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Abstract: - In this paper the two-level Hierarchical Covering Location Problem -  HCLP is considered. A new genetic 
algorithm for that problem is developed, including specific binary encoding with the new crossover and mutation 
operators that keep the feasibility of individuals. Modification that resolves the problem of frozen bits in genetic code 
is proposed and tested. Version of fine-grained tournament [5] was used as well as the caching GA technique [12] in 
order to improve computational performance. Genetic algorithm was tested and its parameters were adjusted on 
number of test examples and it performed well and proved robust in all cases. Results were verified by CPLEX. 
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1 Introduction 
The multitude of practical applications is a major reason 
for the great interest in network-based facility location 
modeling. Location models are application specific, and 
their structural form (the objectives, constraints, 
variables) is determined by a particular problem under 
study. There does not exist a general location model that 
is appropriate for all existing and potential discrete 
location problems. Much of the literature on the facility 
location modeling has been directed to formulating new 
and flexible location models that will be adequate for 
different applications, and to developing efficient 
solution techniques for solving more general models. 
 Covering location models are often used in 
applications related to the location of emergency 
facilities. A demand area is covered if it is within a 
predefined service distance from at least one of the 
existing facilities. A primary objective in siting service 
facilities is to “cover” as much of the potential customer 
demand as possible. Many types of location models have 
been developed using covering objectives. One of the 
most important models is the maximal covering location 
problem (MCLP). A node is “covered” if there exists a 
facility within a pre-specified coverage radius. The 
objective of the MCLP is to locate a fixed number of 
facilities so as to maximize the total coverage. We refer 
the readers to [7] for a discussion on the problem and its 
application. 
 
 
1.1   Covering Models 
Maximum covering models are suitable for siting 
desirable facilities. However, some facilities such as 

garbage dumps, nuclear reactors and prisons are 
“undesirable” or “obnoxious”. Although these 
“undesirable” facilities provide service to the society, 
they may have an adverse effect on the people living 
nearby. In such instances, maximin or maxisum 
objectives may be appropriate. For the single facility 
case, the maximin objective is to find the location of the 
undesirable facility such that the least (weighted) 
distance to all nodes is maximized, while the maxisum 
objective is to site a facility so as to maximize the 
(weighted) sum of the distances from the facility to all 
customers located at the nodes of the network. For the 
multiple facilities case, there are many well-motivated 
problems, depending on how one defines the objective 
function. For example, one version of maximin problems 
is the p-dispersion problem, in which there are p 
facilities to be located on the network so that the 
minimum distance between any two facilities is as large 
as possible. In the maxisum dispersion problem, the 
objective is to maximize the summation of all distances 
between the p facilities. The p-dispersion problem and 
the maxisum dispersion problem on general networks are 
both NP-hard. We refer the readers to [7] for a 
comprehensive literature review of undesirable facility 
location problems. 

The problem of locating undesirable facilities on a 
networks employing a coverage type objective function 
is often considered in practice. In the literature that 
problem is called as the minimum covering location 
problem with distance constraints (MCLPDC). Through 
locating a fixed number of facilities, intention is to 
minimize the number of covered customers (where a 
customer is considered covered if her distance to the 
closest facility is less than a pre-determined radius). 
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 When the number of facilities is greater than one, 
minimal distance constraints are imposed to prevent all 
facilities to be located at the same point. To motivate the 
MCLPDC consider the problem of locating nuclear 
reactors. Nuclear reactors may pose a serious danger to 
the individuals living nearby. The fewer people 
“covered”, the better. Sometimes, for sensitivity and 
safety reasons, they should also be separated (e.g., if 
several reactors are clustered in the same region, they 
may all be attacked by an aggressor). Separation 
between nuclear reactors can be constrained by a pre-
specified minimum distance. 

A related problem is the expropriation location 
problem (ELP), which was introduced by Berman et al. 
[1]. Each demand point is associated with a given 
expropriation price. Demand points within a pre-
specified distance from a facility will be expropriated. 
The ELP seeks the location set of a fixed number of 
obnoxious facilities such that the total cost of 
expropriation is minimized. Berman et al. studied the 
Minimum Covering Location problem on the plane on a 
network and presented an algorithm to solve the 
problem. The sensitivity of the coverage radius was also 
analyzed. They also investigated the Minimum Covering 
Location problem which they call Problem 2 of ELP on 
a network and generalized the search for the optimal 
solution to a dominant set of points. They defined all 
demand nodes whose weighted distance from the facility 
is less than a pre-specified radius as covered. All 
previous approaches only considered the problem of 
locating a single facility. Therefore, there was no need to 
incorporate distance constraints between facilities. 

Of particular relevance in the practice is the location 
set covering problem (LSCP), where the objective of the 
LSCP is to find the minimum number of facilities that 
cover all customer demand. If there is a cost associated 
with each demand node, the objective of the LSCP with 
variable weights minimizes the total cost of siting 
facilities so as to cover the whole network. As 
mentioned before, facilities are not always completely 
desirable. In some cases this fact is recognized and basic 
LSCP is extended to include distance constraints, which 
restrict facilities to be no closer than some specified 
distances from demand nodes. It is finally shown that 
this model has the same structure as the LSCP. 
 
 
1.2   Hierarchical Models 
The hierarchical models may be important in some 
situations, for example in the location of schools and 
health care facilities. For example, the lower level 
facilities - clinics provide only a level one service, 
whereas the higher level facilities - hospitals provide 
both (level one and level two) services. This hierarchy is 
successively inclusive in the sense that a facility 

provides its own level of service and all lower levels of 
service. Other example of the HCLP is higher education 
systems which consist of technical schools and 
universities (universities can cover both academic and 
applied studies). Third example, the production - 
distribution systems may consist of factories and 
warehouses, where a given product can be shipped to a 
client directly from the factory or through one of the 
warehouses. As can be seen from previous examples, 
two levels of hierarchy are usually enough for practical 
applications.  

In the present paper the 2-level hierarchical 
extension of the maximal covering problem is 
considered. This problem is NP-hard as a generalization 
of the well-known p-median problem. 

 
 

2   Problem Formulation 
We use the integer linear programming formulation of 
the HCLP from [6]. Let R1 be the service distance for 
level 1 service provided by the lower level facility. This 
service distance could be considered to be equal for the 
same type of service provided by the higher level 
facility, but in real life people may be prepared to travel 
an extra distance to obtain the same service from a 
facility with more resources. So T1, the service distance 
for level 1 service provided at the higher level facility, is 
supposed to satisfy T1 > R1. On the other hand, let R2 be 
the distance for level 2 service. This type of service is 
offered only by the higher level facilities and in practice 
people will be prepared to travel longer distances to 
obtain the more sophisticated level 2 services. Therefore, 
in the HCLP model we will consider that R2 > T1 > R1. 
The mathematical programming formulation for the 
hierarchical covering location problem is given below: 
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Where: 
     J = {1, 2, …, m} is the set of demand areas, 
     I = {1, 2, …, n} is the set of potential facility sites, 
     fj is the population of demand area j, 
     aij = 1 if demand area j can be covered by level 1 
service (within distance R1) offered at a lower level 
facility located at i ∈  I (aij = 0 otherwise), 
     bij = 1 if demand area j can be covered by level 1 
service (within distance T1) offered at a higher level 
facility located at i ∈I (bij = 0 otherwise), 
     cij = 1 if demand area j can be covered by level 2 
service (within distance R2) offered at a higher level 
facility located at i ∈  I (cij = 0 otherwise), 
     p is the number of lower level facilities to be located, 
     q is the number of higher level facilities to be located 
    xj , yi and zi are the decision variables: 
     xj = 1 if demand area j is covered (xj = 0 otherwise); 
    yi = 1 means that a lower level facility is located at 
site i ∈  I (yi = 0 otherwise), 
    zi =1 means that a higher level facility is located at 
site i ∈  I (zi = 0 otherwise). 
 
In the formulation above the objective function (1), to be 
maximized, represents the total population covered by 
both level 1 and level 2 services. Constraints (2) state 
that a demand area j ∈  J is covered by level 1 service if 
there is at least either one lower level facility within 
distance R1 or one higher level facility within distance 
T1. Constraints (3) state that a demand area j ∈  J is 
covered by level 2 service if there is at least one higher 
level facility within distance R2. Constraint (4) limits the  
number of the lower level facilities in the solution to p; 
whereas constraint (5) limits the number of the higher 
level facilities in the solution to q. Finally, constraints 
(6)–(7) define the 0–1 nature of the decision variables. 
     This general problem formulation was used for 
adjustment of the problem for the CPLEX program when 
comparing results obtained by our genetic algorithm 
with the exact solutions obtained by CPLEX. 
     In this paper we consider a more specialized case 
where potential facility sites are the same locations 
where demand areas are. This approach is more realistic 
in many cases, because hospitals or fire stations, for 
example, are normally located inside populated areas. So 
we used J = I = {1,2, …, n}. 

3 Problem Solution 
Genetic Algorithms (GAs) are robust and adaptive 
methods that can be used to solve search and 
optimization problems. They represent problem-solving 
metaheuristic method rooted in the mechanisms of 
evolution and natural genetics. The main idea was 
introduced by Holland, and in the last three decades GAs 
have emerged as effective, robust optimization and 
search methods. 
     GAs solve problems by creating a population of 
individuals (usually 10 - 200), represented by 
chromosomes which are encoded solutions of the 
problem. The representation is the genetic code of an 
individual and it is often a binary string, although other 
alphabets of higher cardinality can be used. A 
chromosome is composed of basic units named genes, 
which control the features of an individual. To each 
chromosome a fitness value measuring its success is 
assigned. The initial population (the first generation of 
individuals) is usually randomly initialized, although in 
some situation, the population may be fully or partially 
generated by some initial heuristic. The second approach 
usually has problems with reduced diversibility of 
genetic material. It can produce better solutions in 
several starting generations, but later it gives worse 
results. The individuals in the population then pass 
through a procedure of simulated “evolution” by means 
of randomized processes of selection, crossover, and 
mutation. 
     The selection operator favors better individuals to 
survive through the generations. The probability that a 
chromosome will be chosen depends on its fitness. The 
higher fitness value of a chromosome provides higher 
chances for its survival and reproduction. There are 
different ways of selecting the best-fitted individuals. 
One of the most often used is tournament selection. 
Crossover and mutation operators are also used during 
reproduction. The crossover operator provides a 
recombination of genetic material by exchanging 
portions between the parents with the chance that good 
solutions can generate even better ones.   
     Mutation causes sporadic and random changes by 
modifying individual's genetic material with some small 
probability. Its role is to regenerate the lost or 
unexplored genetic material into the population. 
Mutation has a direct analogy with nature and it should 
prevent premature convergence of the GA to suboptimal 
solutions. Multiple usage of selection and crossover 
(without mutation) results in loosing of genes variety 
and some regions of search space are not reachable. This 
usually causes the premature convergence in local 
optimum far from global optimal value. The mutation is 
basic mechanism for restoring lost genes into the 
population. This increases the diversibility of genetic 

WSEAS TRANSACTIONS on COMPUTERS Miroslav Maric, Milan Tuba and Jozef Kratica

ISSN: 1109-2750 748 Issue 6, Volume 7, June 2008



material and previously not reachable regions of search 
space may be reachable again. 
     There are different policies for generation 
replacement. In every generation of SGA entire 
population is replaced with new individuals through 
selection, crossover and mutation. This variant is named 
generational GA and ensures maximal gradient in 
genetic search. Unfortunately, it does not have an 
absolute mechanism for preserving the excellent 
individuals from unlucky applying of some genetic 
operator. If the good solution is destroyed, it has to be 
reexplored again by genetic search, but the running time 
is wasted. Therefore some number of individuals may 
skip selection or even all genetic operators going directly 
into the next generation.  In the case of steady-state 
replacement with elitist strategy a part of population 
skips all genetic operators and their objective values are 
evaluated only in the first generation. In all subsequent 
generations they are directly proceeded and reevaluation 
is not necessary. Since the objective value function is 
usually most computationally expensive part of GA, the 
elite individuals are obtained very cheaply. On the other 
side, important individuals or genes can be preserved by 
this policy. This approach is named the steady-state 
generation replacement policy with elitist strategy. It 
provides a smaller gradient in the genetic search, but 
preserves good individuals from the past generations.  
  There can be many modifications of the GA, but 
implementing the GA usually involves the following 
steps:  
 
• Evaluating the fitness of all individuals in a 

population. 
• Selecting the best-fitted individuals. 
• Creating a new population by performing crossover 

and mutation operators. 
 
The process of reproduction and population replacement 
is repeated until a stopping criterion (fixed number of 
generations or satisfied quality of solutions obtained) is 
met. 
     The genetic algorithm approach is widely used for 
solving various combinatorial optimization problems, 
which include location problems such as: Simple Plant 
Location Problem, Index Selection Problem, Dynamic 
Facility Layout Problem, etc. 
 GAs are also used for solving some other hub 
location problems: Uncapacitated Multiple Allocation p-
Hub Median Problem-UMApHMP, Uncapacitated 
Single Allocation Hub Location Problem-USAHLP, 
Uncapacitated Multiple Allocation p-Hub Center 
Problem-UMApHCP. These problems have similar 
names as our problem, but up to now known solution 
approaches for solving these problems are substantially 
different. For example, different allocation schemes in 

UMApHMP and USApHMP have great impact on the 
problem complexity. For the fixed set of hubs, the 
multiple allocation sub-problem is solved in polynomial 
O(n2p) time, while the single allocation sub-problem 
remains NP-hard. Therefore, proposed genetic 
algorithms for solving these problems have quite 
different natures. 
     Extensive computational experience on various 
optimization problems shows that GA often produces 
high quality solutions in a reasonable time. Some of 
recent applications are:  
 

• hub location [6, 19 – 22], 
• biconnectivity augmentation [14, 15], 
• multidimensional knapsack [17,18], 
• graph coloring [10], 
• low-autocorrelation binary 

sequence[11], 
• optimal power flow [2], 
• cooperative control [3], 
• bluetooth positioning [8], 
• multimodal function optimization [9], 
• decision support [13]. 

 
Moreover, GA has shown to be robust with respect to 
parameter choice on quite different problems 
[6,10,11,14,15,17-22]. In most cases GA has shown to 
be robust with respect to parameter choice in reasonable 
bounds. 
 
 
3.1 GA for HCLP 
     The basic scheme of this GA implementation can be 
represented as a standard GA outline: 
 
Input_Data(); 
Population_Init(); 
 
while not Finish() do 
  for i:=1 to Npop do  
   pi := Objective_Function(indi);  
  endfor 
 
   Fitness_Function(); 
  Selection(); 
 Crossover(); 
 Mutation(); 
endwhile 
 
Output_Data(); 
 
Npop denotes the number of individuals in a population, 
pi is the objective value of the i-th individual (indi).  
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3.2 Representation 
The binary encoding is used for solving the HCLP, so 
the feasible solution of GA is represented by a 2n-
dimensional binary vector. On odd positions are encoded 
level 1 facilities and on even positions level 2 facilities 
are encoded. Each bit with value 1 in the genetic code 
denotes that a certain facility is established, while 0 
denotes that it is not. By such encoding  yi and zi are 
defined so xj can be computed by using constraints (2) 
and (3). Therefore, all constraints except (4) and (5) are 
satisfied by default.  
     In order to obtain more correct individuals in the 
initial population, the probability of generating ones in 
the genetic code is set to p/n on odd positions and q/n on 
even positions. The individuals which have a number of 
ones in their genetic code that is different from p on odd 
positions (denoted as kp, kp ≠ p) are corrected by 
adding/erasing | p – kp | ones at/from the end of the 
genetic code on odd positions. Similarly, the same 
procedure is performed on even positions.   
     After the correction procedure, constraints (4) and (5) 
are satisfied, because the number of established facilities 
on level 1 is fixed to p and the number of established 
facilities on level 2 is fixed to q (all individuals become 
feasible).  The described correction is performed only in 
the first generation, since the applied genetic operators 
are designed to preserve the feasibility of individuals.  
     The appearance of infeasible individuals was a 
limiting factor for using binary encoding. This difficulty 
was overcome in this GA implementation successfully 
(as we described above), and it can also be seen from the 
computational results.   
 
  
3.3 Genetic Operators 
GA implementation experimented with tournament and 
fine-grained tournament selection – FGTS (described in 
[5,6]). The FGTS depends on a real parameter Ftour – the 
desired average tournament size that takes real values. 
Actually, the average tournament size should be as close 
as possible to Ftour. It is realized by using two types of 
tournaments. During one generation, tournaments are 
held with different number of competitors. The first 
tournament type is held k1 times and its size is ⎡Ftour⎤. 
The second type is performed k2 times with ⎣Ftour⎦ 
individuals participating (⎣x⎦ = r and ⎡x⎤ = s ⇔ r ≤ x ≤ s 
and r,s∈Z, x∈R) that implies Ftour≈k1*⎣Ftour⎦+k2* ⎡Ftour⎤. 
Running time for the FGTS operator is O(Ftour). In 
practice Ftour is considered to be constant (not depending 
on the problem size), that gives a constant time 
complexity. 
     The crossover operator is applied on a selected pair of 
parents producing two offspring. The standard crossover 
usually randomly chooses crossover points and simply 

exchanges the segments of the parents' genetic codes. 
The previous approach cannot be applied in our GA 
implementation, since it may produce incorrect offspring 
for the HCLP. The number of ones in an offspring may 
become different from p on odd positions, although its 
parents had exactly p ones on odd positions in their 
genetic codes. To overcome this problem, the basic 
crossover is modified in GA. The operator is 
simultaneously tracing the genetic codes of the parents 
from right to left searching the odd position i on which 
the first parent has 1 and second 0 (Figure 1.).  
 
parent1:001100101011⎯→ 001100101011 ⎯→ 
parent2:011110100001     011110100001 
            →j       i← 
 
 
 
⎯→ 011100110001  ⎯→  011100110001  ⎯→
   001110100011   001110100011 
                          →j i← 
 
 
⎯→ 011110100001 offspring1 

001100110011 offspring2 
 

Fig. 1 Modified crossover operator  
 

The individuals exchange bits on the found position 
(identified as crossover point), and a similar process is 
performed starting from the left side of the genetic 
codes. The operator is searching the odd position j where 
the first parent has 0 and the other 1. Bits are exchanged 
on the j-th position and the number of located facilities 
on level 1 in each individual remains unchanged. The 
described process (step) is repeated until j ≥ i. Same 
procedure is applied for bits on even positions, i.e. for 
facilities on level 2. 
     During the GA execution it may happen that (almost) 
all individuals in the population have the same bit at a 
certain position. These bits are called frozen. If the 
number of frozen bits is l, the search space becomes 2l 
times smaller and the possibility of premature 
convergence rapidly increases. Selection and crossover 
operator cannot change the bit value of any frozen bit 
and the basic mutation rate is often insufficiently small 
to restore the lost sub-regions of the search space. If the 
basic mutation rate is increased significantly, the genetic 
algorithm becomes a random search. For this reason, the 
mutation rate is increased only on frozen bits not more 
than a few times. 
     In GA implementation the modified simple mutation 
operator with frozen bits is applied to offspring 
generated by the crossover operator. The mutation 
operator is performed by changing a randomly selected 
bit in the genetic code (0 to 1, 1 to 0). Applied mutation 
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rates are constant through generations of the GA. Note 
that, in order to preserve the feasibility of individuals, it 
is necessary to count and compare the numbers of 
mutated ones and zeros for each individual. In case that 
these numbers are not equal, we have to mutate 
additional bits in order to equalize them. In this way, the 
mutation operator is preserving p,q ones in the genetic 
code, and keeps the mutated individual feasible.  
 
 
3.4   Caching GA 
The running time of the GA is improved by caching. 
Evaluated objective functions are stored in a cache 
memory, together with the corresponding genetic codes. 
When the same genetic code is obtained again during the 
GA, the objective value is taken from the cache memory, 
instead of computing the objective function.  

For caching GA we use free system memory and 
allocate it dynamically. Cache memory is divided into 
the blocks of equal size. Every cache memory block 
saves information about one individual from population 
and contains following data: genetic code, his objective 
value and indicator of individual’s validity. 

In this implementation we use hash-queue structure 
of pointers to all cache memory blocks for providing 
following operations: 
 

• Searching cache memory by hash table for a 
particular block which contains given individual, 
if such block exists, 

 

• Removing the oldest block from cache memory 
(by queue) if it is necessary, 

 

• Putting current individual into the cache 
memory, instead of the removed block, if cache 
memory previously does not contain that 
individual. 

 
Queue of pointers to cache memory blocks is ordered by 
information about the last access to a particular block. 
On the top of the queue is placed the newest accessed 
block, following by blocks accessed before it, and 
finishing by the oldest cache memory block.  

We perform one level caching hierarchy, which is 
simple to implement and avoids problems about cache 
consistency. The Least Recently Used (LRU) strategy is 
used for caching GA. The number of cached function 
values is limited to 5000 in this implementation.  

 
 

3.5   Caching algorithm 
We perform caching to the Objective_Function() on the 
schematic form of GA given in previous section. Instead 
of that function, we have program segment: 
 

if (indi in cache_memory)  
then 

pi := Get_From_Cache(indi);  
 

else 
pi :=Objective_Function(indi); 
if (Cache_is_Full())  
then  
           Remove_From_Cache(Oldest_Block()); 
           Put_In_Cache(indi); 
endif 

 

endif 
Newest(indi); 
 
First  if-statement searches the cache memory for a given 
individual. It returns pointer to the cache memory block 
that contains a given individual, or information that 
given string does not exist in the cache memory (in that 
case it returns NULL pointer). 

If particular individual is found in the cache 
memory, we set current individual objective value from 
founded cache memory block, instead of computing an 
objective value. After that given cache memory block is 
marked as the newest used. In the other case, if cache 
block that contains a current individual is not found, the 
Objective_Function(indi) is called to compute its 
objective value. If cache memory is full, the oldest block 
is discarded from cache memory. Afterward, we put data 
of the current individual (genetic code, objective value 
and validity) to free cache memory block, instead of 
previously discarded block. Finally, given cache 
memory block is marked as a newest. Detailed 
description of caching GA technique can be found in 
[12]. 

 
 

3.6   Other GA aspects 
The population consists of 150 individuals and in the 
first generation the initial population is randomly 
generated. This approach provides maximal diversity of 
genetic material and better gradient of objective 
function. A steady-state generation replacement with 
elitist strategy is used. In this replacement scheme 
different number (1 to one half) of best individuals are 
directly passing in the next generation preserving highly 
fitted bits. The elite individuals do not need recalculation 
of objective value since each of them is evaluated in one 
of the previous generations. 
     Duplicated individuals are removed from each 
generation. Their fitness values are set to zero, so that 
selection operator prevents them from entering the next 
generation. This is a very effective method for saving the 
diversity of genetic material and keeping the algorithm 
away from premature convergence. Individuals with the 
same objective function but different genetic codes in 
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some cases may dominate in the population. If their 
codes are similar, the GA can lead to a local optimum. 
For that reason, it is useful to limit their appearance to 
some constant. In this GA application this constant is set 
to 40. 
 
 
4 Experimental results 
In order to validate our GA solutions we used CPLEX 
on integer linear programming model from [4] described 
in section 2. The optimality of GA results on instances 
given below is verified by CPLEX. Since, both methods 
(GA and CPLEX) quickly converges on mentioned 
HCLP instances (less than 0.1 second), their running 
times are not reported.       
     For the initial testing of our GA implementation we 
generated two  HCLP instances, both of the size 20. To 
get the initial idea of the algorithm behavior we used 
Euclidean 2-D distance. The first example was generated 
to include 20 random locations on the square of the size 
70. The second example was used to test more irregular 
situation where 20 locations on the same square are 
randomly located in three loosely defined 
neighborhoods. Distances were then calculated for both 
examples as Euclidian 2-D distances. 
 
 
4.1   Example 1 
 
For n = 20, R1  = 10, T1  = 12, R2  = 22; 
 
Population f = [32 36 17 11 15 38 35 36 17 21 13 39 23 
33 34 36 16 20 21 15] 
 
 and the distance matrix (random locations) that is given 
in the Table 1, we get the following results: 
 
Case 1 

For parameters p = 3, q = 3: 
Optimal solution value is 355. 
At lower level potential facilities 8, 13 and 15 are 

established. 
 At higher level potential facilities 2, 7 and 14 are 

established. 
Demand areas 1, 2, 5, 6, 7, 8, 10, 13, 14, 15, 16 and 

17 are covered. 
The solution was found in the 8th generation. 

 
Case 2 

For parameters p = 6, q = 5: 
Optimal solution value is 497. 
At lower level potential facilities 2, 3, 8, 13, 18 and 

19 are established. 

 At higher level potential facilities 5, 7, 11, 16 and 
17 are established. 

All demand areas except location 4 are covered. 
The solution was found in the 54th generation. 
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=

0  38 29 11 22 21 25 36 38 49 38 48 51 49 52 56 64 62 66 71 
38 0  66 45 22 49 32 17 66 78 51 42 73 62 57 47 86 78 56 58 
29 66 0  22 47 23 43 61 25 32 43 62 41 49 57 71 50 55 78 84 
11 45 22 0  25 10 22 39 27 39 30 44 41 40 45 53 53 52 62 67 
22 22 47 25 0  28 11 14 44 56 31 29 52 42 40 37 65 58 47 51 
21 49 23 10 28 0  21 40 18 30 22 39 31 31 37 48 43 42 56 62 
25 32 43 22 11 21 0  19 35 46 20 23 41 31 30 32 54 47 41 46 
36 17 61 39 14 40 19 0  54 65 36 25 59 46 40 30 72 62 40 43 
38 66 25 27 44 18 35 54 0  12 24 45 16 25 36 53 27 30 59 65 
49 78 32 39 56 30 46 65 12 0  32 53 14 29 41 60 18 27 64 71 
38 51 43 30 31 22 20 36 24 32 0  21 23 12 15 29 36 27 36 42 
48 42 62 44 29 39 23 25 45 53 21 0  43 26 17 9  54 41 18 23 

51 73 41 41 52 31 41 59 16 14 23 43 0  17 28 49 13 14 52 58 
49 62 49 40 42 31 31 46 25 29 12 26 17 0  11 32 28 16 35 41 
52 57 57 45 40 37 30 40 36 41 15 17 28 11 0  21 38 24 24 30 
56 47 71 53 37 48 32 30 53 60 29 9  49 32 21 0  59 45 10 14 
64 86 50 53 65 43 54 72 27 18 36 54 13 28 38 59 0  15 60 66 
62 78 55 52 58 42 47 62 30 27 27 41 14 16 24 45 15 0  45 51 
66 56 78 62 47 56 41 40 59 64 36 18 52 35 24 10 60 45 0  6  
71 58 84 67 51 62 46 43 65 71 42 23 58 41 30 14 66 51 6  0  

d

 
Table 1: Distance Matrix for Example 1 

 
Case 3 

For parameters p = 7, q = 5: 
Optimal solution value is 508. 
At lower level potential facilities 1, 3, 4, 8, 13, 18 

and 19 are established. 
 At higher level potential facilities 5, 7, 11, 16 and 

17 are established. 
All demand areas are covered. 
The solution was found in the 840th generation. 
 

From these cases we can see that the algorithm behaves 
well in the average as well as in the border cases. It 
always finds the optimal solution and the number of 
generation necessary to find the optimal solution 
increases with the complexity of the problem, but is 
always very reasonable. 
 
 
4.2   Example 2 
 
For n = 20, R1  = 10, T1  = 12, R2  = 22; 
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Population f = [32 36 17 11 15 38 35 36 17 21 13 39 23 
33 34 36 16 20 21 15] 
 
and the distance matrix (three neighborhoods) given the 
in Table 2: 
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⎣

⎡

=

0  11 14 26 30 21 25 28 37 34 29 49 42 58 52 51 59 64 64 75 
11 0  13 25 23 11 17 24 33 24 18 39 32 48 41 42 49 54 54 65 
14 13 0  12 36 23 13 13 23 36 28 50 42 59 43 40 50 53 52 63 
26 25 12 0  47 34 16 8  14 45 36 59 51 68 44 38 50 52 48 60 
30 23 36 47 0  13 34 43 51 9  15 20 16 29 42 49 50 56 60 69 
21 11 23 34 13 0  21 30 38 14 9  28 21 38 37 40 44 50 52 62 
25 17 13 16 34 21 0  10 17 30 21 44 35 52 30 27 37 40 39 51 
28 24 13 8  43 30 10 0  9  40 31 54 45 62 36 30 42 44 40 52 
37 33 23 14 51 38 17 9  0  47 37 59 51 67 35 27 40 41 35 47 

34 24 36 45 9  14 30 40 47 0  9  15 8  24 33 41 40 47 52 60 
29 18 28 36 15 9  21 31 37 9  0  23 15 32 29 34 36 42 45 55 
49 39 50 59 20 28 44 54 59 15 23 0  9  9  37 47 43 49 56 62 

42 32 42 51 16 21 35 45 51 8  15 9  0  17 31 40 37 44 50 56 
58 48 59 68 29 38 52 62 67 24 32 9  17 0  41 52 45 51 60 63 

52 41 43 44 42 37 30 36 35 33 29 37 31 41 0  12 8  13 19 26 
51 42 40 38 49 40 27 30 27 41 34 47 40 52 12 0  14 14 12 23 

59 49 50 50 50 44 37 42 40 40 36 43 37 45 8  14 0  7  15 19 
64 54 53 52 56 50 40 44 41 47 42 49 44 51 13 14 7  0  10 13 
64 54 52 48 60 52 39 40 35 52 45 56 50 60 19 12 15 10 0  12 
75 65 63 60 69 62 51 52 47 60 55 62 56 63 26 23 19 13 12 0  

d

  
Table 2: Distance Matrix for Example 2 

 
we get the following results: 
 
Case 1 

For parameters p = 3, q = 3: 
Optimal solution value is 441. 
At lower level potential facilities 4, 11 and 13 are 

established. 
 At higher level potential facilities 2, 15 and 17 are 

established. 
All demand areas except 7, 9 and 20 are covered. 
The solution was found in the 9th generation. 
 

Case 2 
For parameters p = 6, q = 3: 
Optimal solution value is 493. 
At lower level potential facilities 6, 13, 15, 16, 18 

and 19 are established. 
 At higher level potential facilities 2, 9 and 14 are 

established. 
All demand areas except location 20 are covered. 
The solution was found in the 4th generation. 

Case 3 
     Even though locations are grouped in the three 
neighborhoods, location 20 is a bit too far to be covered 
in the third neighborhood with the radius R2  = 22. 
Introduction of the 4th hospital (level 2 facility) reduces 
the need for clinics (level 1 facility) to 3. 

 
For parameters p = 3, q = 4: 
Optimal solution value is 508. 
At lower level potential facilities 4, 11 and 13 are 

established. 
 At higher level potential facilities 2, 9, 17 and 19 

are established. 
All demand areas are covered. 
The solution was found in the 10th generation. 

 
 
4.3   Parameter Sensitivity 
 
Different parameters were adjusted during testing and 
robustness of the algorithm was examined. 
 
In the previous examples initial population was set to 
150. However, the algorithm performed well with 
smaller initial population, increasing the number of 
generations to reach the optimal solution: 
 
Initial population:   20     50   150   400 
Generations:            414     58       8       6      Ex 1, Case1 
                                 259     91     54     45     Ex 1, Case2 
                               1558  745   840   363      Ex 1, Case3 
 
Elitist strategy was used and again the algorithm proved 
to be robust to selection of this parameter. Any number 
between 1 individual and the two thirds of the population 
was acceptable, but better results were obtained with 
number of elitist units fixed at 10% of the whole 
population. 
 
Number of elitist:    1    10%   30%  70% 
Generations:             8        7        4       12      Ex 1, Case1 
                                 54     48      55      37      Ex 1, Case2 
                                840    23      65      60      Ex 1, Case3 
 
 
4.4   Example 3 
This example represents a case with larger  number of 
locations: 
 
For n = 50, R1  = 10, T1  = 12, R2  = 22; 
 
and the distance matrix that can be downloaded from 
http://www.matf.bg.ac.yu/~maricm/instances/hclp/hclp50.txt 
good behavior of the algorithm is again established: 
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Case 1 
For parameters p = 4, q = 4: 
Optimal solution value is 737. 
At lower level potential facilities 15, 16, 42 and 45 

are established. 
At higher level potential facilities 13, 26, 33 and 40 

are established. 
Demand areas 2, 3, 4, 7, 12, 13, 15, 16, 17, 18, 19, 

20, 25, 26, 29, 30, 31, 32, 33, 36, 38, 40, 41, 42, 45, 46, 
48 and 50 are covered. 

The solution was found in the 35th generation. 
 
Case 2 

For parameters p = 9, q = 14: 
Optimal solution value is 1257. 
At lower level potential facilities 6, 11, 12, 24, 26, 

35, 36, 39 and 43 are established. 
At higher level potential facilities 1, 2, 3, 8, 9, 13, 

15, 27, 28, 34, 37, 38, 41 and 47 are established. 
All demand areas are covered. 
The solution was found in the 157th generation. 

 
 
4.5   Example 4 
The algorithm was also tested on a non-Euclidean 
distance matrix which represents the most general form 
of this problem. 
 
For n = 100, R1  = 10, T1  = 12, R2  = 22; 
 
and the distance matrix that can be downloaded from 
http://www.matf.bg.ac.yu/~maricm/instances/hclp/hclp100.txt 
performance faster then the CPLEX was noted: 
 
Case 1 

For parameters p = 5, q = 6: 
Optimal solution value is 1892. 
At lower level potential facilities are 3, 21, 46, 81 

and 86 are established. 
At higher level potential facilities 4, 10, 48, 10, 93 

and 100 are established. 
Demand areas 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 

17, 18, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 
36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 
71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 86, 87, 
88, 89, 90, 91, 93, 94, 95, 97, 98, 99 and100 are covered. 

The solution was found in the 228th generation. 
 
Case 2 

For parameters p = 9, q = 12: 
Optimal solution value is 2195. 
At lower level potential facilities 7, 23, 25, 26, 27, 

33, 45, 87 and 95 are established. 

At higher level potential facilities 2, 13, 14, 22, 28, 
41, 48, 52, 54, 55, 86 and 90 are established. 

All demand areas are covered. 
The solution was found in the 59th generation. 

 
 
5 Conclusion 
In this paper, we present one new and robust heuristic, 
based on a genetic search framework for solving the 
Hierarchical Covering Location Problem (HCLP). We 
use binary representation, so new crossover and 
mutation operators are constructed to keep the 
individuals feasible, i.e. preserve exactly p,q ones in 
their genetic codes. In order to increase the divisibility of 
genetic material we use mutation with frozen bits. 
Performance of GA implementation is improved by 
using caching GA technique. On numerous examples 
algorithm and the software implementation proved to be 
robust and behaved well on different types and sizes of 
the problem. GA parameters were adjusted and favorable 
results compared to CPLEX were obtained. 
     Our future research will be directed to parallelization 
of the presented GA and/or testing on more powerful 
computer on larger instances like B300, B500 and B700 
problems from Beasley’s Library for the p-median 
problem. Also, other directions can be incorporation in 
exact methods and application for solving similar 
location problems. 
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