level facility within
distance R1 or one higher level facility within distance
T1. Constraints (3) state that a demand area j ∈ J is
covered by level 2 service if there is at least one higher
level facility within distance R2. Constraint (4) limits the
number of the lower level facilities in the solution to p;
whereas constraint (5) limits the number of the higher
level facilities in the solution to q. Finally, constraints
(6)–(7) define the 0–1 nature of the decision variables.
 This general problem formulation was used for
adjustment of the problem for the CPLEX program when
comparing results obtained by our genetic algorithm
with the exact solutions obtained by CPLEX.
 In this paper we consider a more specialized case
where potential facility sites are the same locations
where demand areas are. This approach is more realistic
in many cases, because hospitals or fire stations, for
example, are normally located inside populated areas. So
we used J = I = {1,2, …, n}.

3 Problem Solution
Genetic Algorithms (GAs) are robust and adaptive
methods that can be used to solve search and
optimization problems. They represent problem-solving
metaheuristic method rooted in the mechanisms of
evolution and natural genetics. The main idea was
introduced by Holland, and in the last three decades GAs
have emerged as effective, robust optimization and
search methods.
 GAs solve problems by creating a population of
individuals (usually 10 - 200), represented by
chromosomes which are encoded solutions of the
problem. The representation is the genetic code of an
individual and it is often a binary string, although other
alphabets of higher cardinality can be used. A
chromosome is composed of basic units named genes,
which control the features of an individual. To each
chromosome a fitness value measuring its success is
assigned. The initial population (the first generation of
individuals) is usually randomly initialized, although in
some situation, the population may be fully or partially
generated by some initial heuristic. The second approach
usually has problems with reduced diversibility of
genetic material. It can produce better solutions in
several starting generations, but later it gives worse
results. The individuals in the population then pass
through a procedure of simulated “evolution” by means
of randomized processes of selection, crossover, and
mutation.
 The selection operator favors better individuals to
survive through the generations. The probability that a
chromosome will be chosen depends on its fitness. The
higher fitness value of a chromosome provides higher
chances for its survival and reproduction. There are
different ways of selecting the best-fitted individuals.
One of the most often used is tournament selection.
Crossover and mutation operators are also used during
reproduction. The crossover operator provides a
recombination of genetic material by exchanging
portions between the parents with the chance that good
solutions can generate even better ones.
 Mutation causes sporadic and random changes by
modifying individual's genetic material with some small
probability. Its role is to regenerate the lost or
unexplored genetic material into the population.
Mutation has a direct analogy with nature and it should
prevent premature convergence of the GA to suboptimal
solutions. Multiple usage of selection and crossover
(without mutation) results in loosing of genes variety
and some regions of search space are not reachable. This
usually causes the premature convergence in local
optimum far from global optimal value. The mutation is
basic mechanism for restoring lost genes into the
population. This increases the diversibility of genetic

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 748 Issue 6, Volume 7, June 2008

material and previously not reachable regions of search
space may be reachable again.
 There are different policies for generation
replacement. In every generation of SGA entire
population is replaced with new individuals through
selection, crossover and mutation. This variant is named
generational GA and ensures maximal gradient in
genetic search. Unfortunately, it does not have an
absolute mechanism for preserving the excellent
individuals from unlucky applying of some genetic
operator. If the good solution is destroyed, it has to be
reexplored again by genetic search, but the running time
is wasted. Therefore some number of individuals may
skip selection or even all genetic operators going directly
into the next generation. In the case of steady-state
replacement with elitist strategy a part of population
skips all genetic operators and their objective values are
evaluated only in the first generation. In all subsequent
generations they are directly proceeded and reevaluation
is not necessary. Since the objective value function is
usually most computationally expensive part of GA, the
elite individuals are obtained very cheaply. On the other
side, important individuals or genes can be preserved by
this policy. This approach is named the steady-state
generation replacement policy with elitist strategy. It
provides a smaller gradient in the genetic search, but
preserves good individuals from the past generations.
 There can be many modifications of the GA, but
implementing the GA usually involves the following
steps:

• Evaluating the fitness of all individuals in a

population.
• Selecting the best-fitted individuals.
• Creating a new population by performing crossover

and mutation operators.

The process of reproduction and population replacement
is repeated until a stopping criterion (fixed number of
generations or satisfied quality of solutions obtained) is
met.
 The genetic algorithm approach is widely used for
solving various combinatorial optimization problems,
which include location problems such as: Simple Plant
Location Problem, Index Selection Problem, Dynamic
Facility Layout Problem, etc.
 GAs are also used for solving some other hub
location problems: Uncapacitated Multiple Allocation p-
Hub Median Problem-UMApHMP, Uncapacitated
Single Allocation Hub Location Problem-USAHLP,
Uncapacitated Multiple Allocation p-Hub Center
Problem-UMApHCP. These problems have similar
names as our problem, but up to now known solution
approaches for solving these problems are substantially
different. For example, different allocation schemes in

UMApHMP and USApHMP have great impact on the
problem complexity. For the fixed set of hubs, the
multiple allocation sub-problem is solved in polynomial
O(n2p) time, while the single allocation sub-problem
remains NP-hard. Therefore, proposed genetic
algorithms for solving these problems have quite
different natures.
 Extensive computational experience on various
optimization problems shows that GA often produces
high quality solutions in a reasonable time. Some of
recent applications are:

• hub location [6, 19 – 22],
• biconnectivity augmentation [14, 15],
• multidimensional knapsack [17,18],
• graph coloring [10],
• low-autocorrelation binary

sequence[11],
• optimal power flow [2],
• cooperative control [3],
• bluetooth positioning [8],
• multimodal function optimization [9],
• decision support [13].

Moreover, GA has shown to be robust with respect to
parameter choice on quite different problems
[6,10,11,14,15,17-22]. In most cases GA has shown to
be robust with respect to parameter choice in reasonable
bounds.

3.1 GA for HCLP
 The basic scheme of this GA implementation can be
represented as a standard GA outline:

Input_Data();
Population_Init();

while not Finish() do
 for i:=1 to Npop do
 pi := Objective_Function(indi);
 endfor

 Fitness_Function();
 Selection();
 Crossover();
 Mutation();
endwhile

Output_Data();

Npop denotes the number of individuals in a population,
pi is the objective value of the i-th individual (indi).

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 749 Issue 6, Volume 7, June 2008

3.2 Representation
The binary encoding is used for solving the HCLP, so
the feasible solution of GA is represented by a 2n-
dimensional binary vector. On odd positions are encoded
level 1 facilities and on even positions level 2 facilities
are encoded. Each bit with value 1 in the genetic code
denotes that a certain facility is established, while 0
denotes that it is not. By such encoding yi and zi are
defined so xj can be computed by using constraints (2)
and (3). Therefore, all constraints except (4) and (5) are
satisfied by default.
 In order to obtain more correct individuals in the
initial population, the probability of generating ones in
the genetic code is set to p/n on odd positions and q/n on
even positions. The individuals which have a number of
ones in their genetic code that is different from p on odd
positions (denoted as kp, kp ≠ p) are corrected by
adding/erasing | p – kp | ones at/from the end of the
genetic code on odd positions. Similarly, the same
procedure is performed on even positions.
 After the correction procedure, constraints (4) and (5)
are satisfied, because the number of established facilities
on level 1 is fixed to p and the number of established
facilities on level 2 is fixed to q (all individuals become
feasible). The described correction is performed only in
the first generation, since the applied genetic operators
are designed to preserve the feasibility of individuals.
 The appearance of infeasible individuals was a
limiting factor for using binary encoding. This difficulty
was overcome in this GA implementation successfully
(as we described above), and it can also be seen from the
computational results.

3.3 Genetic Operators
GA implementation experimented with tournament and
fine-grained tournament selection – FGTS (described in
[5,6]). The FGTS depends on a real parameter Ftour – the
desired average tournament size that takes real values.
Actually, the average tournament size should be as close
as possible to Ftour. It is realized by using two types of
tournaments. During one generation, tournaments are
held with different number of competitors. The first
tournament type is held k1 times and its size is ⎡Ftour⎤.
The second type is performed k2 times with ⎣Ftour⎦
individuals participating (⎣x⎦ = r and ⎡x⎤ = s ⇔ r ≤ x ≤ s
and r,s∈Z, x∈R) that implies Ftour≈k1*⎣Ftour⎦+k2* ⎡Ftour⎤.
Running time for the FGTS operator is O(Ftour). In
practice Ftour is considered to be constant (not depending
on the problem size), that gives a constant time
complexity.
 The crossover operator is applied on a selected pair of
parents producing two offspring. The standard crossover
usually randomly chooses crossover points and simply

exchanges the segments of the parents' genetic codes.
The previous approach cannot be applied in our GA
implementation, since it may produce incorrect offspring
for the HCLP. The number of ones in an offspring may
become different from p on odd positions, although its
parents had exactly p ones on odd positions in their
genetic codes. To overcome this problem, the basic
crossover is modified in GA. The operator is
simultaneously tracing the genetic codes of the parents
from right to left searching the odd position i on which
the first parent has 1 and second 0 (Figure 1.).

parent1:001100101011⎯→ 001100101011 ⎯→
parent2:011110100001 011110100001
 →j i←

⎯→ 011100110001 ⎯→ 011100110001 ⎯→
 001110100011 001110100011
 →j i←

⎯→ 011110100001 offspring1

001100110011 offspring2

Fig. 1 Modified crossover operator

The individuals exchange bits on the found position
(identified as crossover point), and a similar process is
performed starting from the left side of the genetic
codes. The operator is searching the odd position j where
the first parent has 0 and the other 1. Bits are exchanged
on the j-th position and the number of located facilities
on level 1 in each individual remains unchanged. The
described process (step) is repeated until j ≥ i. Same
procedure is applied for bits on even positions, i.e. for
facilities on level 2.
 During the GA execution it may happen that (almost)
all individuals in the population have the same bit at a
certain position. These bits are called frozen. If the
number of frozen bits is l, the search space becomes 2l
times smaller and the possibility of premature
convergence rapidly increases. Selection and crossover
operator cannot change the bit value of any frozen bit
and the basic mutation rate is often insufficiently small
to restore the lost sub-regions of the search space. If the
basic mutation rate is increased significantly, the genetic
algorithm becomes a random search. For this reason, the
mutation rate is increased only on frozen bits not more
than a few times.
 In GA implementation the modified simple mutation
operator with frozen bits is applied to offspring
generated by the crossover operator. The mutation
operator is performed by changing a randomly selected
bit in the genetic code (0 to 1, 1 to 0). Applied mutation

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 750 Issue 6, Volume 7, June 2008

rates are constant through generations of the GA. Note
that, in order to preserve the feasibility of individuals, it
is necessary to count and compare the numbers of
mutated ones and zeros for each individual. In case that
these numbers are not equal, we have to mutate
additional bits in order to equalize them. In this way, the
mutation operator is preserving p,q ones in the genetic
code, and keeps the mutated individual feasible.

3.4 Caching GA
The running time of the GA is improved by caching.
Evaluated objective functions are stored in a cache
memory, together with the corresponding genetic codes.
When the same genetic code is obtained again during the
GA, the objective value is taken from the cache memory,
instead of computing the objective function.

For caching GA we use free system memory and
allocate it dynamically. Cache memory is divided into
the blocks of equal size. Every cache memory block
saves information about one individual from population
and contains following data: genetic code, his objective
value and indicator of individual’s validity.

In this implementation we use hash-queue structure
of pointers to all cache memory blocks for providing
following operations:

• Searching cache memory by hash table for a
particular block which contains given individual,
if such block exists,

• Removing the oldest block from cache memory
(by queue) if it is necessary,

• Putting current individual into the cache
memory, instead of the removed block, if cache
memory previously does not contain that
individual.

Queue of pointers to cache memory blocks is ordered by
information about the last access to a particular block.
On the top of the queue is placed the newest accessed
block, following by blocks accessed before it, and
finishing by the oldest cache memory block.

We perform one level caching hierarchy, which is
simple to implement and avoids problems about cache
consistency. The Least Recently Used (LRU) strategy is
used for caching GA. The number of cached function
values is limited to 5000 in this implementation.

3.5 Caching algorithm
We perform caching to the Objective_Function() on the
schematic form of GA given in previous section. Instead
of that function, we have program segment:

if (indi in cache_memory)
then

pi := Get_From_Cache(indi);

else
pi :=Objective_Function(indi);
if (Cache_is_Full())
then
 Remove_From_Cache(Oldest_Block());
 Put_In_Cache(indi);
endif

endif
Newest(indi);

First if-statement searches the cache memory for a given
individual. It returns pointer to the cache memory block
that contains a given individual, or information that
given string does not exist in the cache memory (in that
case it returns NULL pointer).

If particular individual is found in the cache
memory, we set current individual objective value from
founded cache memory block, instead of computing an
objective value. After that given cache memory block is
marked as the newest used. In the other case, if cache
block that contains a current individual is not found, the
Objective_Function(indi) is called to compute its
objective value. If cache memory is full, the oldest block
is discarded from cache memory. Afterward, we put data
of the current individual (genetic code, objective value
and validity) to free cache memory block, instead of
previously discarded block. Finally, given cache
memory block is marked as a newest. Detailed
description of caching GA technique can be found in
[12].

3.6 Other GA aspects
The population consists of 150 individuals and in the
first generation the initial population is randomly
generated. This approach provides maximal diversity of
genetic material and better gradient of objective
function. A steady-state generation replacement with
elitist strategy is used. In this replacement scheme
different number (1 to one half) of best individuals are
directly passing in the next generation preserving highly
fitted bits. The elite individuals do not need recalculation
of objective value since each of them is evaluated in one
of the previous generations.
 Duplicated individuals are removed from each
generation. Their fitness values are set to zero, so that
selection operator prevents them from entering the next
generation. This is a very effective method for saving the
diversity of genetic material and keeping the algorithm
away from premature convergence. Individuals with the
same objective function but different genetic codes in

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 751 Issue 6, Volume 7, June 2008

some cases may dominate in the population. If their
codes are similar, the GA can lead to a local optimum.
For that reason, it is useful to limit their appearance to
some constant. In this GA application this constant is set
to 40.

4 Experimental results
In order to validate our GA solutions we used CPLEX
on integer linear programming model from [4] described
in section 2. The optimality of GA results on instances
given below is verified by CPLEX. Since, both methods
(GA and CPLEX) quickly converges on mentioned
HCLP instances (less than 0.1 second), their running
times are not reported.
 For the initial testing of our GA implementation we
generated two HCLP instances, both of the size 20. To
get the initial idea of the algorithm behavior we used
Euclidean 2-D distance. The first example was generated
to include 20 random locations on the square of the size
70. The second example was used to test more irregular
situation where 20 locations on the same square are
randomly located in three loosely defined
neighborhoods. Distances were then calculated for both
examples as Euclidian 2-D distances.

4.1 Example 1

For n = 20, R1 = 10, T1 = 12, R2 = 22;

Population f = [32 36 17 11 15 38 35 36 17 21 13 39 23
33 34 36 16 20 21 15]

 and the distance matrix (random locations) that is given
in the Table 1, we get the following results:

Case 1

For parameters p = 3, q = 3:
Optimal solution value is 355.
At lower level potential facilities 8, 13 and 15 are

established.
 At higher level potential facilities 2, 7 and 14 are

established.
Demand areas 1, 2, 5, 6, 7, 8, 10, 13, 14, 15, 16 and

17 are covered.
The solution was found in the 8th generation.

Case 2

For parameters p = 6, q = 5:
Optimal solution value is 497.
At lower level potential facilities 2, 3, 8, 13, 18 and

19 are established.

 At higher level potential facilities 5, 7, 11, 16 and
17 are established.

All demand areas except location 4 are covered.
The solution was found in the 54th generation.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0 38 29 11 22 21 25 36 38 49 38 48 51 49 52 56 64 62 66 71
38 0 66 45 22 49 32 17 66 78 51 42 73 62 57 47 86 78 56 58
29 66 0 22 47 23 43 61 25 32 43 62 41 49 57 71 50 55 78 84
11 45 22 0 25 10 22 39 27 39 30 44 41 40 45 53 53 52 62 67
22 22 47 25 0 28 11 14 44 56 31 29 52 42 40 37 65 58 47 51
21 49 23 10 28 0 21 40 18 30 22 39 31 31 37 48 43 42 56 62
25 32 43 22 11 21 0 19 35 46 20 23 41 31 30 32 54 47 41 46
36 17 61 39 14 40 19 0 54 65 36 25 59 46 40 30 72 62 40 43
38 66 25 27 44 18 35 54 0 12 24 45 16 25 36 53 27 30 59 65
49 78 32 39 56 30 46 65 12 0 32 53 14 29 41 60 18 27 64 71
38 51 43 30 31 22 20 36 24 32 0 21 23 12 15 29 36 27 36 42
48 42 62 44 29 39 23 25 45 53 21 0 43 26 17 9 54 41 18 23

51 73 41 41 52 31 41 59 16 14 23 43 0 17 28 49 13 14 52 58
49 62 49 40 42 31 31 46 25 29 12 26 17 0 11 32 28 16 35 41
52 57 57 45 40 37 30 40 36 41 15 17 28 11 0 21 38 24 24 30
56 47 71 53 37 48 32 30 53 60 29 9 49 32 21 0 59 45 10 14
64 86 50 53 65 43 54 72 27 18 36 54 13 28 38 59 0 15 60 66
62 78 55 52 58 42 47 62 30 27 27 41 14 16 24 45 15 0 45 51
66 56 78 62 47 56 41 40 59 64 36 18 52 35 24 10 60 45 0 6
71 58 84 67 51 62 46 43 65 71 42 23 58 41 30 14 66 51 6 0

d

Table 1: Distance Matrix for Example 1

Case 3

For parameters p = 7, q = 5:
Optimal solution value is 508.
At lower level potential facilities 1, 3, 4, 8, 13, 18

and 19 are established.
 At higher level potential facilities 5, 7, 11, 16 and

17 are established.
All demand areas are covered.
The solution was found in the 840th generation.

From these cases we can see that the algorithm behaves
well in the average as well as in the border cases. It
always finds the optimal solution and the number of
generation necessary to find the optimal solution
increases with the complexity of the problem, but is
always very reasonable.

4.2 Example 2

For n = 20, R1 = 10, T1 = 12, R2 = 22;

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 752 Issue 6, Volume 7, June 2008

Population f = [32 36 17 11 15 38 35 36 17 21 13 39 23
33 34 36 16 20 21 15]

and the distance matrix (three neighborhoods) given the
in Table 2:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0 11 14 26 30 21 25 28 37 34 29 49 42 58 52 51 59 64 64 75
11 0 13 25 23 11 17 24 33 24 18 39 32 48 41 42 49 54 54 65
14 13 0 12 36 23 13 13 23 36 28 50 42 59 43 40 50 53 52 63
26 25 12 0 47 34 16 8 14 45 36 59 51 68 44 38 50 52 48 60
30 23 36 47 0 13 34 43 51 9 15 20 16 29 42 49 50 56 60 69
21 11 23 34 13 0 21 30 38 14 9 28 21 38 37 40 44 50 52 62
25 17 13 16 34 21 0 10 17 30 21 44 35 52 30 27 37 40 39 51
28 24 13 8 43 30 10 0 9 40 31 54 45 62 36 30 42 44 40 52
37 33 23 14 51 38 17 9 0 47 37 59 51 67 35 27 40 41 35 47

34 24 36 45 9 14 30 40 47 0 9 15 8 24 33 41 40 47 52 60
29 18 28 36 15 9 21 31 37 9 0 23 15 32 29 34 36 42 45 55
49 39 50 59 20 28 44 54 59 15 23 0 9 9 37 47 43 49 56 62

42 32 42 51 16 21 35 45 51 8 15 9 0 17 31 40 37 44 50 56
58 48 59 68 29 38 52 62 67 24 32 9 17 0 41 52 45 51 60 63

52 41 43 44 42 37 30 36 35 33 29 37 31 41 0 12 8 13 19 26
51 42 40 38 49 40 27 30 27 41 34 47 40 52 12 0 14 14 12 23

59 49 50 50 50 44 37 42 40 40 36 43 37 45 8 14 0 7 15 19
64 54 53 52 56 50 40 44 41 47 42 49 44 51 13 14 7 0 10 13
64 54 52 48 60 52 39 40 35 52 45 56 50 60 19 12 15 10 0 12
75 65 63 60 69 62 51 52 47 60 55 62 56 63 26 23 19 13 12 0

d

Table 2: Distance Matrix for Example 2

we get the following results:

Case 1

For parameters p = 3, q = 3:
Optimal solution value is 441.
At lower level potential facilities 4, 11 and 13 are

established.
 At higher level potential facilities 2, 15 and 17 are

established.
All demand areas except 7, 9 and 20 are covered.
The solution was found in the 9th generation.

Case 2
For parameters p = 6, q = 3:
Optimal solution value is 493.
At lower level potential facilities 6, 13, 15, 16, 18

and 19 are established.
 At higher level potential facilities 2, 9 and 14 are

established.
All demand areas except location 20 are covered.
The solution was found in the 4th generation.

Case 3
 Even though locations are grouped in the three
neighborhoods, location 20 is a bit too far to be covered
in the third neighborhood with the radius R2 = 22.
Introduction of the 4th hospital (level 2 facility) reduces
the need for clinics (level 1 facility) to 3.

For parameters p = 3, q = 4:
Optimal solution value is 508.
At lower level potential facilities 4, 11 and 13 are

established.
 At higher level potential facilities 2, 9, 17 and 19

are established.
All demand areas are covered.
The solution was found in the 10th generation.

4.3 Parameter Sensitivity

Different parameters were adjusted during testing and
robustness of the algorithm was examined.

In the previous examples initial population was set to
150. However, the algorithm performed well with
smaller initial population, increasing the number of
generations to reach the optimal solution:

Initial population: 20 50 150 400
Generations: 414 58 8 6 Ex 1, Case1
 259 91 54 45 Ex 1, Case2
 1558 745 840 363 Ex 1, Case3

Elitist strategy was used and again the algorithm proved
to be robust to selection of this parameter. Any number
between 1 individual and the two thirds of the population
was acceptable, but better results were obtained with
number of elitist units fixed at 10% of the whole
population.

Number of elitist: 1 10% 30% 70%
Generations: 8 7 4 12 Ex 1, Case1
 54 48 55 37 Ex 1, Case2
 840 23 65 60 Ex 1, Case3

4.4 Example 3
This example represents a case with larger number of
locations:

For n = 50, R1 = 10, T1 = 12, R2 = 22;

and the distance matrix that can be downloaded from
http://www.matf.bg.ac.yu/~maricm/instances/hclp/hclp50.txt
good behavior of the algorithm is again established:

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 753 Issue 6, Volume 7, June 2008

http://www.matf.bg.ac.yu/%7Emaricm/instances/hclp/hclp50.txt

Case 1
For parameters p = 4, q = 4:
Optimal solution value is 737.
At lower level potential facilities 15, 16, 42 and 45

are established.
At higher level potential facilities 13, 26, 33 and 40

are established.
Demand areas 2, 3, 4, 7, 12, 13, 15, 16, 17, 18, 19,

20, 25, 26, 29, 30, 31, 32, 33, 36, 38, 40, 41, 42, 45, 46,
48 and 50 are covered.

The solution was found in the 35th generation.

Case 2

For parameters p = 9, q = 14:
Optimal solution value is 1257.
At lower level potential facilities 6, 11, 12, 24, 26,

35, 36, 39 and 43 are established.
At higher level potential facilities 1, 2, 3, 8, 9, 13,

15, 27, 28, 34, 37, 38, 41 and 47 are established.
All demand areas are covered.
The solution was found in the 157th generation.

4.5 Example 4
The algorithm was also tested on a non-Euclidean
distance matrix which represents the most general form
of this problem.

For n = 100, R1 = 10, T1 = 12, R2 = 22;

and the distance matrix that can be downloaded from
http://www.matf.bg.ac.yu/~maricm/instances/hclp/hclp100.txt
performance faster then the CPLEX was noted:

Case 1

For parameters p = 5, q = 6:
Optimal solution value is 1892.
At lower level potential facilities are 3, 21, 46, 81

and 86 are established.
At higher level potential facilities 4, 10, 48, 10, 93

and 100 are established.
Demand areas 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16,

17, 18, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35,
36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70,
71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 93, 94, 95, 97, 98, 99 and100 are covered.

The solution was found in the 228th generation.

Case 2

For parameters p = 9, q = 12:
Optimal solution value is 2195.
At lower level potential facilities 7, 23, 25, 26, 27,

33, 45, 87 and 95 are established.

At higher level potential facilities 2, 13, 14, 22, 28,
41, 48, 52, 54, 55, 86 and 90 are established.

All demand areas are covered.
The solution was found in the 59th generation.

5 Conclusion
In this paper, we present one new and robust heuristic,
based on a genetic search framework for solving the
Hierarchical Covering Location Problem (HCLP). We
use binary representation, so new crossover and
mutation operators are constructed to keep the
individuals feasible, i.e. preserve exactly p,q ones in
their genetic codes. In order to increase the divisibility of
genetic material we use mutation with frozen bits.
Performance of GA implementation is improved by
using caching GA technique. On numerous examples
algorithm and the software implementation proved to be
robust and behaved well on different types and sizes of
the problem. GA parameters were adjusted and favorable
results compared to CPLEX were obtained.
 Our future research will be directed to parallelization
of the presented GA and/or testing on more powerful
computer on larger instances like B300, B500 and B700
problems from Beasley’s Library for the p-median
problem. Also, other directions can be incorporation in
exact methods and application for solving similar
location problems.

References:
[1] Berman, O., Drezner, Z., Wesolowsky. G.O., The

expropriation location problem, Journal of
Operational Research Society, Vol. 54, 2003, pp.
769–776.

[2] Bouktir, T., Slimani, L., Optimal power flow of the
Algerian Electrical Network using genetic
algorithms, WSEAS TRANSACTIONS on CIRCUITS
and SYSTEMS, Vol. 3, Issue 6, 2004, pp. 1478-1482.

[3] Cruz, J.B., Genshe C., Dongxu, L., Garagic, D.,
Target Selection in UAV Cooperative Control under
Uncertain Environment: Genetic Algorithm
Approach, WSEAS TRANSACTIONS on CIRCUITS
AND SYSTEMS, Vol. 3, Issue 3, May 2004.

[4] Espejo, L.G.A., Galvao, R.D., Boffey, B., Dual-
based heuristics for a hierarchical covering location
problem, Computers & Operations Research, Vol.
30, 2003, pp. 165-180.

[5] Filipović, V., Fine-grained Tournament Selection
Operator in Genetic Algorithms, Computing and
Informatics, Vol .22, 2003, pp. 143-161.

[6] Filipović, V., Selection and Migration operators and
Web Services in Parallel Evolutionary Algorithms (in
Serbian), PhD thesis, University of Belgrade, Faculty
of Mathematics, 2006.

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 754 Issue 6, Volume 7, June 2008

http://www.matf.bg.ac.yu/%7Emaricm/instances/hclp/hclp100.txt

[7] Galvao, R.D., ReVelle, C.S., A Lagrangean heuristic
for the maximal covering location problem,
European Journal of Operational Research, Vol. 88,
1996, pp. 114–123.

[8] Genco, A., Bluetooth Positioning Optimization by
Genetic Algorithm, WSEAS TRANSACTIONS ON
INFORMATION SCIENCE AND APPLICATIONS,
Vol. 1, Issue 6, Dec. 2004, pp. 1584-1590.

[9] Hua, Q., Wu, B., Tian, H., A Detecting Peak’s
Number Technique for Multimodal Function
Optimization, WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS, Vol.
5, Issue 2, February 2008.

[10] Juhos, I., Van Hemert, J.I., Improving graph
colouring algorithms and heuristics using a novel
representation, Lecture Notes in Computer Science,
Vol. 3906, 2006, pp. 123-134.

[11] Kovacevic, J., Hybrid Genetic Algorithm For
Solving The Low-Autocorrelation Binary Sequence
Problem, submitted to Yugoslav Journal of
Operations Research.

[12] Kratica, J., Improving Performances of the Genetic
Algorithm by Caching, Computers and Artificial
Intelligence, Vol. 18, 1999, pp. 271-283.

[13] Li, S.S., Chen, R.C., Lin, C.C., A Genetic
Algorithm-based Decision Support System for
Allocating International Apparel Demand, WSEAS
Transactions on Information Science and
Applications, Vol. 3, No. 7, pp. 1294-1299, 2006

[14] Ljubić, I., Exact and Memetic Algorithms for Two
Network Design Problems, PhD thesis, Institute of
Computer Graphics, Vienna University of
Technology, 2004.

[15] Ljubić, I., Raidl, G.R., A memetic algorithm for
minimum-cost vertex-biconnectivity augmentation of
graphs, Journal of Heuristics, Vol. 9, 2003, pp. 401-
427.

[16] Mitchell, M., An Introduction to Genetic
Algorithms, MIT Press, Cambridge, Massachusetts,
1999.

[17] Puchinger, J., Raidl, G.R., Pferschy, U., The core
concept for the multidimensional knapsack problem,
Lecture Notes in Computer Science, Vol. 3906, 2006,
pp. 195-208.

[18] Raidl, G.R., Gottlieb, J., Empirical analysis of
locality, heritability and heuristic bias in evolutionary
algorithms: A case study for the multidimensional
knapsack problem, Evolutionary Computation, Vol.
13, No. 4, 2005, pp. 441-475.

[19] Stanimirović, Z., Solving Some Discrete Location
Problems by Using Genetic Algorithms, (in Serbian),
Master's thesis, Faculty of Mathematics, University
of Belgrade, 2004.

[20] Stanimirović, Z., Genetic Algorithms for Solving
Some NP-hard Hub Location Problems, (in Serbian),

Ph.D. thesis, University of Belgrade, Faculty of
Mathematics, 2007.

[21] Stanimirović, Z., A genetic algorithm approach for
the capacitated single allocation p-hub median
problem, Computing and Informatics, Vol. 27, 2008,
in press.

[22] Stanimirović, Z., Solving the Capacitated Single
Allocation Hub Location Problem Using Genetic
Algorithm, Computing and Informatics, Vol. 27,
2008, in press.

This research is part of the Project 144007, Ministry of
Science, Serbia

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 755 Issue 6, Volume 7, June 2008

