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Abstract: This paper is concerned with monitoring the hourly event-based river suspended sediment 
concentration (SSC) due to storms in Jiasian diversion weir in southern Taiwan. The weir is built for supplying 
0.3 million tons of water per day averagely for civil and industrial use. Information of suspended sediments 
fluxes of rivers is crucial for monitoring the quality of water. The issue of water quality is of particular 
importance to Jiasian area where there are high population densities and intensive agricultural activities. 
Therefore, this study explores the potential of using artificial neural networks (ANNs) for modeling the event-
based SSC for continuous monitoring of the river water quality. The data collected include the hourly water 
discharge, turbidity and SSC during the storm events. The feed forward backpropagation network (BP), 
generalized regression neural network (GRNN), and classical regression were employed to test their 
performances. From the statistical evaluation, it has been found that the performance of BP was slightly better 
than GRNN model. In addition, the classical regression performance was inferior to ANNs. Statistically, it 
appeared that both BP (r2=0.930) and GRNN (r2=0.927) models fit well for estimating the event-based SSC in 
the Jiasian diversion weir. The weir SSC estimation using a single input data with the neural networks showed 
the dominance of the turbidity variable over water discharge. Furthermore, using the the ANN models are more 
reliable than classical regression method for estimating the SSC in the area studied herein. 
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1     Introduction 
River suspended sediment modeling is required to 
provide basic information on the water quality 
related to the river management problems. 
According to [1], information of suspended 
sediments fluxes of rivers is crucial for monitoring 
the quality of water. Studies have used the 
suspended sediment concentration for indicating 
water quality [2-4]. Water quality is extremely 
important, because constant access to good quality 
water is a condition necessary for life and economy 
activities. Beside the human life and economy 
activities, as indicated by [5], the sediment 
monitoring is essential for the sustainability of the 
biological resources. Sediment represents an 
important vector governing the transport and fate of 
nutrients [6, 7], trace and heavy metals [8], 
micropollutants [9] and pathogens [10, 11]. 
The sediments transportation monitoring required a 

good sample technique which is very lengthy and 
expensive [12, 13]. Correct estimation of sediment 
volume carried by a river is very important for 
many water resources projects. In the recent past, 
several studies focused on the understanding of 
sediment transport dynamics [14-16]. It has been 
demonstrated how the percentages of the different 
particle sizes in suspended sediment vary according 
to the hydraulic characteristics of the river and the 
climatic regime of the area [15]. It is therefore 
important to develop a model that can predict 
accurately the suspended sediments concentration 
from continuous water data set where typhoon and 
tropical storms exist such as Taiwan. According to 
[17] the relationship between water discharge, 
turbidity and suspended sediments concentration 
can be used for estimating continuously the water 
quality during the storm events. In the past, 
researchers have proposed several rating curves to 
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determine the average relationship between 
discharge, turbidity and rivers suspended sediment 
load based on the classical regression method [14, 
18]. This method does not always fit well because 
of the complex relationship of the sediment process. 
Artificial neural network (ANN) is a technique with 
flexible mathematical structure which is capable of 
identifying complex non-linear relationship between 
input and output data without detailed the nature of 
the internal structure of the physical process. The 
ANN is capable to model any arbitrarily complex 
nonlinear process that relates sediments load to 
continuous water discharge. According to [19], 
ANN is a massively parallel distributed information 
processing system based on concepts derived from 
research on the nature of human brains, and has 
many distinct advantages for hydrological 
modeling. ANNs are very common in hydrology 
science. The emergence of ANN technology has 
provided many promising results in the field of 
hydrology and water resources simulation [20-22]. 
The ANNs have been successfully employed in 
modeling a wide range of hydrologic processes, 
including streamflows [23], rainfall-runoff 
processes [24], groundwater flow and water quality 
[5] and erosion and sediment transport [4]. Study 
reported that, the ANN better performs the 
sediments yield loaded [25]. 
The above reviews modeled the sediment processes 
by using different neural networks. In this study, the 
generalized regression neural network (GRNN) and 
feed forward backpropagation network (BP) 
algorithms were employed. Study reported by [26] 
considers the GRNN as a worth technique in 
sediment modeling, which is one of the most 
challenging works in water resources engineering. 
GRNN approximates any arbitrary function between 
input and output vectors, drawing the function 
estimate directly from the training data. The 
employment of GRNN in river sediment load has 
been carried out in recent year. As well, the BP used 
in this study is one of the most popular and 
traditional feed forward networks which has been 
widely used in river sediment yield modeling [27, 
28]. According to [29], ANNs generally were found 
to be superior to conventional statistical techniques 
in suspended sediment estimation. 
The water discharge, turbidity and SSC data 
collected for most of the papers were daily or 
monthly time scaled. In this research, ANN was 
applied to hourly suspended sediments 

concentration collected manually during the storm 
events from July to October 2002 in Jiasian 
diversion weir in southern Taiwan. The issue of 
water quality is of particular importance to Jiasian 
area where there are high population densities and 
intensive agricultural activities. It was observed that 
no work has been mentioned in the literature related 
to the using of ANNs for SSC estimation in the 
Jiasian diversion weir. The main objective of this 
study is to evaluate the potential of ANNs model for 
the weir suspended sediment concentration 
estimation. The present study compares the 
performance of ANNs model for SSC estimation by 
using continuous hourly turbidity and water 
discharge as input data set collected from the Jiasian 
diversion weir in southern Taiwan. 
 
 
2     Material and Methods 
2.1   Study Area 
Jiasian diversion weir is located in Chishan River, 
southern part of Taiwan at 22 57’ 30” North latitude 
and 120 12’ 0” East longitudes (Figure 1). The 
Chishan River is a tributary of the Kaoping River 
which is a major river in Taiwan. The weir is built 
for supplying 0.3 million tons of water per day 
averagely for civil and industrial use. As industry 
and commerce in southern Taiwan are developing 
by leaps and bounds in recent years, demand for 
water is rising. Also, the weir is a continuation of 
the Nanhua reservoir which provides 0.8 millions 
tons of water per day. During the wet period, the 
surplus water of the Kaoping River is channeled 
into the Tsengwen Reservoir for allocation and 
storage. According to [30], the assessment of the 
drinking water quality in the Kaoping Rivers area is 
necessary. In this location, the average annual 
rainfall is 2794.4 mm with an abundance rainfall 
occurring in the wet season (May to October), 
conversely to the dry season (November to April). 
In the last fifty years, the total rainfall averages in 
dry and wet seasons were 235.9 and 2558.5 mm, 
respectively. Beside that, according to [31], the 
typhoon often raided island of Taiwan each year. It 
can be seen that the rainfall distribution at the 
location is unevenly distributed between the two 
seasons. 
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Jiasian diversion weir

Kaoping River basin 

Nanhua Reservoir 

Transbasin Diversion Tunnel

Tsengwen Reservoir 

 
Figure 1. Sketch of the study area. 

 
 
2.2   Data Collected 

In this study, the hourly water discharge (cms), 
turbidity (NTU) and suspended sediments 
concentration (ppm) collected from July 18, 2002 to 
October 10, 2002. These hourly data were manually 
obtained during the storm events. The hourly 
sediment data have been collected because of the 
typical rainfall pattern and topography of the study 
area where most of the SSC is due to the typhoon 
storms. The water samples were analyzed by 
turbidimeter which applies a nephelometry 
technique that measures the level of light scattered 
by particles at right angles (90o) to the incident light 
beam. The data set had a total of 1309 patterns and 
was divided between training, validation and testing 
to reach the best generalization. For preventing an 
overcome problem associated to the extreme values, 
the input and output data set were scaled in the 
range of [0 1] using the following equation [25]. 

 

minmax

mini
norm YY

YYY
−
−

=                                (1) 

 
where, normY  is the normalized dimensionless 
variable; iY  is the observed value of variable; minY  

is the minimum value of the variable; and maxY  is 
the maximum value of the variable. 
 
 
2.3   Artificial Neural Networks 
2.3.1   Feed forward backpropagation 
The most commonly used ANN in hydrological 
predictions is the feed forward network with the BP 
training algorithm [24]. Feed forward 
backpropagation is a supervised learning technique 
used for training artificial neural networks. BP has 
been widely used in approximating a complicated 
nonlinear function. The neural network structure in 
this study possessed a three-layer learning network 
consisting of an input layer, a hidden layer and an 
output layer. Adjustable weights are used to connect 
the nodes between adjacent layers and optimized by 
training algorithm to get the desired classification 
results [32]. Figure 2 shows the typical 
configuration for a BP used in this study. 
 
 

 
     
X1     
              Y 
X2      
     
 
     

Input layer Hidden layer Output layer 

 
Figure 2. Structure of BP neural network Selected. 
 

The mathematical equation of each layer may 
be written as following: 

 

∑ −= )θXWΦ(Y oiioo                              (2) 
 
where oY  is the output of the neuron o , ioW  is the 
weight increments between i  and o , iX  is the 
input signal generated for neuron i , oθ  is the bias 
term associated with neuron o , and the nonlinear 
activation function Φ  is assumed to be a sigmoid 

function as )e1/(1Φ(x) x−+=  for the continuous 
and differential process. 
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2.3.2   Generalized regression neural 
network 

Generalized regression neural network (GRNN) can 
be treated as a normalized radial basic function 
network in which there is a hidden unit centered at 
every training case. These radial basic function 
units are usually probability density functions such 
as the Gaussian. By definition, the regression of a 
dependent variable Y on an independent X 
estimates the most probable value for Y, given X 
and a training set. The regression method will 
produce the estimated value of Y with a minimized 
root mean square error (RMSE). Figure 3 shows a 
schematic diagram of generalized regression neural 
network architecture. The number of input units in 
input layer depends on the total number of the 
observation parameters. The first layer is connected 
to the pattern layer and in this layer each neuron 
presents a training pattern and its output. The 
pattern layer is connected to the summation layer. 
The summation layer has two different types of 
summation, which are a single division unit and 
summation units. The summation and output layer 
together perform a normalization of output set. In 
Figure 2 and 3, X1, X2 and Y represent the turbidity 
(T), water discharge (Q) and suspended sediment 
concentration (SSC), respectively. 
 
Suppose that )Yf(X,  represents the joint 
probability density function of a vector random 
variable X (input), and a scalar random variable Y  
(output). The most probable predicted value of Y  
which is also conditional mean of Y given X  
(regression of Y on X ) is expressed by: 
 

∫
∫

∞+

∞−

+∞

∞−==
Y)dYf(X,

Y)dYYf(X,
(X)ŶE(Y/X)  (3) 

 
The density function can be estimated from the 
training set using the Parzen’s nonparametric 
estimator [33]: 
 

∑
=

−−
+

+
=

n

i
p

ii

pn 1

)Yd(Y,)Xd(X,

2
1 ee

)1()2(

1Y)f(X,
σπ

  (4) 

 
Where ∑ =

−=
p

j jiji j1
2)]/()XX[()Xd(X, σ  and 

2)]/()YY[()Y,d(Y yii σ−=  the number of 
training patterns and the number of independent 
variables are denoted n and p , respectively. The 
density function Y)f(X,  is therefore estimated by a 
weighted sum of the “Kernel function”[34]. The 
parameter σ represent the smoothing parameter the 
width of the “Kernel function”. 
 
The estimator Y)f(X,  is asymptotically unbiased 
and consistent [35]. An interpretation of the 
probability estimate Y)f(X, is that it assigns 
sample probability of width σ for each i th value 
of X and Y . The indicated integration yields the 
following: 
 

∑

∑

=

−

=

−

= n

i

n

i
i

i

i

e

e

1

)Xd(X,

1

)Xd(X,Y
)(XŶ    (5) 

 
The predictor (5) is a weighted sum over all the 
training patterns. It is directly applicable to 
problems involving numerical data. Each training 
pattern is weighted exponentially according to its 
Euclidean distance to the unknown pattern x and 
also according to the smoothing factors. This 
predicator was mapped into a neural network, which 
includes four layers: input layer, pattern layer, 
summation layer and output layer. 
 
 
 
      
X1      
           Y 
X2      
      
      
      
      

 
 

Input layer 

 
 

Pattern layer 

 
 

Summation layer   Output 
 

Figure 3. Schematic diagram of GRNN architecture. 
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2.3   Models Evaluation 
 
The classical procedure between water discharge, 
turbidity and SSC reported by several studies [36-
38] may be written as following: 
 

baXYs =                                               (6) 
 
where sY  represents suspended sediment 
concentration, X is turbidity or water discharge, 
and a and b  are the constants. 

The performances evaluations were based on 
the root mean square errors and the square value of 
coefficient of correlation ( )r  between estimated and 
observed SSC. The root mean square error was used 
to test the statistical significant between estimates 
and observed SSC which can be expressed as: 

 

N

d
RMSE

N

1i

2
i∑

==                                         (7) 

 
where id  is the difference between ith estimated 
and ith SSC observed values and N  is the number 
of observations. 

The coefficient of correlation has been used 
for further analysis to evaluate the performance of 
estimation model. It is defined as follows: 

 

∑ ∑

∑

= =

=

−−

−−
=

N

1i

N

1i

2
i

2
i

N

1i
ii

)Y(Y)X(X

)Y)(YX(X
r             (8) 

 
Where iX  and X  are the observed and its average 
values; iY  and Y  are the estimated and its average 
values; N  is the number of observations. 
 
 
3     Discussion of Results 

The neural networks were fed with turbidity 
(T) and water discharge (Q) data selected as the 
independent input variables. The suspended 
sediment concentration (SSC) was used as a 
dependent output variable for the networks. In 

general, the training, validation and testing are the 
fundamental steps of neural network process. The 
training data set is used to train a neural network by 
minimizing the error of the data set during the 
training. The validation data set is used to find the 
neural network performance. Then, the test set is 
used for checking the overall performance of a 
trained and validated network. The networks were 
tested using different input and output values that 
were not given for training previously. For the Feed 
forward back propagation (BP) the data have been 
divided in three sets, training (60%), validation 
(30%) and testing (10%). The determination of the 
number of nodes in the hidden layers providing the 
best training results was the initial process of the 
training procedure. Hence, various numbers of 
nodes in a hidden layer were tried for the BP 
algorithm. However, the generalized regression 
neural network (GRNN) does not require an 
iterative training procedure as the BP model. GRNN 
was carried out by trying different smoothing 
parameters in order to obtain the best performance. 
Table 1 shows the networks performance during the 
training stage for BP and GRNN. The configuration 
with 2 inputs (turbidity and water discharge), 4 
hidden nodes and unique output (SSC) denoted as 
BP (2 4 1) provided the best performance during the 
training stage, i.e. highest r2 (0.977). For the 
generalized regression neural network, the structure 
GRNN (2, 0.01, 1) with 2 inputs, smoothing 
parameter 0.01 and 1 input gave the highest r2 

(0.958) during the training stage. 
For the testing period, the network 

performances comparison results were given in 
Table 2. BP (2 4 1) configuration for the testing 
period compared with the observed SSC gave better  
 
Table 1: Performances of BP and GRNN during the 

training period. 
 
ANN 
configuration  

Model 
input 

Nodes in 
hidden layer r2 

FFBP (2 4 1) Q, T 4 0.977 
FFBP (1 2 1) T 2 0.929 
FFBP (1 2 1) Q 2 0.883 
GRNN (2, 0.01, 1) Q, T - 0.958 
GRNN (1, 0.01, 1) T - 0.934 
GRNN (1, 0.01, 1) Q  - 0.896 
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Table 2: Performance of BP and GRNN during the 
testing period. 

 
ANN 
configuration  

Model 
input RMSE r2 

FFBP (2 4 1) Q, T 0.0227 0.930 
FFBP (1 2 1) T 0.0245 0.915 
FFBP (1 2 1) Q 0.0651 0.524 
GRNN (1, 0.01, 1) Q, T 0.0225 0.927 
GRNN (2, 0.01, 1) T 0.0237 0.919 
GRNN (1, 0.01, 1) Q 0.0597 0.558 

 
 
estimates results by its lowest RMSE (0.0227) and 
highest r2 (0.930). In this configuration the network 
has two inputs, hourly turbidity and water discharge 
for estimating the event-based SSC. Using this 
configuration, it can be seen from Figures 4a (plot) 
and b (scatter) a good agreement between estimated 
and observed SSC when turbidity and water 
discharge are used together as input. Conversely, 
using only one input in the same configuration, the 
performance of BP was reduced as shown in the 
Table 2 for both training and testing period. It could 
be observed that, using a single input with BP 
algorithm less performs the suspended sediment 
concentration estimation. BP algorithm may not 
lead to good generalization properties for the 
network when the input data are limited [21]. 
Although the single input less performs, it has been 
observed that, the performances were higher for 
turbidity (RMSE=0.0245, r2=0.915) than water 
discharge (RMSE=0.0651, r2=0.524) during the 
testing period. Accordingly, the turbidity seems to 
be a dominant variable over the water discharge for 
the suspended sediment concentration estimation for 
Jiasian diversion weir. For GRNN, during the 
testing period, the configuration GRNN (2, 0.01, 1) 
provided the best performances (RMSE=0.0225, 
r2=0.927) as shown in Table 2. The GRNN network 
performing comparisons between observed and 
estimated suspended sediment concentration during 
the testing period are presented in Figures 5. Figures 
5a and b show the plot and scatters of estimated and 
observed SSC during the testing period, respectively 
when T and Q are used as the network input. 
Similarly to BP, using a single turbidity or water 
discharge as input variable with GRNN, decrease 
the performance of the neural network model. The 
performances evaluated during the testing period 
were RMSE=0.0237, r2=0.919 when the turbidity 

was used as a single input, and RMSE=0.0597, 
r2=0.558 for the water discharge. 
Further observation showed that the turbidity is a 
dominant parameter over the water discharge for the 
event-based SSC estimation in the weir. According 
to [39], other factors which are not included as 
inputs in the networks could explain this poor 
performance of water discharge. Studies done by 
[40, 41] denoted that human activity related to land 
surface disturbance increase the suspended sediment 
flux. Data analysis of hydrological processes of the 
watershed reveals that the water quality parameters 
are mostly affected by weather forces and land use 
of the watershed [42]. It is generally assumed that 
the human activities increase the rivers sediment 
concentration in the extensive urbanized and 
industrialized areas [5, 43]. 
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Figure 4. Suspended sediment concentration 

estimated by BP for the testing period 
using T and Q as input variables. 
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Figure 5. Suspended sediment concentration 

estimated by GRNN for the testing 
period using T and Q as input 
variables. 

 
The human activities could increase the suspended 
flux independently to the water discharge. This 
could explain the poor relationship between water 
discharge and suspended sediments concentration 
recorded at the weir. It could be conclude that from 
this study, by using a single input variable decrease 
the performance of the neural networks. 

By comparing the performance of ANN with 
the classical linear regression method, ANN could 
provide the highest performance for event-based 
suspended sediment concentration estimation. The 
relationship from classical method for turbidity 
versus SSC, and water discharge versus SSC were r2 
(0.890) and r2 (0.455), respectively. Studies 
reported that, ANN could provide an estimate closer 
to observed suspended sediment concentration than 
the classical linear regression method [23, 29, 44]. 
Previous Report done by [41] demonstrated from 

the daily suspended sediment concentration 
simulation that, the modeling of sediment 
concentration in a river is possible through the use 
of ANN. The predictive accuracy of the ANN 
model was found to be better for modeling sediment 
transport [45]. According to [42], the performance 
of the BP was found to be superior to conventional 
statistical and stochastic methods in continuous 
flow series forecasting. The superiority of ANNs 
over the conventional method in the reviewed 
prediction study can be attributed to their capability 
to capture the non-linear dynamics and generalize 
the structure of the whole data set [46]. Clearly, 
using the ANNs for sediment modeling is more 
reliable than the other methods in the weir studied 
herein. 
 
 
4     Conclusions 
In this study, the applicability of artificial 
intelligence techniques is investigated in the jiasian 
diversion weir in southern Taiwan. This study 
showed the ability of the feed forward back 
propagation (BP) and the generalized regression 
neural networks to model the event-based 
suspended sediment concentration in Jiasian 
diversion weir. The performances of the models and 
observations were compared and evaluated based on 
their performance in training and testing sets. Both 
BP and GRNN perform better than the conventional 
linear regression method. It was observed from the 
results of this study that, the performances of the 
networks were higher when turbidity and water 
discharge were used together as an associate input. 
Using a single input decreases the network 
performances. In addition, the turbidity seems to be 
a dominant variable on water discharge for the 
event-based suspended sediment concentration 
estimation for Jiasian diversion weir. Other factors 
such as human activities, which are not included as 
inputs in the networks could explain the poor 
relationship between water discharge and SSC 
recorded at the weir. The human activities could 
increase the suspended flux independently to the 
water discharge. It could be conclude clearly that by 
using the ANNs for modeling the sediment in the 
weir studied herein is more reliable than the other 
methods. 
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