
Cost Effective Software Test Metrics

 LJUBOMIR LAZICa, NIKOS MASTORAKISb
aTechnical Faculty, University of Novi Pazar

Vuka Karadžića bb, 36300 Novi Pazar, SERBIA
llazic@np.ac.yu http://www.np.ac.yu

bMilitary Institutions of University Education, Hellenic Naval Academy

Terma Hatzikyriakou, 18539, Piraeu, Greece
 mastor@ieee.org)

Abstract: - This paper discusses software test metrics and their ability to show objective evidence necessary to
make process improvements in a development organization. When used properly, test metrics assist in the
improvement of the software development process by providing pragmatic, objective evidence of process
change initiatives. This paper also describes several test metrics that can be implemented, a method for
creating a practical approach to tracking & interpreting the metrics, and illustrates one organization’s use of test
metrics to prove the effectiveness of process changes. Also, this paper provides the Balanced Productivity
Metrics (BPM) strategy and approach in order to design and produce useful project metrics from basic test
planning and defect data. Software test metrics is a useful for test managers, which aids in precise estimation of
project effort, addresses the interests of metric group, software managers of the software organization who are
interested in estimating software test effort and improve both development and testing processes.

Key-Words: - Software testing, Test metrics, Size estimation, Effort estimation, Test effectiveness evaluation

1 Introduction
As organizations strive to shorten the development
time of their products while at the same time
attempting to improve their quality, the need for
practical, cost effective testing strategies and
techniques is becoming more and more important
[1,2,3]. These strategies and techniques must span
the full range of the development process addressing
unit and component testing, integration testing,
system testing and acceptance testing. In addition,
the strategies and techniques must be tailored to the
product under development recognizing unique
project characteristics and constraints such as
reliability, safety, cost and schedule. Testing
activities also provide a critical opportunity to
capture metrics and defect information that can be
utilized to improve both development and testing
processes. Software testing is one activity that can
provide visibility into product and process quality.
Test metrics are among the "facts" that project
managers can use to understand their current
position and prioritise their activities, so that they
can reduce the risk (or impact) of running out of
time before the software is ready for release [1,3-5].

We had many areas to address in our testing
team to improve the quality and efficiency of the
testing services provided to the project. Creating test
metrics to drive process improvement in the test

group and project team was a logical place to start.
With metrics collection, timing is everything.
Testers should start collecting metrics as soon as
they get software that is stable enough to
meaningfully run tests. If you are only testing (or
collecting test metrics) near the end of the
development lifecycle, then it is too late  you have
lost the opportunity to use the information to make a
difference [4,6].

Test metrics collection programs do not have to
be extensive to be effective. We have identified six
issues (see Table 1) of test metrics that we collect on
our testing projects. These fall into two categories –
problem report (PR) information and test
information. Testing is often seen as a troublesome
and uncontrollable process. As it is often
performed, it takes too much time, costs too much,
and does not contribute to product quality.
However, with appropriate processes, it can be
brought under control and can add significant value
to the development process. Planning for testing on
a software project is often challenging for program
managers. Test progress is frequently unpredictable,
and during software testing painful schedule and
feature "surprises" typically occur. Software testing
is often viewed as an obstacle - more as a problem
and less as a vital step in the process. For this
reason, testing is treated as a "black box" and
addressed at the end of the schedule. While budget

WSEAS TRANSACTIONS on COMPUTERS

Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 599 Issue 6, Volume 7, June 2008

and time may be allocated for it, testing is not really
managed in the same way as
development.Typically, software development is
measured in terms of overall progress in meeting
functional and business goals. Software testing
needs to be measured in similar terms to understand
its true progress and make informed decisions. By
considering testing dimensions other than cost and
schedule, managers and other team members can
better understand and optimize the testing process
[3], in effect opening the black box and managing
testing more effectively. We describe the Balanced
Productivity Metrics (BPM) strategy and approach
which incorporates the use of both quantitative and
qualitative data for measuring performance and
productivity improvement. In this way they can
avoid costly and painful "surprises" late in the
project. It is often said, “You cannot improve what
you cannot measure.” In this article, we describe
some basic software measurement principles and
suggest some metrics that can help you understand
and improve the way your organization operates i.e.
Software Testing Metrics Framework (STMF) [5].
When used properly, test metrics assist in the
improvement of the software development process
by providing pragmatic, objective evidence of
process change initiatives. This paper also describes
several test metrics that can be implemented, a
method for creating and interpreting the metrics, and
illustrates one organization’s use of test metrics to
prove the effectiveness of process changes.

Effective test management requires a wide
variety of skills and activities, including the
identification, collection, and analysis of a variety of
test-related and quality-related metrics, and metrics
associated with test status tracking, management,
and control; proper reviews (to varying levels of
formality) of test documentation and support
material; and the determination of clear criteria for
objectively assessing whether or not a system is
ready for piloting, and when it is ready for
operational use.Within this context, test activities
should be prioritized with the ultimate objective of
delivering maximum benefit to the end-users.).

This paper is organized as follows. Section 2
presents the software metrics definition. Section 3
explain why metrics specific to SW Testing are
essential. Software Testing Optimization Model and
IT benefits are presented in Section 4. Economic
value measurement as a leading indicators for
software testing process optimization is described in
section 5. Finally, the paper is concluded in Section
6.

2 Software Metrics Definition
Metrics are defined as “standards of measurement”
and have long been used in the IT industry to
indicate a method of gauging the effectiveness and
efficiency of a particular activity within a project.
Test metrics exist in a variety of forms. The
question is not whether we should use them, but
rather, which ones should we use. Simpler is almost
always better. For example, it may be interesting to
derive the Binomial Probability Mass Function for
a particular project, although it may not be practical
in terms of the resources and time required to
capture and analyze the data. Furthermore, the
resulting information may not be meaningful or
useful to the current effort of process improvement.

One thing that makes Test Metrics unique, in a
way, is that they are gathered during the test effort
(towards the end of the SDLC), and can provide
measurements of many different activities that have
been performed throughout the project. Because of
this attribute, Test Metrics can be used in
conjunction with Root Cause Analysis to
quantitatively track issues from points of occurrence
throughout the development process. Finally, when
Test Metrics data is accumulated, updated and
reported on a consistent basis, it allows trend
analysis to be performed on the information, which
is useful in observing the effect of process changes
over multiple projects. Metrics are measurements,
collections of data about project activities, resources
and deliverables. Metrics can be used to help
estimate projects, measure project progress and
performance, and quantify product attributes.
Examples include:

• product metrics, e.g., number of lines of code in
a product, number of requirements in an SRS
• software development resource metrics, e.g.,
number of people working on a project
• software development process metrics, e.g.,
number of lines of code inspected

Metrics are measurements of the world around us.
Without measurements, we are blind to the changes
that go on in the world. Without measurements we
can never know if we are improving or getting
worse; we can never know if we are succeeding or
failing. During a software development project,
metrics have four basic uses;

1) to show the project manager where the project
is in terms of completion,
2) to provide information upon which to base
decisions,

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 600 Issue 6, Volume 7, June 2008

3) to provide the basis of estimates for future
projects, and
4) to provide management with information
about the quality and reliability of the finished
product.

In order to measure the actual values such as
software size, defect density, verification
effectiveness and productivity, records of these
values must be maintained. Ideally, these actual
values will be tracked against estimates that are
made at the start of a project and updated during
project execution.

The sole purpose for collecting metrics is to act
on them. Failure to act on the data collected is
waste. Actually, it is worse than waste because if
the development community sees that the collected
data is not being used, they will slowly stop
collecting it or will report inaccurate values. This
will reduce the waste but will render a metrics
program useless and very difficult to restart. So if
there is no written plan dealing with how the data is
to be used, forget about collecting it.

2.1 Testing Process Flow
Once it was clear that Testing was much more than
“Debugging” or “Problem fixing”, it was apparent
that testing was more than just a phase near the end
of the development cycle. Testing has a lif e cycle
of its own and there is useful and constructive
testing to be done throughout the entire life cycle of
development. This means that testing process begins
with the requirements phase and from there parallels
the entire development process. In other words, for
each phase of the development process there is an
important testing activity. This necessitates the need
to migrate from an immature, adhoc way of working
to having a full-fledged Testing Process. The
following is the life cycle for the complete Test
Development and Execution Process scheme (see
Fig. 1).

Fig. 1. Test Development and Execution Process
scheme.

2.2 The New Test Metrics Philosophy
An optimized IT organization balances quality, cost
and schedule. In doing so, IT can prioritize testing
activities, make effective use of limited resources
and be more agile in response to business change as
described in our well documented IOSTP [3]. Test
metrics and data gathering regarding the testing
costs, testing failure costs, and defects are essential
to manage and control testing function efficiently
and effectively by a comprehensive Metrics
Program that we call Software Testing Metrics
Framework (STMF) [5] which is established and
maintained to periodically check the health of the
Testing Process with respect to “Defect Detection”
and “Defect Prevention” effectiveness. This is done
by “Monitoring & Measuring” the different metrics
associated with “Defect Detection” and “Defect
Prevention”. Whenever, or wherever, the Testing
process is found to be ineffective, it is “Optimized”
accordingly [3,4]. Accurate data and relevant
metrics provide information for decision making in
relation to quality of products and processes.
Otherwise the release decisions, further investments,
and process changes are troublesome to justify
without proper information. Hard data about the
current situation also concretizes the true facts
enabling to set up feasible and rational objectives.
By establishing appropriate metrics, an organization
can balance the cost of testing with the benefits
derived from that testing. In order for metrics to be
effective, the data collected must allow an
organization to understand clearly:

• When the cost of further testing would outweigh
the risk to the business [1,4].

• The cost to fix defects at the various stages of a
project life cycle [6-8].

• The potential risk and subsequent costs to the
business if the amount of testing were to be reduced
[3].

This information can then be used to provide the
organization with an informed basis of decision and
effective ways to:

• Estimate the testing budget/spend.

• Spend more efficiently for future projects.

• Potentially reduce the overall costs of testing,
realizing maximum value.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 601 Issue 6, Volume 7, June 2008

• Reduce total development and production support
costs.
 During individual projects, project metrics can be
compared with accumulated experience to provide
an early indication of quality levels and the accuracy
of estimates. This in turn enables effective
management and cost control at a project
management level. In most organizations there is a
lot of Do-Do-Do-Do and in many organizations
there is a lot of Plan-Do-Plan-Do. But to close the
cycle, the other two activities must be added [3].
We plan (make estimates), Do (execute our plan),
Measure (measure our progress), and Act (Compare
the actual progress against the estimated progress
and make changes to reduce the difference) i.e. we
implemented Six Sigma strategy to software testing
process. For beginners at software metrics, this
cycle can be applied to cost, effort and schedule,
given the right measurements. The encompassing
body is the Software Development Life Cycle
(SDLC). At the beginning of the project, the key
parameters like “Schedule”, “Cost” and “Quality”
are “Estimated” or “Predicted”. These are
subsequently monitored throughout the life cycle.
The “Schedule” is monitored in terms of “Time
Slip”. The “Cost” is monitored in terms of “Effort
Slip”. The “Quality” is monitored in terms of
“Defect Density”. Testing Process, as can be seen
from the above, is a sub set of the software
development life cycle. The main focus areas are:

• Defect Detection

• Defect Prevention

as shown on Fig 2.

Fig. 2. The Software Testing Metrics Framework
Process scheme.

2.3 Keep it Simple

What Are Software Metrics?

Software metrics are measures that are used to
quantify software, software development resources,
and/or the software development process. This
includes items which are directly measurable, such
as lines of code, as well as items which are
calculated from measurements, such as earned
value. Everyone who develops software uses some
kind of software metrics. However, when asked
what software metrics are, the tendency is to restrict
the response to software size measurements, such as
lines of code or function points. In reality, software
metrics include much more than primitive measures
of program size. Software metrics include
calculations based on measurements of any or all
components of software development. For example,
consider the system integrator who wishes to
determine the status of a project’s test phase. He or
she will undoubtedly ask for information on the
proportion of tests that have been executed, the
proportion that were executed successfully, and the
number of defects identified. These measures are all
examples of primitive - yet useful - software
metrics. Consider the engineer who is responsible
for improving the performance of a software
product. He or she will consider items such as
memory utilization, I/O rates, and the relative
complexity of software components. These are also
examples of software metrics. There is nothing
overly complicated about software metrics. In fact,
the biggest challenge in establishing an effective
metrics program has nothing to do with the
formulas, statistics, and complex analysis that are
often associated with metrics. Rather, the difficulty
lies in determining which metrics are valuable to the
company, and which procedures are most efficient
for collecting and using these metrics.

Our’s STMF-Metrics methodology [5] begins
by showing the value of tracking the easy metrics
first. So, what are “easy metrics”? Most Test
Analysts are required to know the number of test
cases they will execute, the current state of each test
case (Executed/Unexecuted, Passed/Failed/Blocked,
etc.), and the time and date of execution. This is
basic information that is generally tracked in some
way by every Test Analyst. When we say “keep it
simple” we also mean that the Metrics should be
easy to understand and objectively quantifiable.
Metrics are easy to understand when they have
clear, unambiguous definitions and explanations.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 602 Issue 6, Volume 7, June 2008

Below are some examples of the definition and
explanation of the 'easy metrics'.

2.4 Create Meaningful Metrics
Test Metrics are meaningful if they provide
objective feedback to the Project Team regarding
any of the development processes - from analysis,
to coding, to testing – and support a project goal. If
a metric does not support a project goal, then there
is no reason to track it – it is meaningless to the
organization. Tracking meaningless metrics wastes
time and does little to improve the development
process. Metrics should also be objective. As
indicated in the sample definition shown in the
previous section, an objective metric can only be
tracked one way, no matter who is doing the
tracking. This prevents the data from being
corrupted and makes it easier for the project team to
trust the information and analysis resulting from the
metrics. While it would be best if all metrics were
objective, this may be an unrealistic expectation.
The problem is that subjective metrics can be
difficult to track and interpret on a consistent basis,
and team members may not trust them. Without
trust, objectivity, and solid reasoning, which is
provided by the Test Metrics, it is difficult to
implement process changes. Metrics are important
in Software because so much is at stake. Our jobs
and the jobs of others depend on the cost of
producing and maintaining software as well as the
quality costs that may be incurred by us as the
producers and by the users. If our competitors do a
better job in producing a similar product, then our
company will lose sales and we may lose our jobs.
The very existence of a software producing
organization may hang is the balance. Metrics can
tell us how well we are doing and where we can
improve by doing something different.

2.5 Track the Metrics

Tracking Test Metrics throughout the test effort is
extremely important because it allows the Project
Team to see developing trends, and provides a
historical perspective at the end of the project.
Tracking metrics requires effort, but that effort can
be minimized through the simple automation of the
Run Log (by using a spreadsheet or a database) or
through customized reports from a test management
or defect tracking system. This underscores the
'Keep It Simple' part of the philosophy, in that
metrics should be simple to track, and simple to
understand. The process of tracking test metrics
should not create a burden on the Test Team or Test

Lead; otherwise it is likely that the metrics will not
be tracked and valuable information will be lost.
Furthermore, by automating the process by which
the metrics are tracked it is less likely that human
error or bias can be introduced into the metrics.

2.6 Types of Metrics – Basic and Calculated

Basic metrics constitute the raw data gathered by a
Test Analyst throughout the testing effort. These
metrics are used to provide project status reports to
the Test Lead and Project Manager; they also feed
into the formulas used to derive Calculated Metrics.
We suggests that every project should track the
following Test Metrics:

of Test Cases # of First Run Failures

of Test Cases Executed Total Executions

of Test Cases Passed Total Passes

of Test Cases Failed Total Failures

of Test Cases Under
Investigation

Test Case Execution
Time

of Test Cases Blocked Test Execution Time

of Test Cases Re-executed

As seen in the ‘Keep It Simple’ section, many of the
Basic Metrics are simple counts that most Test
Analysts already track in one form or another.
While there are other Basic Metrics that could be
tracked, we believes this list is sufficient for most
Test Teams that are starting a Test Metrics program.
Calculated Metrics convert the Basic Metrics data
into more useful information. These types of
metrics are generally the responsibility of the Test
Lead and can be tracked at many different levels (by
module, tester, or project). The following
Calculated Metrics are recommended for
implementation in all test efforts.

% Complete % Defects Corrected

% Test Coverage % Rework

% Test Cases Passed % Test Effectiveness

% Test Cases Blocked % Test Efficiency

1st Run Fail Rate Defect Discovery Rate

Overall Fail Rate Defect Removal Cost

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 603 Issue 6, Volume 7, June 2008

These metrics provide valuable information that,
when used and interpreted, oftentimes leads to
significant improvements in the overall SDLC. For
example, the 1st Run Fail Rate, as defined in the
STMF- Metrics Methodology, indicates how clean
the code is when it is delivered to the Test Team. If
this metric has a high value, it may be indicative of
a lack of unit testing or code peer review during the
coding phase. With this information, as well as any
other relevant information available to the Project
Team, the Project Team may decide to institute
some preventative QA techniques that they believe
will improve the process. Of course, in the next
project, when the metric is observed it should be
noted how it has trended to see if the process change
was in fact an improvement.

2.7 The final step - Interpretation and Change

As mentioned earlier, test metrics should be
reviewed and interpreted on a regular basis
throughout the test effort and particularly after the
application is released into production. During the
review meetings, the Project Team should closely
examine ALL available data, and use that
information to determine the root cause of identified
problems. It is important to look at several of the
Basic Metrics and Calculated Metrics in conjunction
with one another, as this will allow the Project Team
to have a clearer picture of what took place during
the test effort. If metrics have been gathered across
several projects, then a comparison should be done
between the results of the current project and the
average or baseline results from the other projects.
This makes trends across the projects easy to see,
particularly when development process changes are
being implemented. Always take note to determine
if the current metrics are typical of software projects
in your organization. If not, observe if the change is
positive or negative, and then follow up by doing a
root cause analysis to ascertain the reason for the
change.

3 The Metrics Specific to SW Testing

are Essential
Metrics help you better control your software
projects and learn more about the way your
organization works. Specifically, the measurements
described in this paper first answers the question of
whether Software Testing is "doing the right thing"
(effectiveness). Once there is assurance and
quantification of correct testing, metrics should be
developed that determine whether or not Software
Testing "does the thing right" (efficiency) as we did

during M&S of Optimized Software Testing model
which combine Risk Management and Earned Value
Management called RBOST [4]. You can measure
many aspects of your software products, projects,
and processes. The trick is to select a small and
balanced set of metrics that will help your
organization track progress toward its goals. Major
components (depicted in Fig. 3) of proposed
Software Testing Metrics Framework are: 1) The
Goal Question Metric (GQM) process, created by
Victor Basili and his colleagues at the University of
Maryland [2], is a good place to begin targeting the
specific measurement needs of an organization, 2)
Balanced Scorecard (BSC) that ensures set of
measures providing coverage of all elements of
performance and avoid hidden trade-offs and 3)
Process Model Performance measures that are most
meaningful with respect to selected areas of
performance, prefere outcome then output measures
over process and input measures. The main
emphasis of GQM is goal directed measurement.
An organization usually starts with generic goals
that must be refined. For example, “Reduce the
number of failures found on a project”. This is
certainly a goal, but is it well enough refined? One
technique to further refine goals, making them
specific enough that they are applicable to the
direction of the organization, is the SMART
technique.

Fig. 3. The Goal / Question / Metrics cheme in
STMF
To answer these questions, specific categories of
measurement data must be available to the project
manager. The issues, key questions related to each
issue, and categories of measures necessary to
answer the questions are show in Table 1.
Furthermore, we need to consider the efficiency of
the test effort that is a part of the process and a
determinate of reliability and risk of deployment.
The relationship between product quality and
process capability and maturity has been recognized

Adequately test
the software

Have we
sufficiently tested
the software?

Have we tested
everything we
planned to test?

Test Cases
Executed &
Passed

Test Cases
Executed &
Passed

Goals Questions Metrics

Are all known
defects
corrected?

Cumulative
Defects by
Status

Cumulative
Defects by
Status

Defect
Detection

Arrival Rate by
Severity

Defect
Detection

Arrival Rate by
Severity

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 604 Issue 6, Volume 7, June 2008

as a major issue in software engineering based on
the premise that improvements in process will lead
to higher quality products. To this end, we have
been investigating an important facet of process
capability – stability – as defined and evaluated by
trend, change, and shape metrics, across releases
and within a release. Our integration of product and
process measurement serves the dual purpose of
using metrics to assess and predict reliability and
risk and to evaluate process stability [3].

3.1 Basic Software Testing Process Metrics

By focusing data collection activities on
measurement categories that answer the key issue
questions the project can minimize resources devoted
to the measurement process. Among many Goals and

Problems identified in former SDP/STP, before
IOSTP deployment [3], our focus for STP
improvement for demonstration purpose in this paper
were issues - Development/Testing Performance and
Product Quality i.e. only to these sampled issues, key
questions related to each issue, and categories of
measures necessary to answer the questions are show
in Table 1 to 4 and some graphical presentations in
figures 4 to 6. Measuring the impact and
consequences of problems that arise during testing is
a critical step in the process. This should include
analysis of collected measurements and calculated
metrics to find out how much of the software is
affected by a given problem, at what point during
testing a problem was found, and what kinds of
problems regression tests are attempting to uncover.

Table 1. The issues, key questions related to each issue, and categories of measures

Issue Key Questions Measurement Category

1. Schedule &

Progress

Is the project meeting scheduled milestones?

How are specific activities and products progressing?

Is project spending meeting schedule goals?

Is capability being delivered as scheduled?

1.1 Milestone Performance

1.2 Work Unit Progress

1.3 Schedule Performance

1.4 Incremental Capability

2. Resources &

Cost

Is effort being expended according to plan?

Are qualified staffs assigned according to plan?

Is project spending meeting budget objectives?

Are necessary facilities and equipment

available as planned?

2.1 Effort Profile

2.2 Staff Profile

2.3 Cost Performance

2.4 Environment Availability

3. Growth &

Stability

Are the product size and content changing?

Are the functionality and requirements

changing?

Is the target computer system adequate?

3.1 Product Size & Stability

3.2 Functional Size & stability

3.3 Target Computer Resource
Utilization

4. Product

Quality

Is the software good enough for delivery?

Is the software testable and maintainable?

4.1 Defect Profile

4.2 Complexity

5. Development /

Testing

Performance

Will the developer be able to meet budget and
schedules?

Is the developer efficient enough to meet current
commitments?

How much breakage to changes and errors has to be
handled?

5.1 Process Maturity

5.2 Productivity

5.3 Rework

6. Technical

Adequacy

Is the planned impact of the leveraged technology
being realized?

6.1 Technology Impacts

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 605 Issue 6, Volume 7, June 2008

Table 2. Key questions related to each issue, and categories of measures

4. Product Quality Is the software good enough for
delivery?

4.1 Defect Profile

5. Development / Testing

Performance

Is the developer efficient enough
to meet current commitments?

5.2 Productivity

Once a list of valid questions are created,
measurements are generated. When considering
metrics, it is often helpful to list the raw data that
must be collected. This raw data is sometimes
referred to as “primitive metrics”. In this example,
some important raw data is:
- Number of critical defects with a severity level

of three and four.
- Time in duration testing.
- Total number of defects found in duration

testing time period.
- Number of critical defects found on the last

project for the corresponding time period.
- Number of total defects on last project for the

corresponding time period.

Table 3. Measurement Category and Specific
Measures

Once the raw data is defined, more complex, or
“computed” metrics are generated based on
combinations of primitive metrics.

Fig. 4 Typical Distribution of Bugs

Deriving measurements from raw data and
translating that data into something useful to
managers and/or developers is essential in tracking
real progress towards a goal. Important computed
metrics in this example are:

- Number of critical failures found in duration
testing time period / Total number of failures found
in duration testing time period.

- Number of critical failures (severity 3&4) found
in corresponding time period on previous
project/Total number of failures found in
corresponding time period on previous project.

Fig. 5 Typical Distribution of Effort to Fix Bugs

After collection and analysis phase statistical
methods and tools are used to identify and confirm
root causes of defects. Not only must analysis of
the data be performed, but also an in depth analysis
of the process to ensure an understanding of how
the work is actually being done must be performed
to identify inconsistencies or problem areas that
might cause or contribute to the problem.
Deliverables of this phase are: data and process
analysis, root cause analysis, quantifying the
gap/opportunity and checkpoints for completion is
to identify gaps between current performance and
the goal performance.

Root Cause Analysis should be done to:
• Generate list of possible causes (sources of

variation).

Measurement
Category Specific Measures

4.1 Defect Profile 4.1.1 Problem Report Trends

4.1.2 Problem Report Aging

4.1.3 Defect Density

4.1.4 Failure Interval

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 606 Issue 6, Volume 7, June 2008

• Segment and stratify possible causes (sources of
variation).

• Prioritize list of 'vital few' causes (key sources
of variation).

• Verify and quantify the root causes of variation.

Fig. 6 Typical time to Fix Bugs vs severity levels

In order to quantify the Gap/Opportunity answering
the questions:
• What is the cost of poor quality as supported by

the team's analysis?
• Is the process severely broken such that a re-

design is necessary?
• What are the revised rough order estimates of

the financial savings/opportunity for the
improvement project?

• Have the problem and goal statements been
updated to reflect the additional knowledge
gained from the analyze phase?

• Have any additional benefits been identified that
will result from closing all or most of the gaps?

• What were the financial benefits resulting from
any 'ground fruit or low-hanging fruit' (quick
fixes)?

• What quality tools were used to get through the
analyze phase?

Table 4. Focus question and specific measure

4 PRODUCT QUALITY

Are difficult problems being deferred? 4.1.2 Problem Report Aging

Are reported problems being closed in a timely manner? 4.1.2 Problem Report Aging

Do report arrival and closure rates support the scheduled completion
date of integration and test?

4.1.1 Problem Report Trends

FOCUS QUESTION SPECIFIC MEASURE

How long does it take to close a problem report? 4.1.2 Problem Report Aging

How many problem reports are open? What are their priorities? 4.1.1 Problem Report Trends

How many problems reports have been written? 4.1.1 Problem Report Trends

How much code is being reused? 4.2.6 Depth Of Inheritance

How often will software failures occur during operation of the system? 4.1.4 Failure Interval

How reliable is the software? 4.1.4 Failure Interval

What components are candidates for rework? 4.1.3 Defect Density

What components have a disproportionate amount of defects? 4.1.3 Defect Density

What components require additional testing or review? 4.1.3 Defect Density

What is the program’s expected operational reliability? 4.1.4 Failure Interval

What is the quality of the software? 4.1.3 Defect Density

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 607 Issue 6, Volume 7, June 2008

In proposed STMF our focus is on software Error
and Defect Root Cases Analysis applying Defect
Classification scheme as described in our paper
about Software Testing Process Improvement to
achieve a high ROI of 100:1 [5]. This information
is needed to monitor the overall progress of the
software through testing and to make informed
decisions about software release. So by combining
all of the different perspectives of schedule,
functionality, code, and problem resolution, it is
possible to understand and manage software
testing, rather than treating it as a black box as we
explained in our paper of proposed STMF, Part 2
[5].

3.1 Understanding Defects
Tracking defects means recording every defect
found by a customer or by any formal testing
process. That does not mean asking individuals to
track every change – unit tests, individual code
reviews and walkthroughs are usually not subject to
tracking. Once an author declares a work product
"complete" however, and releases it for
independent appraisal by others, all defects found
should be tracked.

Every defect found should be identified with the
following information:

• Work product in which the defect was found.
(This may need to be determined by the person
doing the fix.)

• Defect Detection Technique (DDT) used to find
the defect – inspection, type of testing,
customer, etc.

• Origin of defect, i.e., where it was "inserted" –
requirements, design, coding, etc. (It is not
always possible to determine the origin, but an
adequate sample is usually feasible.)

• Project ID and life cycle phase (if during the
project) or application ID in which the defect
was found (if after release).

• Other information necessary to track "assigned
to," "status" and "closing information." (This is
not necessarily needed for process
improvement, but typically is required for
management purposes.)

• Defect type – a short list of orthogonal
categories that make it possible to determine
which type of defect is most effectively found
by which type of appraisal.

Tools such as a defect cost scorecard, defect
containment effectiveness (DCE) and total
containment effectiveness (TCE) metrics can be

applied to manage differential effectiveness across
phase of origin and detection.
The following indicators make a good effectiveness
dashboard. They are intended to be used in three
perspectives – baseline (values at the start), trend
(changes in values over time, reflecting aggregate
impact of all interventions) and pre/post
intervention (reflecting the impact of a specific
change or improvement under reasonably
controlled conditions, making an effort to isolate
individual effects).

• DDT cost per defect by phase and DDT type (by
project and in aggregate)

• Rework cost per defect by phase and appraisal
type (by project and in aggregate)

• Value-added, appraisal and rework as a
percentage of effort (by project and in
aggregate)

• Defect containment effectiveness (by project
and in aggregate)

• Total containment effectiveness (by project and
in aggregate)

• Effort variance normalized for size (by project
and in aggregate)

• Schedule variance normalized for size (by
project and in aggregate)

• Defect density, or defect per size – total
"insertion" rate (by project and in aggregate)

• Effort per size, or productivity (essential to
consider variations in "schedule pressure")

• Duration per size, or cycle time (essential to
consider variations in "schedule pressure")

Based on experience with sustained application of
these metrics, it is typically possible for an
organization to shift 10 percent to 20 percent of
non-value-added work to value-added within one to
two years. It is not easy, but the payoff potential is
very large.

By comparing defect counts and defect fix efforts
from two completed software projects, we utilize a
scorecard to summarize and highlight differences in
actual defect counts by development phase of
origin and the phase in which the defect was
detected.

In software testing efficiency we refer to two
calculated yields: 1) Phase Containment
Effectiveness (PCE - the % of errors detected
during the phase in which they were introduced).
Those that escape the current phase are considered
defects - we then calculate: 2) Defect Containment
Effectiveness (DCE - the percent of the defects

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 608 Issue 6, Volume 7, June 2008

escaping an earlier phase that are detected in the
current phase).

Defects are real, observable manifestations and
indications of the software development progress
and process:

• From a schedule viewpoint – progress

• From a quality viewpoint – early indication

• From a process engineering – indicate
effectiveness of different parts of the process
and targets for improvement.

You can see them, count them, predict them, trend
them with:

• Defect Density: a standard quality measure
expressed in number of defects per KLOC or FP;

• Defect Arrival Rates/Fix Rates: a standard
Process and Progress Measurements expressed in
number of Defects detected/fixed per unit of time
(or effort);

• Injected Defects: Defects which are put into the
product (due to “errors” which people make) with
sharacteristic:

o When you have excellent processes, you
have fewer injected defects;

o You can never know completely, how
many injected defects you have in your
product – you can only estimate them;

• Removed Defects: a defects which are identified
and then taken out of the product due to some
defect removal activity (DDT), such as code
reviews;

• Faults can range from crucial to inconsequential
and must have a severity scheme that allows you to
differentiate. Severity scheme needs to be based
upon the project because we want to focus on
defects that will actually impact your project and
product performance;

Defects have certain dynamics, behaviors, and
patterns which are important to understand in order
to understand the dynamics of software
development. In general projected Software
Defects follow a Rayleigh Distribution Curve, so
we can predict, based upon project size and past
defect densities, the curve, along with the Upper
and Lower Control Bounds.

3.2.1 Measurement of Defect Potentials and

Defect Removal Efficiency
There are two very important measurements of
software quality that are critical to the industry:

1. Defect potentials
2. Defect removal efficiency
All software managers and quality assurance
personnel should be familiar with these
measurements because they have the largest impact
on software quality, cost, and schedule of any
known measures.

The phrase defect potentials refers to the probable
numbers of defects that will be found during the
development of software applications. As of 2008,
the approximate averages in the United States for
defects in five categories, measured in terms of
defects per function point and rounded slightly so
that the cumulative results are an integer value for
consistency with other publications by the author,
follow.

Note that defect potentials should be measured with
function points and not with lines of code. This is
because most of the serious defects are not found in
the code itself, but rather in requirements and
design. Table 5 shows the averages for defect
potentials in the U.S. circa 2008.

Table 5 Averages for Defect Potential [6]

The measured range of defect potentials is from
just below two defects per function point to about
10 defects per function point. Defect potentials
correlate with application size. As application sizes
increase, defect potentials also rise.

A useful approximation of the relationship between
defect potentials and defect size is a simple rule of
thumb: application function points raised to the
1.25 power will yield the approximate defect
potential for software applications. Actually, this
rule applies primarily to applications developed by
organizations at Capability Maturity
Model®(CMM®) Level 1. For the higher CMM
levels, lower powers would occur. Reference [8]
shows additional factors that affect the rule of
thumb.

The phrase defect removal efficiency refers to the
percentage of the defect potentials that will be
removed before the software application is
delivered to its users or customers. As of 2007, the
average for defect removal efficiency in the U.S.
was about 85 percent [7].

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 609 Issue 6, Volume 7, June 2008

If the average defect potential is five bugs – or
defects – per function point and removal efficiency
is 85 percent, then the total number of delivered
defects will be about 0.75 per function point.
However, some forms of defects are harder to find
and remove than others. For example, requirements
defects and bad fixes are much more difficult to
find and eliminate than coding defects.

At a more granular level, the defect removal
efficiency against each of the five defect categories
is approximate in Table 6.

Table 6 Defect Removal Efficiency

Note that the defects discussed in this section
include all severity levels, ranging from severity 1
i.e. defects with the least impact, up to severity 5
i.e. defect at the most impact. Obviously, it is
important to measure defect severity levels as well
as recording numbers of defects.

There are large ranges in terms of both defect
potentials and defect removal efficiency levels. The
best in class organizations have defect potentials
that are below 2.50 defects per function point
coupled with defect removal efficiencies that top
95 percent across the board [6].

Defect removal efficiency levels peak at about 99.5
percent. In examining data from about 13,000
software projects over a period of 40 years, only
two projects had zero defect reports in the first year
after release. This is not to say that achieving a
defect removal efficiency level of 100 percent is
impossible, but it is certainly very rare [6].

Organizations with defect potentials higher than
seven per function point coupled with defect
removal efficiency levels of 75 percent or less can
be viewed as exhibiting professional malpractice.
In other words, their defect prevention and defect
removal methods are below acceptable levels for
professional software organizations [6].

As can be seen from the short discussions here,
measuring defect potentials and defect removal
efficiency provide the most effective known ways
of evaluating various aspects of software quality
control. The phrase defect prevention refers to

technologies and methodologies that can lower
defect potentials or reduce the numbers of bugs that
must be eliminated. Examples of defect prevention
methods include joint application design, structured
design, and also participation in formal inspections.

The phrase defect removal refers to methods that
can either raise the efficiency levels of specific
forms of testing or raise the overall cumulative
removal efficiency by adding additional kinds of
review or test activity. Of course, both approaches
are possible at the same time [3,6].

Since each testing stage will only be about 30
percent efficient, it is not feasible to achieve a
defect removal efficiency level of 95 percent by
means of testing alone. Formal inspections will not
only remove most of the defects before testing
begins, it also raises the efficiency level of each test
stage. Inspections benefit testing because design
inspections provide a more complete and accurate
set of specifications from which to construct test
cases [1,3].

From an economic standpoint, combining formal
inspections and formal testing will be cheaper than
testing by itself. Inspections and testing in concert
will also yield shorter development schedules than
testing alone. This is because when testing starts
after inspections, almost 85 percent of the defects
will already be gone. Therefore, testing schedules
will be shortened by more than 45 percent [6-9].
Measuring the numbers of defects found during
reviews, inspections, and testing is also
straightforward. To complete the calculations for
defect removal efficiency, customer-reported defect
reports submitted during a fixed time period are
compared against the internal defects found by the
development team. The normal time period for
calculating defect removal efficiency is 90 days
after release.

As an example, if the development and testing
teams found 900 defects before release, and
customers reported 100 defects in the first three
months of usage, it is apparent that the defect
removal efficiency would be 90 percent.

3.3 The optimized testing approach
Adopting an optimized testing approach may sound
overwhelming. However, the truth is that IT
organizations can adopt optimized testing practices
incrementally, implementing certain aspects
tactically to achieve strategic advantage. This
section offers some suggested ways to adopt an
optimized testing approach. Optimized testing best

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 610 Issue 6, Volume 7, June 2008

practices include adoption of the application life
cycle, requirements management, risk-based testing
and automation [4]. This section highlights some
suggested steps for incorporating these areas of
optimized testing into your existing testing
environment.

3.3.2 The Defect-Removal Filtering Process

The cost of fixing defects increases exponentially
as a defect moves through development into
production. By adopting an application quality life
cycle, quality is built in to the application from the
earliest phases of its life cycle, rather than
attempting to test it in when it’s too late. This
requires discipline in defining and managing
requirements, implementing automated and
repeatable best practices and access to the right
information to make confident decisions. This best
practice allows you to fix defects earlier, when
there is more time to sufficiently address the
problems and it is far less expensive. It lays the
groundwork for continuous process improvement
and higher-quality applications [3,8].

 The specification defines the program correct
behavior. The incorrect behavior is a software
failure. It can be improper output, abnormal
termination, and unmet time or space constraints.
Failures are mostly caused by faults, which are
missing or incorrect code. Error is a human action
that produces a failure. An abend is an abort
termination of a program (like "blue screen of
death" by Microsoft Windows). An omission is a
required capability, which is not present in an
implementation. Surprise is code that does not
support a required capability. It can be surprising at

code reuse. Bug is an error or a fault. The scope of
STP is the collections of artifacts under test (AUT).
Testing activities can be categorized by the scope
of AUT that belongs to corresponding STP or SDL
phase as show on Fig. 7. Test artifact under test can
be the software requirement (SRUT), High level
design (HLDUT), Low Level Design (LLDUT),
code being tested is called implementation under
test (CUT), integration test (IUT) system under
test (SUT), or in object-oriented environment class
under test (CLUT), object under test (OUT),
method under test (MUT). A test case defines the
input sequence of data, the environment and state
of AUT, and the expected result. Expected result is
what AUT should generate, actual result is what
was generated by run. An oracle produces expected
results. An oracle can be an automated tool or
human resource. A test is called to be passing if
expected results and actual results are equal,
otherwise it is called to be no pass or fail.

Test cases can be designed for positive testing
or negative testing. Positive testing checks that the
software does what it should. Negative testing
checks that the software does not do what it should
not do. A test suit is a collection of test cases
related to each other. Test run is the execution of a
test suit. Test driver is a tool (can be a unit or utility
program) that applies test cases to AUT. A stub is a
partial, temporary implementation of a component.
The following figure shows the systems
engineering view of testing. Test strategy identifies
the levels of testing, the methods, test detection
techniques (DDT) and tools to be used. Test
strategy defines the algorithm to create test cases.

Fig. 7 The systems engineering view of testing

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 611 Issue 6, Volume 7, June 2008

Test design produces test cases using a test strategy.
Test effectiveness of DDT is the ability of the test
strategy to find the bugs that we call the Defect-
Removal Filtering Process as shown on Fig. 8. Test
efficiency is the cost of finding bugs. Strategies for
the test design can be functional (Black-box),
structural (White-box), hybrid (Gray-box) and fault-
based. Functional testing is based on the
specification of software, without knowing
something about program code. It uses the specified
or expected behavior. It is also called specification
based, behavioral, and responsibility-based or black-
box testing.
 Structural testing relies on the structure of the
source code to develop test cases. It uses the actual
implementation to create test suits. It is also called
implementation based, white box or clear box
testing. Hybrid testing is the blend of functional
and structural testing. It is also called gray-box
testing.
Fault-based testing introduces faults into code
(mutation) to see if these faults are revealed by a
test suite. Regression testing is retesting the
software with the same test cases. After a bug is
fixed, the product should be tested at least with the
bug revealer test case.
 Coverage is the percentage of elements
required by a test strategy that have been exercised
by a test suite. There are many coverage models.
Statement coverage is the percentage of source
code statements executed at least once by a test
suite. Clearly, statement coverage can be used only
by structural or hybrid testing. Testing should make
effort to reach 100% code coverage. This can avoid
the user to run untested code. All these definitions
raise a lot of questions and problems, and all of
them cannot be dealt in this article (see references
in [3]), although the most important ones can be
found below. The testing strategy defines how test
design should produce the test cases, but nothing it
can tell us about how much testing is enough, and
how effective the testing was. Test case
effectiveness depends on numerous factors, and can
be evaluated after the end of testing, which is
normally too late. To avoid these problems, testers
should perform in-process evaluation of proposed
and planned STP, according to established
performance metrics and quality criteria [1,3] as we
described below.
According to a National Institute of Standards and
Technology (NIST) study, the problem of

continued delivery of bug-ridden software is
costing the U.S. economy an estimated $59.5

billion each year. The study also found the
following [8]:
“…although all errors cannot be removed, more
than a third of these costs, or an estimated $22.2
billion, could be eliminated by an improved testing
infrastructure [reviews, inspections, etc.] that
enables earlier and more effective identification
and removal of software defects. These are the
savings associated with finding an increased
percentage [but not 100 percent] of errors closer to
the development stages in which they were
introduced. Currently, over half of all errors are not
found until ‘downstream’ in the development
process (testing) or during post-sales software use”

Fig. 8 The Defect-Removal Filtering Process

The testers should verify test cases at the end of test
design, check the conformance of test cases to meet
the requirements. It should also check the
specification coverage. Validation is after test
execution. Knowing the result, an effectiveness rate
should count, and if it is under the threshold, the
test suite should be analyzed, and the test process
should be corrected.
A simple metric for effectiveness, which is only
test suite dependent [1]. It is the ratio of bugs found
by test cases (Ntc) to the total number of bugs (Ntot)
reported during the test cycle (by test cases or by
side effect):

TCE= 100 * Ntc / Ntot [%] (1)

This metric can evaluate effectiveness after a test
cycle, which provides in-process feedback about the
actual test suite effectiveness. To this metric a
threshold value should create. This value is
suggested to be about 75%, although it depends on
the application.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 612 Issue 6, Volume 7, June 2008

When the TCE value is above the threshold, the test
case can be said effective according to very useful
model for dealing with defects as depicted on Fig. 9.
If it is below, testers should correct the test plan,
focusing on side effect bugs.

Fig. 9 Fault Injection Model Traditional

It basically says that given a software project – you
have defects being “injected” into it (from a variety
of sources) and defects being removed from it (by a
variety of means). This high-level model is good to
use to guide our thinking and reasoning about
defects and defect processes. So, based on this
model, the goal in software development, for
delivering the fewest defects, is to: minimize the
number of defects that go in maximize the number
of defects that are removed.

3.3.3 Defect Removal Efficiency and

Economics
A key metric for measuring and benchmarking the
IOSTP [3] by measuring the percentage of possible
defects removed from the product at any point in
time. Both a project and process metric – can
measure effectiveness of quality activities or the
quality of a all over project by:

DRE = E/(E+D) (2)

Where E is the number of errors found before
delivery to the end user, and D is the number of
errors found after delivery. The goal is to have
DRE close to 100%. The same approach is applied
to every test phase denoted wit i :

)(1++
=

ii

i
i

EE

E
DRE (3)

Where Ei is the number of errors found in a software
engineering activity i, and Ei+1 is the number of
errors that were traceable to errors that were not
discovered in software engineering activity i. The
goal is to have this DREi approach to 100% as well
i.e., errors are filtered out before they reach the next
activity. Projects that use the same team and the
same development processes can reasonably expect
that the DRE from one project to the next are
similar.
 For example, if on the previous project, you
removed 80% of the possible requirements defects
using inspections, then you can expect to remove
~80% on the next project. Or if you know that your
historical data shows that you typically remove 90%
before shipment, and for this project, you’ve used
the same process, met the same kind of release
criteria, and have found 400 defects so far, then
there probably are ~50 defects that you will find
after you release. How to combine DDT to achieve
high DRE, let say >85%, as a threshold for STP
required effectiveness, is explained in section 5.
which describe optimum combination of software
defect detection techniques choices determination
applying orthogonal arrays constructed for post
mortem designed experiment with collected defect
data of a real project [3]. Figure 10 shows a typical
relationship between the costs of repairing a defect
in a given phase of the development cycle versus
which phase the defect was introduced. This
relationship gives rise to the evelopment costs
described in the NIST report.

Fig. 10 Cost of Fixing a Defect [10]

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 613 Issue 6, Volume 7, June 2008

Cost numbers vary depending on the type of
application for which the software is being
developed, but the common thread they all exhibit
is the substantial increase in project costs caused by
carrying problems from one development stage to
the next.
While these numbers are extrapolated from
software developed for the financial services and
transportation applications (computer-aided design,
computer-aided manufacturing, etc.) sectors, the
message applies even more significantly to
industries engaged in developing software for
safety and mission-critical applications such as
aerospace, medical, defense, automotive, etc.
Failures of safety/mission-critical software may
result in harm to, or loss of human life and/or
mission objectives such as in the case of the
Therac-25 radiation overdose accidents and the
Ariane-5 maiden launch failure [10]. The Therac-
25 software caused severe radiation burns in
numerous cancer patients before it was implicated.
The cost of allowing the Ariane-5 software defect
to pass into the operational phase has been
estimated to be as high as $5 billion alone.
NASA recently sponsored a study to evaluate the
economic benefit of conducting independent
validation and verification during the development
of safety-critical embedded systems [10]. This
study presented cost-to-repair figures focused
specifically on embedded systems projects. Figure
10 shows the relative cost to repair factors –
considered to be conservative estimates for
embedded systems – used in this study.
The graph in Fig. 10 tells us that an error
introduced in the requirements phase will cost five
times more to correct in the design phase than in
the phase in which it was introduced.
Correspondingly, it will cost 10 times more to
repair in the code phase, 50 times more in the test
phase, 130 times more in the integration phase, and
368 times more when repaired during the
operational phase. The graph also gives the cost
multipliers for problems introduced in the design,
code, test, and integration phases of the
development cycle.

3.3.4 The ROI calculation and other benefits
To determine the cost savings for addressing these
defects early in the software development lifecycle
(shown in figure 11 below), we applied industry
average defect-correction cost information to the
number of critical defects discovered by IOSTP
[3,4] during this project.

According to industry average data, the cost of
finding and correcting defects during the coding
phase is $977 per defect. Thus, the total cost for
correcting the 200 "critical" defects during this
phase (200 x $977) is approximately $195,400.
Industry average data shows that the cost of finding
and correcting defects during the system testing
phase is $7,136 per defect. In this case, assuming
that the system testing phase revealed
approximately 50 critical defects (or only 25% of
those found by IOSTP [3,4] in the coding phase),
the cost of finding and fixing those defects (50 x
$7,136) would have been approximately $356,800.
This would also have resulted in 150 critical errors
going undetected and uncorrected. The cost of
finding and fixing these remaining 150 defects in
the maintenance phase (150 x $14,102) would have
been $2,115,300. Thus, the total cost of finding and
fixing the 200 defects after the coding phase would
have been $2,472,100 ($2,115,300 + $356,800)

Fig. 11 Cost of Fixing a Defect [9]

The resulting cost savings of $2,276,700 represent
an ROI of approximately 400%, even after
engagement costs are taken into consideration.
Saving grow with the number of defects found
(which is directly related to an application's size)
and will also be realized during the application's
maintenance phase, as new releases are developed
and tested over time. Again, this ROI figure
represents only money saved during the software
development process and does not include money
saved by avoiding the costs associated with
reputation damage, lost productivity and liability
costs should the software fail to function properly
in the marketplace.

Other benefits:

• IOSTP solutions allowed the client to deliver a
higher quality product in significantly less time.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 614 Issue 6, Volume 7, June 2008

• The client is able to realize enterprise-wide
savings and efficiencies by integrating IOSTP
methodology into its future software
development efforts.

An important area to focus on when optimizing
your testing is identifying all of the business and
technical requirements that exist for an application,
and then prioritizing them based on the impact of
failure on the business. QA teams should ensure
they have access to the application’s business and
technical requirements in order to create effective
test requirements. Involving business managers,
test managers and QA architects will help achieve
the balance of testing that is optimal [3-8]. The
advantage of automated risk-based testing is that it
adds a level of objectivity not available with
traditional testing, where individual testers were
left to determine what should be tested and when.
Thoroughly understanding and correctly
prioritizing testing requirements can have the
greatest impact on successful delivery of a high-
quality application. By implementing an optimized
testing solution, IT can ensure quality activities
accurately reflect business priorities, and can make
certain they are testing the right areas of an
application within the constraints of the schedule.
Using an optimized testing solution, the risks are
calculated automatically and time estimates are
rolled up per requirements balancing quality,
schedule and cost through risk-based practices.
This allows testers to apply a time factor to existing
risk factors, which enables users to quickly select
the highest-priority test cases and understand how
long it will take to test them [4].

4 Software Testing Optimization

Model and IT benefits
With optimized testing, IT organizations are able to
balance the quality of their applications with
existing testing schedules and the costs associated
with different testing scenarios. Optimized testing
provides a sound and proven approach that allows
IT to align testing activities with business value.
The practices, processes and tools that encompass
optimized testing offer many benefits. The
increasing cost and complexity of software
development is leading software organizations in
the industry to search for new ways through
process methodology and tools for improving the
quality of the software they develop and deliver.

4.1 Manage “what-if” scenarios -A Software

Testing Optimization Model

Such scenarios are invaluable for determining
where testing resources should be spent at the
beginning of software development project. With
an optimized testing solution, you can create what-
if scenarios to help users understand the impact of
changing risks, cycle attributes and requirements as
priorities change. This insight proves invaluable
when a testing organization is trying to determine
the best way to balance quality with cost and
schedule. By understanding the impact of different
factors on testing, IT managers can identify the
right balance.
We applied the End-to-End (E2E) Test strategy in
our Integrated and Optimized Software Testing
framework (IOSTP) [3-5]. End-to-End Architecture
Testing is essentially a "gray box" approach to
testing - a combination of the strengths of white
box and black box testing. In determining the best
source of data to support analyses, IOSTP with
embedded RBOSTP considers credibility and cost
of each test scenario i.e. concept. Resources for
simulations and software test events are weighed
against desired confidence levels and the
limitations of both the resources and the analysis
methods. The program manager works with the test
engineers to use IOSTP with embedded RBOSTP
[4] to develop a comprehensive evaluation strategy
that uses data from the most cost-effective sources;
this may be a combination of archived, simulation,
and software test event data, each one contributing
to addressing the issues for which it is best suited.
The central elements of IOSTP with embedded
RBOSTP are: the acquisition of information that is
credible; avoiding duplication throughout the life
cycle; and the reuse of data, tools, and information.
The system/software under test is described by
objectives, parameters i.e. factors (business
requirements - BR are indexed by j) in requirement
specification matrix, where the major capabilities
of subsystems being tested are documented and
represent an independent i.e. input variable to
optimization model. Information is sought under a
number of test conditions or scenarios. Information
may be gathered through feasible series of
experiments (E): software test method, field test,
through simulation, or through a combination,
which represent test scenario indexed by i i.e.
sequence of test events. Objectives or parameters
may vary in importance αj or severity of defect
impacts. Each M&S or test option may have k
models/tests called modes, at different level of
credibility or probability to detect failure βijk and
provide a different level of computed test event
information benefit Bijkl of experimental option for
cell (i,j), mode k, and indexed option l for each

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 615 Issue 6, Volume 7, June 2008

feasible experiment depending on the nature of the
method and structure of the test. Test event benefit
Bijkl of feasible experiment can be simple ROI or
design parameter solution or both etc. The cost Cijkl,
of each experimental option corresponding to
(i,j,k,l) combination must be estimated through
standard cost analysis techniques and models. For
every feasible experiment option, tester should
estimate time duration Tjikl of experiment
preparation end execution. The testers of each
event, through historical experience and statistical
calculations define the Eijkl's (binary variable 0 or 1)
that identify options. The following objective
function is structured to maximize benefits and
investment in the most important test parameters
and in the most credible options. The model
maintains a budget, schedule and meets certain
selection requirements and restrictions to provide
feasible answers through maximization of benefit
index - BenefitIndex:

ijklijkl

l

ijkj

kij
lkji

ndexenefit EBIB ∑∑∑∑= βα
,,,

max (4)

Subject to:

∑∑∑∑ ≤
j

ijklijkl

i k l

BUDGETEC (Budget

constraint);

∑∑∑∑ ≤
j

ijklijkl

i k l

LETIMESCHEDUET (Time-

schedule constraint)

1≤∑
l

ijklE for all i,j,k (at most one option

selected per cell i, j, k mode)

1≥∑∑
k l

ijklE for all i,j (at least one experiment

option per cell i, j)

4.1.2 Defect metrics as a RBOST drivers

A defect is defined as an instance where the
product does not meet a specified characteristic.
The finding and correcting of defects is a normal
part of the software development process. Defects
should be tracked formally at each project phase.
Data should be collected on effectiveness of
methods used to discover defects and to correct the
defects. Through defect tracking, an organization
can estimate the number and severity of software
defects and then focus their resources (staffing,
tools, test labs and facilities), release, and decision-
making appropriately. Two metrics provide a top-
level summary of defect-related progress and

potential problems for a project: -defect profile and
defect age. The defect profile chart provides a
quick summary of the time in the development
cycle when the defects were found and the number
of defects still open. It is a cumulative graph. The
defect age chart provides summary information
regarding the defects identified and the average
time to fix defects throughout a project. The metric
is a snapshot rather than a rate chart reported on a
frequent basis. The metric evaluates the "rolling
wave" phenomenon, where a project defers difficult
problems while correcting easier problems. In
addition, this measure provides a top-level
summary of the ability of the organization to
successfully resolve identified defects in an
efficient and predictable manner. If this metric
indicates that problems are accumulating in the
longer time periods, a follow-up investigation
should be initiated to determine the cause.The
metric evaluates the rolling wave risk where a
project defers difficult problems while correcting
easier or less complex problems [4]. In addition
this measure will indicate the ability of the
organization to successfully resolve identified
defects in an efficient and predictable manner. If
this metric indicates that problems are taking
longer than expected to cl ose the schedule and cost
risks increase in likelihood and a problem may be
indicated in the process used to correct problems
and in potentially in the resources assigned.
In next section we describe analytical optimization
model of IOSTP process [3].

4.1.3 Defect removal efficiency model
When detected through walkthroughs, peer reviews
inspections or testing, defects should be corrected
effectively, requiring only one re inspection or
regression test to verify removal as shown in
Fig.12. If the software test managers require more
than one iteration through the defect removal
process, then those processes may require
improvement.
The defect removal effectiveness metric tracks the
history of these defect removals. For demonstration
purpose we identified these SDLC phases denoted
by P: Requirement (P=1), HL Design (Architecture
level – P=2), LL Design (Detailed design – P=3),
Code (Unit) test (P=4), Integration/System Test
(P=5), Acceptance (User) Test (P=6), and
Operation (Maintenance – P=7). For P=1 i.e.
Requirement phase it is obvious that DInP=0 and
that DInP= DLP-1 for the rest P. If DdP represent total
defect detected in phase P, then DdfP ≤ DdP ≤ DTP,
because of defect fixing priority i.e. some of

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 616 Issue 6, Volume 7, June 2008

detected defect in P are defered (postponed) to fix
later. From our expe rience, rework calculated as
percent of defect fixes returned naverage=3 times
(regression test cycles) to development is in
Average=10.5%, Std_Dev=6.6%. Finaly

TP

dP

P
D

D
DD = denotes Defect Detection rate in

phase P. Some representative Defect Removal
Efficiency and defect fixing Cost matrix data that
we call DRECR of system/software under test
described by objectives, parameters i.e. factors
(indexed by j) in requirement specification matrix
from few project versions history is presented in
Table 7.
If a large number of fixes are ineffective, then the
process used for corrections should be analyzed
and corrected. Items to report include:

1. Total inspections to be conducted or tests to run
2. Inspections or tests completed
3. Cumulative inspections or tests failed

Fig. 12 Defect Removal Efficiency Model where:
DInP - denotes defects escaped from previous SDL
phase P, DOinP - denotes defects originated
(introduced) in phase P, DTP – denotes total existed
defects in phase P, DdfP - denotes defects fixed in
phase P, DnfP - denotes defects fixed in phase P
after n regressions cycles, DLP denotes defects
leakage in phase P (escaped to phase P+1),DDP -
denotes Defects Detection rate in phase P.

The final test metric relates to technical
performance testing. The issues in this area vary by
type of software being developed, but top-level
metrics should be collected and displayed related to
performance for any medium- or high- technical
risk areas in the development. The maximum
rework rate was in the requirements which were not
inspected and which were the most subject to
interpretation. Resolution of the defects and after

the fact inspections reduced the rework
dramatically because of Defect Containment.

Defect containment metric tracks the persistence of
software defects through the life cycle. It measures
the effectiveness of development and verification
activities. Defects that survive across multiple life-
cycle phases suggest the need to improve the
processes applied during those phases.

4.1.4 Cost to fix error

For each development phase, the number of defects
detected during that phase shall be tracked. In
addition, for each defect, the phase in which that
defect was created shall be tracked. If defects from
earlier phases are not detected during that phase,
there may be a need to improve the processes used
for exiting those phases. Such defects suggest that
additional defects are latent as presented in Table 1.
The last column represent relative Additional Cost
to Repair Multiplier ratio range

1511 +→=+→= − PPjsPPjs CMCM for errors with

lowest severity s=1 and highest severity 5 of error
originated in previous P phase but escaped and
detected in later P+1 phase compared to cost to fix
immediately using cost to fix of Requirement
defect as a base i.e. 1.

4.1.5 Defect age leading indicator

The Defect Age Metric will summarize the average
time to fix defects. The purpose of this metric is to
determine the efficiency of the defect removal
process and, more importantly, the risk, difficulty
and focus on correcting difficult defects in a timely
fashion. The metric is a snapshot rather than rate
chart reported on a frequent basis.
The metric evaluates the rolling wave risk where a
project defers difficult problems while correcting
easier or less complex problems. In addition this
measure will indicate the ability of the organization
to successfully resolve identified defects in an
efficient and predictable manner. If this metric
indicates that problems are taking longer than
expected to close the schedule and cost risks
increase in likelihood and a problem may be
indicated in the process used to correct problems
and in potentially in the resources assigned.

4.1.6 Risk summaries and reserve

Effective continuous risk management requires risk
visibility. The best top-level indicators for
summary risk management are the risk summary
and reserve charts. Cost and schedule risk reserves
should be established at the beginning of the
project to deal with unforeseen problems. Risk
summary and reserve charts show the total risk

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 617 Issue 6, Volume 7, June 2008

exposure for cost and schedule compared with the
current cost and time risk reserves for the project.
The cost and time risk reserve for a project will
change over time as some of this reserve is used to
mitigate the effects of risks that actually occur and
affect the project. Some Risk Management
Performance (RMP) metrics are defined in [3-5]
such are: Risk Growth Performance Index (RGPI),
Risk Cost Performance Index (RCPI) etc. The
charts that show both the total identified risk values
and the probabilistic weightings of occurrence are
very useful. As risks are actualized without
complete abatement, or resources are expended in
the risk-abatement process, the risk reserves are
adjusted downward accordingly. An example
display of a cost risk summary and reserve chart is
provided below. Schedule risk summary and
reserve charts are similar, but reflect schedule risk
instead of cost risk.

5 Economic value measurement as

leading indicators of optimization
For simplicity purpose, an undetected major or
higher severity (s≥4, s=1..5) defect that escapes
detection and leaks to the next phase may cost ten
times to detect and correct. A minor or lower
severity (s≤3) defect may cost two to three times to
detect and correct. The Net Savings (NS) then are
nine times for major defects and one to two times
for minor defects. Because of that we apply simple
but proven reasoning aout high ROI as key benefit
of software test events Bijkl in optimization
objective equation (1) i.e. ROIj= Net Savings for j
objective/Detection Cost for j objective. Of course,

some benefits of the system/software under test
described by objectives, parameters i.e. factors
(indexed by j) in requirement specification matrix,
which is the major capabilities of subsystems being
tested, must be verified and validated in every
SDLC phase P by many test events. Of course, few
objectives are tested only in one or two phases P
and test events. Also, Net Savings for j objective in
phase P: Cost Avoidance-Cost to detect/Repair

Now in phase P.
It means, Net Saving benefit is error prevention to
escape from phase P to next P+1 phase, or
downstream phases to the customer use of
defective software in the field. In mathematics
language, it is calculated as:

 ∑
=

∗∗=
7

1P

PijklPijklPjijkl CApNS δ (5)

where =jPδ 0 if not aplicable in phase P, 1 if is

applicable in phase P, Pijklp is probability of

feasible l of k experiments in phase P to detect
error of j objective i.e to prevent defect to escape

in phase P+1. Also, ∑
=

=
7

1

1
P

PijklPj pδ , and cost

avoidance PijklCA in phase P is calculated as:

1
1

* +→→

=

∑= PPjsPrjs

P

r

Pijkl CMDDCA , or

rewritten as,

)CMCM(*DDCA PjsPjsPrjs

P

r

Pijkl −= +→

=

∑ 1
1

 (5)

Table 7 Typical Defect Removal Efficiency and defect fixing Cost Ratio matrix DRECR

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 618 Issue 6, Volume 7, June 2008

where),(PrDRECRDD Prjs =→ denotes Defect

Detected in phase P of j objectivity, s severity for
defects rOrInsjD originated in phase r but escaped

and detected in phase P denoted as PrdOrInsjD →

that will make additional cost to detect and fix by
cost multiplier 1+→PPsjCM . Cost avoidance in

phase P, then will be easily calculated from
DRECR matrix like

))()1((*),(
1

PCMPCMPrDRECRCA
P

r

Pijkl −+=∑
=

Finaly, if j objective severity (s=1..5) is assesed in
requirement or specification matrix than
importance αj=s, βijk = Pijklp of experiment i.e. we

must offer as many as we could feasible k series of
experiments (E): software test method, field test,
through simulation, or through a combination,
which represent test scenario indexed by i to find
out maximal benefit index -BenefitIndex rewritten as:

ijklijkl

l

j

kij
lkji

ndexenefit EROIsIB ∑∑∑∑=
,,,

max (6)

Where,
ijkl

ijkl

ijkl
C

NS
ROI = and (budget, cost)

constraints as in (4).

This model goal is to find out test scenario indexed
by i with maximal benefit index -BenefitIndex based
on Return on Investment bases and appropriate
Risk Management activities assure the savings on
the cost avoidance associated with detecting and
correcting defects earlier rather than later in the
product evolution cycle.

6 Conclusion
Although it is important to measure the quality of
the product under development, it is equally
important to measure the effectiveness and
efficiency of Software Testing itself as an activity –
not a service. We proposed basic metrics of key
software testing activities and artifacts in
development processes that can be objectively
measured, according to ISO 15939 – Software
Measurement as a foundation for enterprise wide
improvement of Integrated and Optimized Software
Development / Testing Pocess (IOSTP) [3-5] i.e.
Software Testing Metrics Framework (STMF).
Specifically, the measurements described in this

paper first answers the question of whether
Software Testing is "doing the right thing"
(effectiveness).
 Once there is assurance and quantification of
correct testing, metrics should be developed that
determine whether or not Software Testing "does
the thing right" (efficiency). By measuring
effectiveness and efficiency, a Software Testing
organization can better communicate its own
importance using factual information.

References:

[1] S. H. Kan, Metrics and Models in Software

Quality Engineering, Second Edition,
Addison-Wesley, 2003.

[2] V. R. Basili, G. Caldiera, H. D. Rombach, The
Goal Question Metric Approach,
Encyclopedia of Software Engineering,
volume 1, John Wiley & Sons, 1994, pp. 528-
532

[3] Lj. Lazić, The Integrated and Optimized
Software Testing Process, PhD Thesis, School
of Electrical Eng., Belgrade, Serbia, 2007.

[4] Lj. Lazić, Mastorakis, N. RBOSTP: Risk-
based optimization of software testing process
Part 2”, WSEAS TRANSACTIONS on

INFORMATION SCIENCE and

APPLICATIONS, Issue 7, Volume 2, p 902-

916, July 2005.
[5] Lj. Lazić, N. Mastorakis, A Framework of

Software Testing Metrics – Part 2, 11h
WSEAS CSCC’08 Multiconference, Agios
Nikolaos, Crete Island, Greece, July 23-28,
2007., 200X.

[6] J. Capers, Estimating Software Costs. 2nd
edition. McGraw-Hill, New York: 2007

[7] J. Capers, Applied Software Measurement.
3rd edition; McGraw-Hill, New York: 2008..

[8] G. Tassey, The Economic Impacts of
Inadequate Infrastructure for Software
Testing. National Institute of Standards and
Technology,2002, <www.nist.gov/director/
progofc/report02-3.pdf>.

[9] B. Boehm and V. Basili, Software Defect
Reduction Top 10 List, IEEE Computer, IEEE
Computer Society, Vol. 34, No. 1, January
2001, pp. 135-137.

[10] Bennett, Ted L., and Paul W. Wennberg.
“Eliminating Embedded Software Defects
Prior to Integration Test.”Dec. 2005.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic and Nikos Mastoralis

ISSN: 1109-2750 619 Issue 6, Volume 7, June 2008

