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Abstract: -Remote Sensing technologies provide the spatial data/maps and offer great advantages for a land 
consolidation project. But sometimes in some regions, optics and infrared remote sensing can not work well. 
SAR (Synthetic aperture radar), an active microwave remote sensing imaging radar, has the unique capabilities 
of obtaining abundant electromagnetic information from ground objects all day/all night and all weather, and 
penetrating some special objects and detecting the shapes of ground objects. At this point, SAR can meet the 
requirement. However, for land consolidation application, high spatial resolution SAR images are required.  To 
increase the spatial resolution of SAR images, this work presents a novel approximate iterative and recurrent 
approach for image reconstruction, namely adaptive Kalman Filter (KF) procedure. Mathematical models and 
Kalman equations are derived. The matched filter and Kalman Filter are integrated to enhance the resolution 
beyond the classical limit. Simulated results demonstrate that the method strongly improves the resolution by 
using prior knowledge, which is a scientific breakthrough in the case that the traditional pulse compression 
constrains the improvement of SAR spatial resolution. And it is also shown that it is an optimal method in the 
sense of mean square error and its computation cost is lower than the traditional Kalman Filter algorithm. 
 
Key-Words: - Land, Agriculture, Synthetic Aperture Radar, Adaptive Kalman Filter, High Resolution, Mean 
Square Error, Image Reconstruction 
 
1   Introduction 
Land consolidation refers to a serial of activities, 
which deal with improving of productivity and 
working conditions in rural areas, production of 
reconstruction plans for rural settlement, and proving 
of rural life. It has been associated with broader 
social and economic reforms from the time of its 
earliest applications in Western Europe [1]. Due to 
the growing concern about land resource 
management and the associated decline in land 
quality in many countries, land consolidation has 
become one of the most attractive worldwide 
research topics [2, 3, 4, 5]. Why land consolidation is 
so important? Because Land consolidation is a tool 
for improving the effectiveness of land cultivation. A 
study indicated that land consolidation may improve 
land productivity and possibly also the total factor 
productivity if it induced and enhanced technical 
progress and increased scale economies [6 ]. Other 
researchers find that land consolidation can also 
improve labor productivity [ 7 , 8 ]. So land 
consolidation can not only lead to improvements in 
agriculture but also promote management of natural 
resources and rural development. 

     However, the fulfillment of all those functions 
more or less depends on supplement of spatial data. 
There are a variety of manners to collect spatial data. 
For a sound collection method, speed and ease 
crucially improve the productivity of a land 
consolidation. At this point, remote sensing 
technologies provide the spatial data/maps and offer 
great advantages for a land consolidation project.  
     Significant developments in the field of remote 
sensing, especially in terms of spatial and spectral 
resolution, have facilitated the manipulation of 
efficient and precise spatial database. The use of 
remote sensing high resolution images, mainly from 
optics and infrared remote sensor such as IKONOS, 
Quick bird etc., will be extremely feasible in the land 
projects[9, 10]. Especially in the planning phases, the 
remote sensing data will have met the requirements 
of decision makers at various scales from regional to 
village level. It can also serve a wide range of 
applications through a centralized database to various 
government organizations, public undertakings and 
non-governmental organizations [11]. 
     In the planning stage of a land consolidation work, 
the following work can easily be done in the required 
precisions by using remote sensing satellite. 
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     · Determination of present state of project area; 

     · Land works and classification processes; 

     · Formation of blocks (water management, 
drainage and road systems); 
     · Determination of stationary establishments 
images. 
     By using satellite images, they can be completed 
in half of the time that classical techniques require 
and the project can cost 35 times cheaper than that the 
classical techniques cost. 
     But cloud and rain influence the quality of the 
optics and infrared imagery greatly. In some regions 
where clouds usually hide the day, the weather 
conditions hamper optical image acquisitions. 
Furthermore, when there are a lot of atmospheric 
particles, the sunlight will be scattered intensely and 
the images will be fogged. Under these conditions, 
the imagery is difficult to unscramble. 
     Synthetic aperture radar (SAR) remote sensing, 
with its advantages of all-weather coverage, all 
day/night acquisitions, cloud penetration, and signal 
independence of the solar illumination angle, can be 
applied to land cover classification and land 
consolidation, especially in some regions where 
optics and infrared remote sensing do not work well. 
Its unique capabilities greatly propel and improve the 
SAR applications to many fields[ 12 , 13 , 14 ], 
including land cover classification and land 
consolidation.  
     Nevertheless there are some uncertain factors [15] 
in SAR imaging which influence the quality of SAR 
image classification, and obstruct interpretation and 
applications of SAR images. For land consolidation 
application, a main restrained factor is the available 
spatial resolution of SAR images.  
     The spatial resolution of SAR images includes 
azimuth resolution and slant range resolution. 
Azimuth resolution is achieved by combining of 
many radar returns to simulate a large antenna. The 
limit to the azimuth resolution of practical 
spaceborne SAR systems dues to get a reasonable 
swath width and to avoid a huge amount of data being 
transmitted to Earth. And slant range resolution is 
achieved through time-delay measurements using 
time-dispersed linear frequency modulated pulses 
which can be compressed into extremely short pulses.  
The limit to the range resolution comes from the 
power  constraints. 
     Many earlier works have been done to improve 
SAR spatial resolution [16, 17]. These works greatly 
depend on the work mode and hardware set of the 
imaging radar. And some delightful achievements 
have been gained. But the resolution can not reach its 

physical utmost or the optics remote sensing 
resolution level. Here a key problem is how to 
process the data from a radar standpoint.  
     To enhance the resolution beyond the matched 
filter classical limit, Guglielmi et al. [18] applied 
super-resolution methods to SAR data. They 
demonstrated two classes of image reconstruction 
methods: deterministic regularization and stochastic 
regularization. Goodman et al. [ 19 , 20 ] has 
investigated some stochastic regularization methods 
for SAR processing of satellite constellations. Some 
stochastic regularization techniques, such as 
maximum likelihood estimate and minimum 
mean-squared error (MMSE) filtering, were 
introduced, and experiments showed that stochastic 
regularization techniques can provide better 
geometric resolution than the traditional matched 
filtering. But these methods require huge additional 
computation complexity. An iterative 
implementation of the minimum mean squared error 
solution was developed [21]. Although it improved 
the computation efficiency, it required calculating the 
inverse for huge matrix repeatedly, thus the complex 
computation and time consuming were still huge.  
     To solve the above problems, we develop a new 
Kalman Filter (KF) scheme integrating the matched 
filter to obtain high resolution radar image. 
Traditional Kalman Filter has the limitation of the 
stringent requirement on precise a priori knowledge 
of the system models and noise properties, and 
uncertainty in the covariance parameters of the 
process noise ( pR ) and the observation errors ( oR ) 
may significantly degrade the filtering 
performance[ 22 , 23 ]. For the application of land 
consolidation, the noise levels may change in 
different spatial zones of the study areas. To scale the 
noise without artificial or empirical parameters, this 
paper proposes a new adaptive Kalman Filter process 
to replace the traditional Kalman Filter algorithm[24, 
25,  26]. The most distinct advantage of this proposed 
scheme is that adaptive Kalman Filter fully utilizes 
the data to eliminate measurement error due to clutter 
and to enhance the resolution beyond the matched 
filter classical limit.  
     The remainder of this paper is organized as 
follows. Section 2 develops the mathematical model 
of SAR land echo signal. Section 3 describes the 
algorithm of the adaptive Kalman Filter. In Section 4, 
we report the experimental results and perform some 
comparisons with traditional methods. Finally, 
Section 5 concludes this paper. 
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2 Kalman Filter Model for SAR 
System 
The Kalman Filter (KF) is the most common 
technique for restoring a signal of interest from other 
signals, termed noise signals. The Kalman Filter 
technique formulates a linear discrete system by two 
stochastic linear recursive equations: the state 
equation and the measurement equation. For a SAR 
system, the state equation and the measurement 
equation of a Kalman filtering can be given as: 
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where )(iγ  is (D×1) state vector, )(iA  is (D×D) 

transition matrix, )(irS  is (m×1) observation vector, 

)(iP  is (m×D) observation matrix, )(ipn  is the 
process noise and expresses the uncertainty in the 
modeling of the expected variation, )(ion represents 
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where }{•E  denotes the expectation function. 

pR and oR  are the covariance matrix of process 
noise and observation errors, respectively. 
     Usually it is assumed that there is no range or 
Doppler walk and that the spaceborne SAR platform 
is in the far field of the Earth’s surface. Therefore, it 
is reasonable to assume that the state vector 
comprising of the scattering coefficients keeps 
approximately constant with respect to time, space, 
and frequency over the extent of the radar 
measurement. So the state transition matrix )(iA  

will be an identity matrix, i.e., ( )A i = I  and the state 
equation of Equation (1) can be rewritten as: 

( ) ( 1) ( )pi i i= − +γ γ n               (3) 
     To obtain the measurement equation accurately, 
now the system signal mode is formulated firstly. 
     Assuming a radar transmits signal s(t), the signal 
measured by the radar receiver at time t , due to an 
unit scatterer located at position r  can be 
represented as: 

)(),( rr τ−= tstp                    (4) 
where r  is the position vector describing surface 
location of the unit scatterer relative, and rτ  is the 
propagation time delay.  
     From a view point of SAR, time t  can be 
considered as two part: fast time ft  and slow time 

st , and the transmitted signal can be described with 
fast time ft . For a common SAR system, the 
transmitted signal is often chirp scaling signal. Let 
the chirp rate be rk , the pulse duration rT , and the 

carrier frequency be defined as cω , then the 
transmitted signal is: 
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     During the fast time, the movement of the system 
can be ignored, thus, the propagation delay rτ  can be 
approximated to r,st

τ , which only takes the 
movement in slow time into account. So the signal is: 
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     The radar geometry is shown in Fig. 1. Assuming 
a spaceborne SAR system travels at velocity, av , and 
the origin of the coordinate system is located at the 
system center, the positive x-direction refers to the 
direction of the system flying direction, z-direction 
refers to the direction away from the earth surface, 
and y is given using the right hand rule. Therefore, 
assuming a flat earth and the altitude of the SAR 
system is h, the coordinate of dot target on the ground 
at 0=t  is ( )hyx −,, .So the position vector of the 
ground target at any given time t  can be represented 
as ( )hytvx a −−= ,,r , and can be simplified as 

( )ytvx a ,−=r . 
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Fig. 1 Radar geometry for Land Consolidation 

 
     In terms of the above coordinate system, assuming 

c the speed of light, the propagation time delay r,st
τ  

is 
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     Let the transmitting antenna gain be a constant, 
the total measurement taken by the receiver due to all 
illuminated scatterers is: 

),(),()(),()( fsfsrr ttndtpttsts ＋∫ ⋅== rrrγ  (9) 

where )(rγ  is the back reflectivity at r . 
     Since the transmitted signal is constrained both in 
bandwidth and in time, Equation (9) sampled at time 

snt  and fmt  can be approximated with discrete 
samples as: 
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where ΔA  refers to unit scatter area, and is a 
constant, i is the index of different area. 
     Let 
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where D is the number of different areas of size ΔA , 
asN  is the sampled number during the slow time 

interval, rfN is the sampled number during the fast 

time interval, and ( )T⋅  denotes the transpose 
operation. 
     Then Equation (10) can be represented using 
matrix-vector notation: 

= +rS Pγ N                   (15) 
     Equation (15) is the precise express of the 
measurement equation in Equation (1), so the size of 

)(irS , ra fNsNm ⋅= . When execute the Kalman 
Filter based on Equation (15), the data will be divided 
into I smaller vectors, and i in Equation (1) will be the 

iteration number or the section of data, varying from 
1 to I. 
 
 
3  Implementation of Adaptive Kalman 
Filter Algorithm 
In a Kalman Filter, all the system characteristics have 
to be specified a priori as described in section 2. 
However, if there is uncertainty in any of these 
characteristics (including initial conditions, and noise 
characteristics), the filter may not be robust enough. 
To avoid some of the numeric problems inherent in 
the standard form of the Kalman Filter, an alternative 
filter is proposed which performs better than the 
standard Kalman Filter for uncertainties in both 
process and measurement noise covariances.  
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     Our adaptive Kalman Filter process includes two 
main phases: Obtaining the initial parameter by 
compressing part of the data by the matched filtering  
to initiate the Kalman filtering process and applying 
the adaptive Kalman filtering to the rest of the data. 
This section shows the processing of our developed 
adaptive Kalman Filter algorithm. 
 
 
3.1 Initial Parameter Estimate based on 

Matched Filtering Processing 
The selection of the parameters will affect the rate of 
the convergence. In worse condition, ill-suited initial 
parameters will make the KF unable to converge at 
all. Furthermore, if all data are processed with the 
Kalman Filter, the computational cost will be very 
large.  
     To assure the Kalman Filter quality and improve 
the computation performance, part of the data are 
selected and compressed with the matched filter 

firstly in our process scheme. When implementing 
the adaptive Kalman Filter, we take the result of this 
phase into account and set the initial state based on 
the matched filtering result to initiate the filtering 
process. 
     How to divide the data up between the matched 
filter and Kalman Filter? In fact the data can be 
selected in any manner as long as the matched 
filtering process limits the number of non-zero pixels 
to less than the number of measurements available 
for the Kalman filtering. 
     Here, we select 1/3 data for the matched filter. A 
subset of the data is chosen: 
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     Then the matched filtering can be modeled as the 
estimation: 

scorr rSWγ =                    (18) 
where corrW  is the matched filter estimator and mfD  
is the diagonal matrix respectively: 

H
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3.2 Adaptive Kalman Filtering Processing 
Now it’s time to use the adaptive Kalman Filter for 
the rest of the data to get images with high 
performance.  

     The performance of the Kalman Filter relies on 
the proper definition of the dynamic model and the 
stochastic model. The stochastic model describes the 
stochastic properties of the system process noise and 
observation errors. The process noise ( pn ) and the 

observation errors ( on ) influence the weight that  the 
filter applies between the existing process 
information and the latest measurements. Any error 
in them may result in the filter being suboptimal or 
even cause it to diverge. So the uncertainty in the 
covariance parameters of pR  and oR  has a 
significant impact on Kalman filtering performance. 
The conventional way of obtaining the pR  and oR  
requires good a priori knowledge of the process noise 
and measurement errors, which typically comes from 
intensive empirical analysis. In processing, the 
values are generally fixed and applied during the 
whole application segment. For the SAR system, the 
performance suffers from this inflexibility. Because  
practical process noise and measurement errors are 
dependent on the application environment and 
process dynamics.  And the settings of the stochastic 
parameters have to be conservative in order to 
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stabilize the filter for the worst case scenario. This 
leads to performance degradation.  
     To reduce the influence of the pn  and on  
definition errors and improve the robustness of the 

adaptive filtering algorithm, the noise statistic is 
scaled here adaptively. 
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     So the adaptive Kalman Filter is: 
)()()(~)(ˆ iiii wKγγ +=              (22) 

where ( )iw  is termed as the innovation and ( )iK  is 
the Kalman gain matrix, they are expressed as 
follows:
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     The steps are repeated until all the radar 
measurements are used, and then the estimation is the 
result. The initial (0)γ , )0(~

gK  have to be set to 

initiate the filtering process. The initial (0)γ  will be 
set as the result of the filtering in the matched 
filtering. The initial )0(~

gK  is computed based on the 
results of the matched filtering and Equation (23). 
 
 
4   Experimental Results 
Presented experimental results are aimed at showing 
the performance of the proposed filtering algorithm 
with respective to four aspects: 1) the spatial 
resolution, 2) the error criterion, 3) the computing 
speed, and 4) the converge rate. To demonstrate the 
resolution performance straightly, in this section, a 
simulated scene with 5 uniformly spaced dots placed 
on the earth surface is considered, and the raw data 
sets have been generated using the signal model 
mentioned before.  
     Images in Fig. 2 show the filtering results 
obtained by the matched filter, the MMSE filter, the 

traditional Kalman Filter and the adaptive Kalman 
Filter respectively for various SNRs. The SNRs are: 
low SNR (-20dB), moderate SNR (0dB) and high 
SNR (20dB). It can be seen that for all the SNR 
scenarios considered, Kalman Filter gives better 
estimates than the matched filter in terms of 
resolution performance. Especially in the high SNR 
situation, Kalman Filter minimizes correlation with 
other pixels in order to reduce the error due to clutter, 
but the matched filter is seen to be clutter limited. 
Even though the matched filter estimate of the 
scattering coefficients improves with SNR, it is still 
unable to describe the image of a dot object with an 
area less than 5 pixels in any case. In the low-SNR 
case, the adaptive Kalman Filter scales the filter to 
rely on target statistics and outperforms the 
traditional Kalman Filter result. The results also 
prove that the matched filter is optimal in the sense of 
the output signal-to-noise ratio.  
     It also demonstrates that the traditional Kalman 
Filter gives the same estimate as given by MMSE, 
which validates that the Kalman Filter is an iterative 
form of the MMSE filter. 
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Fig. 2 Comparison of the Matched filter, the MMSE Filter , 

the traditional Kalman Filter and the adaptive Kalman Filter performance versus SNR 
 
     To assess performance of different algorithms 
numerically, simulation results in terms of the error 
criterion will be taken into account. The error 
criterion is the mean-squared error (MSE) of the 
pixel magnitudes normalized by the image’s 
mean-squared pixel magnitude: 

( ) ( )ˆ ˆH

HMSE
− −

=
γ γ γ γ

γ γ        (24) 

     Fig. 3 shows the variation of the Normalized MSE 
as a function of input SNR. It shows that the adaptive 
Kalman Filter has the lowest error at both low SNR 
and high SNR. But at moderate SNR, the MSE of the 
adaptive Kalman Filter is higher because the using of 
matched filtering for part data. For land consolidation 
application, the SNR is usually about 20dB, so the 
adaptive Kalman Filter will bring less error to 
images.

 

 
Fig. 3 MSE performance of the Matched filter, MMSE filter, the traditional Kalman Filter  

and the adaptive filter versus SNR 
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Fig. 4 Processing speed of the Matched filter, MMSE filter, the traditional Kalman Filter  

and the adaptive Kalman Filter 
 
     Another important advantage of the developed 
algorithm is its ability of decreasing the processing 
load inherent in the MMSE filter and the traditional 
KF. Fig. 4 shows this improvement obtained. The 
processing time for different number of sampling 
dots is shown. The processing is done in Matlab on a 
PC with 512M RAM and a 2.93 GHz processor. It 
can be seen that as the number of radar measurements 
increases, the processing time for MMSE increases 
huge fold. But in the case of the KF, there is only a 

slight change in the processing time. Most important, 
the adaptive KF takes about half of processing time 
of the traditional KF, especially when the number of 
sampling measurements is increased. The results 
validate the developed adaptive KF. 
     To validate the converge rate of the adaptive KF, 
the improvement in the estimation of a unit dot 
scattering versus the iteration times can be viewed in 
the images given in Fig. 5. The iteration times are 
indicated at the top of each image. 
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Fig. 5 KF estimation obtained for each iteration 
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     It can be seen from Fig. 5 that there is a lot of 
improvement along with the iteration. For the 

traditional KF the initial value of  (0)γ  is set to be 
zeros , )0(~

gK   is set according to the SNR. So in the 
early stages the traditional KF mainly reduce the 
interference between the targets present in the radar 
measurement, and to get better estimation, it need 
more iteration times. Howbeit, the adaptive KF gets 
good estimation more quickly. The result testifies the 
efficiency of the developed adaptive KF. 
 

 
5   Conclusion 
SAR system enables to obtain all day/all night and all 
weather information for land consolidation. But land 
consolidation application requires high resolution 
images. To obtain high resolution SAR images, a 
signal space representation of the radar was presented 
and facilitated the discussion of reconstruction filter 
algorithms. The developed adaptive Kalman Filter 
procedure was applied to the simulated radar data. 
Results were also presented and demonstrated the 
feasibility of the high resolution SAR. A summary of 
the advantage of our algorithm is given as follows. 
1) The traditional matched filter was combined 

with the Kalman Filter,  which improves the 
computing speed as well as the performance of 
the estimate. 

2) The noise statistic in the Kalman Filter model is 
scaled adaptively. So the influence of the noise 
definition errors is reduced and the robustness 
of the adaptive filtering algorithm is improved. 

     In future, further tests will be performed by using 
real measured data on spaceborne SAR platform. 
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